
08. Separation axioms

Separation axioms provide information if there are ”enough” open sets
to ”separate” points resp. subsets. The presence of certain separation
properties has often important consequences.

Definition. A space (X, τ) is called

1) T0−space if for two distinct points x, y ∈ X there exists an open set
O ∈ τ containing one point but not the other.

2) T1−space if for two distinct points x, y ∈ X there exist open sets
Ox, Oy ∈ τ such that x ∈ Ox y /∈ Ox and y ∈ Oy x /∈ Oy .

3) T2−space or Hausdorff space if for two distinct points x, y ∈ X

there exist open sets Ox, Oy ∈ τ such that x ∈ Ox , y ∈ Oy and
Ox ∩Oy = ∅ .

Remarks.

(a) Clearly, T2−space ⇒ T1−space ⇒ T0−space

(b) The indiscrete topology on an infinite set is not a T0−space.

(c) The Sierpinski Space (X, τ) where X = {a, b} and τ = {∅, {a}, X}
is T0 but not T1 .

(d) Let X be an infinite set and τ the cofinite topology on X . If
x ̸= y then Ox = X \ {y} and Oy = X \ {x} are open neighbourhoods
of x resp. y showing that (X, τ) is a T1−space.

We saw earlier that any two nonempty open sets intersect therefore (X, τ)
cannot be T2 .

(e) The topology τd of a metric space (X, d) is T2 . For x ̸= y let
r = 1

2d(x, y) > 0 . Then K(x, r) ∩K(y, r) = ∅ by the triangle inequality.

Theorem. For (X, τ) the following are equivalent:
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1) (X, τ) is a T1−space,

2)
∩
{U : U ∈ U(x)} = {x} ∀ x ∈ X ,

3) {x} is closed ∀x ∈ X .

Proof. Very easy! �

Hence in T1−spaces singletons and thus finite subsets are always closed.

Theorem. For (X, τ) the following are equivalent:

1) (X, τ) is a T2−space,

2)
∩
{U : U ∈ U(x)} = {x} ∀ x ∈ X ,

3) the diagonal ∆ = {(x, x) : x ∈ X} ⊆ X ×X is closed in X ×X .

Proof.

1) ⇒ 2): Clearly, x ∈
∩
{U : U ∈ U(x)} . If y ̸= x there are open

neighbourhoods Ox, Oy of x resp. y with Ox ∩Oy = ∅ .

It follows that Ox ∩Oy = ∅ and thus y /∈ Ox .

2) ⇒ 3): Let (x, y) /∈ ∆ , i.e. x ̸= y . By assumption, there exists a
neighhourhood, and thus also an open neighbourhood Ox ∈ U(x) such
that y /∈ Ox .

Let Oy = X \ Ox . Then Oy is an open neighbourhood of y with
Ox ∩Oy = ∅ and therefore (Ox ×Oy) ∩∆ = ∅ . So ∆ is closed.

3) ⇒ 1): Let x ̸= y . Then (x, y) ̸= ∆ .

By assumption there exists a member U × V of the canonical base for
X ×X containing (x, y) such that (U × V ) ∩∆ = ∅ .

Hence U ∩ V = ∅ . �

Remark. We say that in a space (X, τ) a sequence (xn) converges
to x ∈ X , xn → x , if

∀ U ∈ U(x) ∃ N ∈ N such that xn ∈ U ∀ n ≥ N .
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Let X is an infinite set and τ the cofinite topology on X . If (xn) is
a sequence with pairwise distinct members then (xn) converges to every
x ∈ X . So the convergence of sequences is, in general, not unique.

If a space (X, τ) is T2 then a sequence can obviously converge to at most
one point.

Remark. Another fundamental property of T2−spaces is the following:

Let f, g : (X, τ) → (Y, σ) be continuous functions and (Y, σ) be a
T2−space.

Then the function F : X → Y × Y with F (x) = (f(x), g(x)) is also
continuous.

Since (Y, σ) is T2 , the diagonal is closed in Y × Y and therefore

A = F−1(∆) = {x ∈ X : f(x) = g(x)} is closed in (X, τ) .

In particular, if f and g coincide on a dense subset D ⊆ X , i.e. a
subset with D = X , then A = X (because D ⊆ A ⇒ D ⊆ A).

So, f |D = g|D ⇒ f = g .

