08. Separation axioms

Separation axioms provide information if there are ”enough” open sets
to 7separate” points resp. subsets. The presence of certain separation
properties has often important consequences.

Definition. A space (X,7) is called

1) Ty—space if for two distinct points z,y € X there exists an open set
O € 7 containing one point but not the other.

2) Ti—space if for two distinct points z,y € X there exist open sets
Oy, 0y €71 suchthat 2€0, y¢ O, and ye O, v ¢ O, .

3) Ty—space or Hausdorff space if for two distinct points =,y € X
there exist open sets O0,,0, € 7 such that » € O, , y € O, and
O,N0O,=0.

Remarks.

(a) Clearly, Tho—space = Ti—space = Ty—space
(b) The indiscrete topology on an infinite set is not a Ty—space.

(c) The Sierpinski Space (X,7) where X = {a,b} and 7 = {0, {a}, X}
is Ty but not 717 .

(d) Let X be an infinite set and 7 the cofinite topology on X . If

r#y then O, =X\ {y} and O, = X \ {z} are open neighbourhoods
of x resp. y showing that (X,7) is a Tj—space.

We saw earlier that any two nonempty open sets intersect therefore (X, 7)
cannot be T .

(e) The topology 74 of a metric space (X,d) is Ty . For = # y let
r=3d(z,y) >0. Then K(z,7)NK(y,r) =10 by the triangle inequality.

Theorem. For (X,7) the following are equivalent:
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1) (X,7) is a T)—space,
2) (MU : Uel(x)}={z} VeeX,
3) {z} isclosed Vx e X .

Proof. Very easy! [

Hence in T} —spaces singletons and thus finite subsets are always closed.

Theorem. For (X,7) the following are equivalent:

1) (X,7) is a Th—space,

2) (WU : Ucl(x)} ={2} VweX,

3) the diagonal A = {(z,z) : € X} C X x X isclosed in X x X .

Proof.

1) = 2): Clearly, x € ({U : U € U(x)} . If y # = there are open
neighbourhoods O,,0, of = resp. y with O, NO, =10

It follows that O, N O, =0 and thus y ¢ 0, .

2) = 3): Let (z,y) ¢ A,ie. x # y . By assumption, there exists a
neighhourhood, and thus also an open neighbourhood O, € U(x) such
that y ¢ O, .

Let O, = X\ O, . Then O, is an open neighbourhood of y with
O, N O, =0 and therefore (O, x O,))NA=0.So A is closed.

3) = 1): Let z#y. Then (x,y)# A .

By assumption there exists a member U x V of the canonical base for
X x X containing (z,y) such that (U xV)NA=10.

Hence UNV =0. O

Remark. We say that in a space (X,7) a sequence (x,) converges
to reX , x,—x,if

VUeU(x) INeN suchthat z, €U Vn>N.



Let X is an infinite set and 7 the cofinite topology on X . If (z,) is
a sequence with pairwise distinct members then (x,) converges to every
x € X . So the convergence of sequences is, in general, not unique.

If a space (X,7) is T5 then a sequence can obviously converge to at most
one point.

Remark. Another fundamental property of Th—spaces is the following:

Let f,g : (X,7) = (Y,0) be continuous functions and (Y,0) be a
T5—space.

Then the function F : X — Y xY with F(z) = (f(x),g(x)) is also

continuous.
Since (Y,o0) is T3, the diagonal is closed in Y x Y and therefore
A=F1YA)={re X : f(x) =g(x)} isclosed in (X,7).

In particular, if f and ¢ coincide on a dense subset D C X | ie. a
subset with D = X , then A= X (because DC A = D C A).

So, flo=glp = f=9.

Definition. A space (X,7) is called

1) Ts—space if for each closed set A C X and each point = ¢ A there
exist open sets U,V € 7 such that

xeU, ACV and UNV =0

2) Ti,—space if for each closed set A C X and each point = ¢ A there
exists a continuous function f: X — [0,1] such that

f(x)=1 and f(a)=0 VacA

3) T,—space if for any closed sets A, B with AN B = there exist
open sets U,V € 7 such that

ACU,BCV and UNV =10

4) regular if T;—space and T;—space



5) completely regular if T3,—space and T;—space

6) normal if T,—space and T;—space .
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It is clear that
normal = T , completely regular = T3, , regular = Tj .

One can show that these implications cannot be reversed in general.

Proposition. Moreover, the following holds for a space (X, 7) :
1) regular = T,
2) completely regular = regular ,

3) normal = completely regular.

Proof.
Ad1): If x#y then {y} isclosed and z # {y} .

Ad 2) : We show that a T3,—spaceis T3 . Solet A C X be closed and
ré¢A.

By assumption there is a continuous function f: X — [0,1] with f(z) =1
and f(a)=0 VaecA.

The intervals (3,1] and [0,1) are disjoint and open in [0,1] , therefore
U=f"3,1) and V = f71([0,3)) are open sets in (X,7) .

Clearly, x €U, ACV and UNV =10 .

Ad 3) : This is a consequence of the Lemma of Urysohn, a fundamental
result in General Topology (see later). [
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Remark. Suppose that A, B C X and there is a function f: X — R
such that f(a)=r Vae€ A and f(b)=s Vbe B where r#s.

There are disjoint open neighbourhoods Wi, Wy CR of r resp. s.

If U=f1W) and V = f~}(W,) then U,V C X are disjoint open
neighbourhoods of A resp. B .

