
09. Convergence

I. Sequences

Definition.

Let (X, τ) be a space, (xn) a sequence in X and x ∈ X .

1) (xn) converges to x , xn → x , if

∀ U ∈ U(x) ∃ N ∈ N such that xn ∈ U ∀ n ≥ N .

2) x is called an accumulation point of (xn) if each neighbourhood of
x contains infinitely many members of (xn) .

Remark. Let (X, τ) and (Y, σ) be spaces, A ⊆ X and x ∈ X .

It is easily seen that if an → x where an ∈ A ∀ n ∈ N then x ∈ A .

Moreover, if f : X → Y is continuous in x and xn → x then
f(xn) → f(x) .

The converse, however, need not be true in general!

Example. There is an uncountable well ordered set Y such that each
element of Y has at most countably many predecessors.

(Take a well ordering ” < ” of R . If every element has only countably
many predecessors, let Y = R .

Otherwise let z be the smallest element having uncountably many prede-
cessors and let Y = {y ∈ R : y < z} .)

We now add a largest element to this well ordered set. Take any a /∈ Y
and let X = Y ∪ {a} . Extend the order to X by y < a ∀ y ∈ A .

X is again well ordered and can be written in the form X = [0, a] where
0 denotes the smallest element with respect to the well ordering.

Let τ be the order topology on X .
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If (yn) is a sequence in Y then
∪
n∈N

[0, yn] is countable (!) hence there

is y ∈ Y such that yn < y ∀ n ∈ N .

(y, a] is a neighbourhood of a so (yn) does not converge to a .

On the other hand, we clearly have a ∈ Y .

Consider f : X → {0, 1} with f(y) = 0 ∀ y ∈ Y and f(a) = 1 then f
satisfies the condition ”xn → x ⇒ f(xn) → f(x)” but is not continuous
at a ∈ X .

Remark. This unsatisfactory state of affairs leads to the necessity to
generalize the notion of a sequence. There are two equivalent approaches
to accomplish this.

A sequence in X is a function x : N → X . If we replace N by any
directed set D we obtain the notion of a net x : D → X in X .

(A directed set is a partial ordered set where each two elements have an
upper bound.)

The other generalization is via filters that we discuss later.

Remark. If (X, τ) is first countable (in particular, a metric space) then
the closure of subsets and the continuity of functions f : X → Y can be
described by sequences.

II. Filter

The notion of a filter can already be defined on a set. To define convergence
of a filter, we need a topological space.

Definition. Let X ̸= ∅ be a set.

1) A nonempty family F of subsets of X is called a filter on X if

(F1) ∅ /∈ F

(F2) F1, F2 ∈ F ⇒ F1 ∩ F2 ∈ F

(F3) F ∈ F and F ⊆ F ′ ⇒ F ′ ∈ F
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2) A nonempty family B of subsets of X is called a filter base on X
if

(FB1) ∅ /∈ B

(FB2) B1, B2 ∈ B ⇒ ∃ B3 ∈ B such that B3 ⊆ B1 ∩B2 .

Remarks.

1) Every filter is a filter base.

2) To each filter base B on X we can assign

F = {F ⊆ X : ∃ B ∈ B such that B ⊆ F}

F is in fact a filter, the filter generated by B .

3) A nonempty family B of subsets of X with ∅ /∈ B which is closed
under forming finite intersections is obviously a filter base.

4) Let F be a filter on X . Then

τ = {∅} ∪ {F : F ∈ F} is a topology on X .

Examples.

1) Let X be a set and ∅ ̸= A ⊆ X .

Then B = {A} is a filter base.

F = {F ⊆ X : A ⊆ F} is called the principal filter generated by A .

2) Let (X, τ) be a space and x ∈ X .

Then U(x) is a filter, the so called neighbourhood filter in x ∈ X .

Every neighbourhood base in x ∈ X is a filter base generating U(x) .

3) Let X be an infinite set. Then

F = {F ⊆ X : X \ F is finite} is called the Frechet filter.

4) Let X be a set and (xn) be a sequence in X .
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Then Sk = {xn : n ≥ k} is called the kth tail of (xn) .

Obviously B = {Sk : k ∈ N} is a filter base generating the so called
elementary filter of (xn)

F = {F ⊆ X : ∃ k ∈ N such that Sk ⊆ F}

Thus we can assign to each sequence the corresponding elementary filter.

5) Let X,Y be sets, f : X → Y a function and F a filter on X .

Then {f(F ) : F ∈ F} is a filter base on Y (in general not a filter).

The filter on Y generated by this filter base

f(F) = {B ⊆ Y : ∃ F ∈ F such that f(F ) ⊆ B}

is called the image filter with respect to F and f : X → Y .

We now define the convergence of filters.

Definition. Let (X, τ) be a space, F a filter on X and x ∈ X .

1) F converges to x ∈ , F → x , if U(x) ⊆ F .

(We say that F is finer than U(x) , resp. U(x) is coarser than F .)

2) x is an accumulation point of F , x ∈ HP(F) , if every neighbour-
hood of x has nonempty intersection with each F ∈ F ,

i.e. if x ∈ F ∀ F ∈ F

Remarks.

1) HP(F) =
∩

F∈F
F

2) U(x) → x for each x ∈ X

3) F → x ⇒ x ∈ HP(F)

4) Let x ∈ HP(F) . Then, as is easily seen, {U∩F : U ∈ U(x) , F ∈ F}
is a filter base for a filter G . Obviously, F ⊆ G and G → x .
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5) Let F be the elementary filter of the sequence (xn) . Then

(i) x ∈ HP(F) ⇔ x is accumulation point of (xn) .