Definition. A space (X, τ) is called

1) T3−space if for each closed set A ⊆ X and each point x /∈ A there
exist open sets U, V ∈ τ such that

x ∈ U , A ⊆ V and U ∩ V = ∅

2) T3a−space if for each closed set A ⊆ X and each point x /∈ A there
exists a continuous function f : X → [0, 1] such that

f(x) = 1 and f(a) = 0 ∀ a ∈ A

3) T4−space if for any closed sets A,B with A ∩ B = ∅ there exist
open sets U, V ∈ τ such that

A ⊆ U , B ⊆ V and U ∩ V = ∅

4) regular if T3−space and T1−space
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5) completely regular if T3a−space and T1−space

6) normal if T4−space and T1−space .

It is clear that

normal ⇒ T4 , completely regular ⇒ T3a , regular ⇒ T3 .

One can show that these implications cannot be reversed in general.

Proposition. Moreover, the following holds for a space (X, τ) :

1) regular ⇒ T2 ,

2) completely regular ⇒ regular ,

3) normal ⇒ completely regular.

Proof.

Ad 1) : If x ̸= y then {y} is closed and x ̸= {y} .

Ad 2) : We show that a T3a−space is T3 . So let A ⊆ X be closed and
x /∈ A .

By assumption there is a continuous function f : X → [0, 1] with f(x) = 1
and f(a) = 0 ∀ a ∈ A .

The intervals (12 , 1] and [0, 12) are disjoint and open in [0, 1] , therefore
U = f−1((12 , 1]) and V = f−1([0, 12)) are open sets in (X, τ) .

Clearly, x ∈ U , A ⊆ V and U ∩ V = ∅ .

Ad 3) : This is a consequence of the Lemma of Urysohn, a fundamental
result in General Topology (see later). �
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Remark. Suppose that A,B ⊆ X and there is a function f : X → R
such that f(a) = r ∀ a ∈ A and f(b) = s ∀ b ∈ B where r ̸= s .

There are disjoint open neighbourhoods W1,W2 ⊆ R of r resp. s .

If U = f−1(W1) and V = f−1(W2) then U, V ⊆ X are disjoint open
neighbourhoods of A resp. B .

Theorem. Every metric space (X, d) is normal.

Proof. We know from calculus that for each subset ∅ ̸= A ⊆ X the
function

dA : X → R where dA(x) = d(A, x) = inf{d(a, x) : a ∈ A}

is continuous and dA(x) = 0 ⇔ x ∈ A .

Now let A,B ⊆ X be closed and A ∩ B = ∅ . Observe that in this case
dA(x) + dB(x) ̸= 0 ∀ x ∈ X .

The function f : X → R with f(x) = dA(x)
dA(x)+dB(x)

is continuous with

f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B .

By the previous remark, A and B are therefore contained in disjoint
open sets. �

Corollary. A space (X, τ) that is not normal cannot be metrizable.

We now address the question about the preservation of separation axioms
when forming subspaces and products.

Theorem. Let (X, τ) be a Tj−space, where j ∈ {0, 1, 2, 3, 3a} and let
A ⊆ X . Then (A, τ |A) is a Tj−space.

Proof. For j = 3 (the other cases are similar).

Let B ⊆ A be closed in A and let x ∈ A \B .

There is a set F ⊆ X closed in (X, τ) such that B = F ∩ A .

Since x /∈ F there exist O1, O2 ∈ τ such that x ∈ O1 , F ⊆ O2 and
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O1 ∩O2 = ∅ .

If V1 = O1 ∩ A , V2 = O2 ∩ A then V1, V2 are open in A with

x ∈ V1 , B = F ∩ A ⊆ O2 ∩ A = V2 and V1 ∩ V2 = ∅ . �

Remarks.

(i) In general, the result does not hold for T4−spaces.

(ii) However, a closed subspace of a T4−space is again a T4−space (proof
as exercise).

(iii) In a metric space, every subspace is normal (since every subspace is
a metric space). This property is called hereditarily normal.

Theorem. For each i ∈ I let (Xi, τi) be a Tj−space, where j ∈
{0, 1, 2, 3, 3a} .

Then X =
∏
i∈I

Xi with the product topology τ is a Tj−space.

Proof. For j = 3a (the other cases are similar).

Let A ⊆ X =
∏
i∈I

Xi be closed and x∗ /∈ A .