Theorem. FEvery metric space (X, d) is normal.

Proof. We know from calculus that for each subset ) # A C X the
function

dy: X - R where dy(z)=d(A,z)=inf{d(a,z) : a € A}
is continuous and d(z) =0 & z€ A.

Now let A, B C X be closed and AN B = (. Observe that in this case
da(z) +dp(z) #0 VzeX.

The function f: X — R with f(z) = #@d;@) is continuous with

f(z)=0 for x€ A and f(x)=1 for x € B..

By the previous remark, A and B are therefore contained in disjoint
open sets. [

Corollary. A space (X,7) that is not normal cannot be metrizable.

We now address the question about the preservation of separation axioms
when forming subspaces and products.

Theorem. Let (X,7) bea Tj—space, where j € {0,1,2,3,3a} and let
AC X . Then (A,7]a) isa T;—space.

Proof. For j =3 (the other cases are similar).

Let BC A beclosedin A andlet z € A\ B.

There is a set F' C X closed in (X, 7) such that B=FNA.

Since = ¢ F there exist 01,05 € 7 such that =z € O; , FF C Oy and



OlﬂOQZQ)-
If Vi=0,NnA, Vo=0,NA then V;,V, areopenin A with
xeVi, B=FNACO,NA=V, and ViNnV,=0. O

Remarks.
(i) In general, the result does not hold for T,—spaces.

(ii) However, a closed subspace of a Tjy—space is again a Ty—space (proof
as exercise).

(iii) In a metric space, every subspace is normal (since every subspace is
a metric space). This property is called hereditarily normal.

Theorem. For each ¢ € I let (X;,7;) be a Tj—space, where j €
{0,1,2,3,3a} .

Then X = [[X; with the product topology 7 is a T;—space.

el
Proof. For j = 3a (the other cases are similar).

Let AC X =T][X, beclosed and z* ¢ A .

1€l
Then there is a set of the canonical base B = pi_ll(Oil) N...N p;kl(Oik)
such that z*€ B and BNA=1.

For each r € {1,2,...,k} wehave xj € O; resp. xj ¢ X; \O; .

By assumption there is a continuous function f; : X; — [0,1] such that
fi(x;)=1 and f;(y;,)=0 for y;, € X; \O; .

Consider f: X — [0,1] where

f(x) = min{ f;, o p;,(x),..., fi, opi. ()} = min{ fi, (x;,), ..., fi.(zi,)} -

Then f is continuous and f(z*)=1.

Now let y € A. Then y ¢ B .
Hence there is i, such that y & p;'(0;,) ,ie. i, € X; \O;, .



Thus f; (y;) =0 andso f(y)=0. O

Remark. One can show that even the product of two normal spaces need
not be T} .

Theorem. (Lemma of Urysohn)
Let (X,7) bea Ty—space, A,B C X be closed with ANB=10".

Then there is a continuous function f : X — [0,1] such that f(a) =0
for each a € A and f(b) =1 foreach be B .

Proof.

For each r € QN [0,1] we construct an open set V, C X with the
following properties:

(1) V., CV, whenever r < s
(2) ACVy and BC X\ W

This construction is done inductively.

By hypothesis, there exist open sets 0,0y with AC O;, B C Oy and
O1NO0y=0.Hence O;NOy=0 and O, NB=0".

Let V=0, and Vi =X\ B.
Then Vo,V areopen, ACV;, BCX\V; and V; CV; .
We write (0,1) NQ as a sequence r3,74,75,... and we set r; =0 and
ro=1.
Then (2) and
(3r) V., CV,, if ry<r; for i,j <k

holds for k£ =2 .

Suppose the V;, have been defined for ¢ <n and (3,) holds (n > 2).

Choose 1,1, € {ri,rs,...,r,} such that 7 is the closest number to
rne1 from the left, and r,, is the closest number to 7,1 from the right.



Since r; <71, wehave V, CV, resp. V,N(X\V,)=0.

The sets V,, and X \V,
sets Wi, W5 such that

Vo, CWy, (X\V,,)CWy, and WinWy=0 (= W,NW,y=0).

are disjoint and closed. Hence there exist open

m

Let V., . =W;. Then WQVT cV, . CV, .

rn+1 n+l — rnJrl

Thus (3,41) holds and the sequence V,,V,,,V,,, ... satisfies the condi-
tions (1) and (2) .

Now define f: X — [0,1] by

[ inf{r:xzeV,} it reW
ﬂ@_{ 1 it z¢V

Then f(a) =0 for a€ A and f(b)=1 for be BC X \V;.

We now show that f is continuous. Sets of the form [0,a) , a <1 and
(b,1] , b >0 form a subbase for [0,1] .

Since f(x)<a < dr<a suchthat z €V, ,

we have f71([0,a)) = |J V, which is an open set.

r<a
If f(z)>b thereexist r,r' with b<r <71 < f(z).
Then z ¢V, and x ¢V, . Therefore
(b, 1)) = U (X \'V,) which is an open set.

r>b

Therefore f is continuous. [

Without proof we mention a very important consequence of the lemma of
Urysohn which is known as the Tietze extension theorem.

Theorem. Let (X,7) be a T)— space.
Let AC X beclosed and f:A—[0,1] be continuous.

Then f can be continuously extended to X | i.e. there exists a continuous



function f*: X — [0,1] such that f*|4=f.

(The result remains valid if [0,1] is replaced by R .)