(ii) F → x ⇔ (xn) → x

The following results show that the notion of a filter is the appropriate
generalization of the notion of a sequence in the context of topological
spaces.

Proposition. Let (X, τ) be a space, ∅ ̸= A ⊆ X and x ∈ X .

Then x ∈ A if and only if there is a filter F such that F → x and
A ∈ F .

Proof. Let x ∈ A . Then U ∩ A ̸= ∅ for each U ∈ U(x) .

Hence {U ∩ A : U ∈ U(x)} is a filterbase generating a filter F .

Since U ∩A ⊆ A and U ∩A ⊆ U we have A ∈ F and U(x) ⊆ F , i.e.
F → x .

Conversely, suppose that x /∈ A . Then there exists U ∈ U(x) such that
U ∩ A = ∅ . Since U ∈ F and A ∈ F we have U ∩ A = ∅ ∈ F , a
contradiction. �

Proposition. f : (X, τ) → (Y, σ) is continuous at x0 ∈ X if and only
if for each filter F on X with F → x0 we have f(F) → f(x0) .

Proof. Let f : (X, τ) → (Y, σ) be continuous at x0 ∈ X and let
F → x0 .

If V ∈ U(f(x0)) there exists U ∈ U(x0) with f(U) ⊆ V .

Since F → x0 , U ∈ F and f(U) ∈ f(F) and thus V ∈ f(F) . Hence
f(F) → f(x0) .

Conversely, we always have U(x0) → x0 and so, by assumption,

f(U(x0)) → f(x0) , i.e. U(f(x0)) ⊆ f(U(x0)) .

Hence, if V ∈ U(f(x0)) ∃ U ∈ U(x0) such that f(U) ⊆ V . �
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Proposition. A space (X, τ) is T2 if and only if every filter on X
converges to at most one point.

Proof. Let (X, τ) be T2 and suppose for a filter F we have F → x
and F → y where x ̸= y .

By assumption, ∃ U ∈ U(x) , V ∈ U(y) with U ∩ V = ∅ .

Since U, V ∈ F we have ∅ = U ∩ V ∈ F , a contradiction.

Now suppose that (X, τ) is not T2 . Then there exist x ̸= y such that
U ∩ V ̸= ∅ ∀ U ∈ U(x) V ∈ U(y) .

But then {U ∩ V : U ∈ U(x) , V ∈ U(y)} is a filter base generating a
filter F with F → x and F → y . �

Remark. We will see later that the notion of compactness can also be
characterized via filters.

A space (X, τ) is compact if and only if every filter on X has an
accumulation point if and only if every ultrafilter on X converges.

Proposition. Let F be a filter on X =
∏
i∈I

Xi and x ∈ X . Then

F → x ⇔ ∀ i ∈ I : pi(F) → xi

Proof. ”⇒” holds since each pi is continuous.

”⇐”: It is sufficient to show that every member of the canonical base
containing x is a member of F .

So let x ∈ p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik) where each Oij is open in Xij .

Then xi1 ∈ Oi1 and so, by assumption, Oi1 ∈ pi1(F) .

Hence there is F1 ∈ F such that pi1(F1) ⊆ Oi1 , i.e. F1 ⊆ p−1
i1
(Oi1) .

In the same manner we obtain F2, . . . Fk ∈ F with

F2 ⊆ p−1
i2
(Oi2) , . . . , Fk ⊆ p−1

ik
(Oik)

Thus F1 ∩ . . . Fk ⊆ p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik) .
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Since F1 ∩ . . . Fk ∈ F we have p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik) ∈ F . �

The set of all filters on X is partially ordered by the relation F1 ⊆ F2 .

Definition. A filter U on X is called ultrafilter if there is no filter
F on X with U ⊆ F and U ̸= F .

It follows easily from the lemma of Zorn that for each filter F on X
there is at least one ultrafilter U such that F ⊆ U .

By a previous remark we have

Proposition. Let U be an ultrafilter on X . Then

x ∈ HP(U) ⇒ U → x

Proposition. Let U be a filter on X . Then

U is an ultrafilter ⇔ ∀ A ⊆ X : A ∈ U or X \ A ∈ U

Proof.

”⇒”: Suppose that A ⊆ X and A /∈ U .

Then we have (X \A) ∩ F ̸= ∅ for each F ∈ U (otherwise F ⊆ A and
A ∈ U) .

Hence {(X \ A) ∩ F : F ∈ U} is a filter base for a filter G with
X \ A ∈ G and U ⊆ G .

Since U is an ultrafilter, U = G and so X \ A ∈ U .

”⇐”: Suppose there is a filter G with U ⊆ G and U ̸= G .

Then there exists A ⊆ X with A ∈ G but A /∈ U .

By assumption, X \ A ∈ U ⊆ G and therefore ∅ = A ∩ (X \ A) ∈ G , a
contradiction. �
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Proposition.

Let U be an ultrafilter on X and f : X → Y a function.

Then f(U) is an ultrafilter.

Proof. Let B ⊆ Y . By a previous result,

f−1(B) ∈ U or X \ f−1(B) = f−1(Y \B) ∈ U .

If f−1(B) ∈ U then B ∈ f(U) since f(f−1(B)) ⊆ B .

If f−1(Y \B) ∈ U then Y \B ∈ f(U) since f(f−1(Y \B)) ⊆ Y \B .

Hence f(U) is an ultrafilter. �

Remark. Let X be a set and x ∈ X . Then

F = {F ⊆ X : x ∈ F} is an ultrafilter.

Observe that
∩

F∈F
F = {x} .

Filters F with the property that
∩

F∈F
F ̸= ∅ are called fixed, otherwise

free . The Frechet filter on an infinite set is an example of a free filter.
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