Then there is a set of the canonical base B = p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik)

such that x∗ ∈ B and B ∩ A = ∅ .

For each r ∈ {1, 2, . . . , k} we have x∗ir ∈ Oir resp. x∗ir /∈ Xir \Oir .

By assumption there is a continuous function fir : Xir → [0, 1] such that

fir(x
∗
ir
) = 1 and fir(yir) = 0 for yir ∈ Xir \Oir .

Consider f : X → [0, 1] where

f(x) = min{fi1 ◦ pi1(x), . . . , fik ◦ pik(x)} = min{fi1(xi1), . . . , fik(xik)} .

Then f is continuous and f(x∗) = 1 .

Now let y ∈ A . Then y /∈ B .

Hence there is ir such that y /∈ p−1
ir
(Oir) , i.e. yir ∈ Xir \Oir .
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Thus fir(yir) = 0 and so f(y) = 0 . �

Remark. One can show that even the product of two normal spaces need
not be T4 .

Theorem. (Lemma of Urysohn)

Let (X, τ) be a T4−space, A,B ⊆ X be closed with A ∩B = ∅ .

Then there is a continuous function f : X → [0, 1] such that f(a) = 0
for each a ∈ A and f(b) = 1 for each b ∈ B .

Proof.

For each r ∈ Q ∩ [0, 1] we construct an open set Vr ⊆ X with the
following properties:

(1) Vr ⊆ Vs whenever r < s

(2) A ⊆ V0 and B ⊆ X \ V1

This construction is done inductively.

By hypothesis, there exist open sets O1, O2 with A ⊆ O1 , B ⊆ O2 and
O1 ∩O2 = ∅ . Hence O1 ∩O2 = ∅ and O1 ∩B = ∅ .

Let V0 = O1 and V1 = X \B .

Then V0, V1 are open, A ⊆ V1 , B ⊆ X \ V1 and V0 ⊆ V1 .

We write (0, 1) ∩Q as a sequence r3, r4, r5, . . . and we set r1 = 0 and
r2 = 1 .

Then (2) and

(3k) Vri ⊆ Vrj if ri < rj for i, j ≤ k

holds for k = 2 .

Suppose the Vri have been defined for i ≤ n and (3n) holds (n ≥ 2).

Choose rl, rm ∈ {r1, r2, . . . , rn} such that rl is the closest number to
rn+1 from the left, and rm is the closest number to rn+1 from the right.
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Since rl < rm we have Vrl ⊆ Vrm resp. Vrl ∩ (X \ Vrm) = ∅ .

The sets Vrl and X \Vrm are disjoint and closed. Hence there exist open
sets W1,W2 such that

Vrl ⊆ W1 , (X \ Vrm) ⊆ W2 and W1 ∩W2 = ∅ (⇒ W1 ∩W2 = ∅).

Let Vrn+1
= W1 . Then Vrl ⊆ Vrn+1

⊆ Vrn+1
⊆ Vrm .

Thus (3n+1) holds and the sequence Vr1, Vr2, Vr3, . . . satisfies the condi-
tions (1) and (2) .

Now define f : X → [0, 1] by

f(x) =

{
inf{r : x ∈ Vr} if x ∈ V1

1 if x /∈ V1

Then f(a) = 0 for a ∈ A and f(b) = 1 for b ∈ B ⊆ X \ V1 .

We now show that f is continuous. Sets of the form [0, a) , a ≤ 1 and
(b, 1] , b ≥ 0 form a subbase for [0, 1] .

Since f(x) < a ⇔ ∃ r < a such that x ∈ Vr ,

we have f−1([0, a)) =
∪
r<a

Vr which is an open set.

If f(x) > b there exist r, r′ with b < r < r′ < f(x) .

Then x /∈ Vr′ and x /∈ Vr . Therefore

f−1((b, 1]) =
∪
r>b

(X \ Vr) which is an open set.

Therefore f is continuous. �

Without proof we mention a very important consequence of the lemma of
Urysohn which is known as the Tietze extension theorem.

Theorem. Let (X, τ) be a T4− space.

Let A ⊆ X be closed and f : A → [0, 1] be continuous.

Then f can be continuously extended to X , i.e. there exists a continuous
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function f ∗ : X → [0, 1] such that f ∗|A = f .

(The result remains valid if [0, 1] is replaced by R .)
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