
10. Covering properties

Definition. A space (X, τ) is called

1) compact if every open cover of X contains a finite subcover, i.e. if

X =
∪
i∈I

Oi , where each Oi is open, then there exist i1, i2, . . . , ik ∈ I

such that X = Oi1 ∪Oi2 ∪ . . . ∪Oik .

2) Lindelöf if every open cover of X contains a countable subcover, i.e.
if

X =
∪
i∈I

Oi , where each Oi is open, then X =
∪
n∈N

Oin .

3) countably compact if every countable open cover of X contains a
finite subcover.

Definition. Let (X, τ) be a space. A ⊆ X is called a compact (resp.
Lindelöf, countably compact) subset if the subspace (A, τ |A) is compact
(resp. Lindelöf, countably compact).

This is, in the compact case, equivalent to:

if A ⊆
∪
i∈I

Oi , where each Oi is open in X , then there exist i1, i2, . . . , ik ∈

I such that A ⊆ Oi1 ∪Oi2 ∪ . . . ∪Oik .

(Similar for Lindelöf and countably compact.)

Remark. Obviously,

compact ⇒ Lindelöf , and compact ⇒ countably compact.

It follows also from the definition that if (X, τ) is compact (resp. Lindelöf,
countably compact) and σ ⊆ τ , then (X, σ) is compact (resp. Lindelöf,
countably compact).

Remark. Consider X = Rn (or X = Cn) with the usual topology.
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It is shown in calculus (Theorem of Heine-Borel) that C ⊆ X is
compact if and only if C is closed and bounded (with respect to the
norm).

Hence Rn is not compact but each closed ball B(x, r) = {y ∈ Rn :
∥x− y∥ ≤ r} is compact.

We observe also that the Sorgenfrey line cannot be compact (since the
usual topology on R is coarser and not compact).

However, the Sorgenfrey line is hereditarily Lindelöf, i.e. every subspace is
Lindelöf (Exercise).

Proposition. (X, τ) is countably compact if and only if every sequence
has an accumulation point.

Proof.

Suppose that (X, τ) is countably compact and let (xn) be a sequence.

The set HP(xn) of accumulation points of (xn) is HP(xn) =
∩
k∈N

Sk ,

where Sk = {xn : n ≥ k} . Observe that Sm ⊆ Sk whenever m ≥ k .

If HP(xn) = ∅ then the open cover X =
∪
k∈N

(X \Sk) has a finite subcover

X = (X \ Sk1) ∪ . . . ∪ (X \ Skr) and so Sk1 ∩ . . . ∩ Skr = ∅ which is not
possible.

Therefore (xn) must have an accumulation point.

Now suppose that every sequence has an accumulation point but (X, τ)
is not countably compact. Then there is a countable open cover (On) of
X without a finite subcover.

For each n ∈ N let Vn = O1 ∪ . . . ∪ On . Then Vn ̸= X for each n ,
Vn ⊆ Vm whenever n ≤ m and X =

∪
n∈N

Vn .

For each n ∈ N pick xn ∈ X \ Vn .

Observe that for the sequence (xn) we have Sk ⊆ X \Vk , since X \Vn ⊆
X \ Vk for each n ≥ k .
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Since X \ Vk is closed, we have Sk ⊆ X \ Vk for each k .

By assumption, there exists an accumulation point x of (xn) . It follows
that x /∈ Vk for each k which is not possible. �

Example. Previously we showed that there is an uncountable well ordered
set (X,<) where each element has at most countably many predecessors.
Let X have the order topology τ .

Then (X, τ) is not compact since the open cover X =
∪
y∈X

[0, y) has no

finite subcover.

However, one can show that (X, τ) is countably compact.

(Idea of proof: First observe that every sequence has a supremum. For a
sequence (an) the set

∪
n∈N

[0, an) is countable therefore ∃ x ∈ X such

that x /∈
∪
n∈N

[0, an) , i.e. an < x ∀ n ∈ N . So there exists an upper bound

for (an) . Since X is well ordered, we have a smallest upper bound.

Suppose we have a countable open cover {Ok : k ∈ N} of X having no
finite subcover. We may assume that Ok ⊆ Ok+1 ∀ n .

Inductively one can construct a sequence (an) with the following proper-
ties.

[0, an] is covered by finitely many Ok . an+1 is the smallest element not
contained in the union of those Ok and On . Considering the supremum
of (an) leads to a contradiction.)

Remark. For metric spaces (X, d) with topology τd we mention without
proof:

compact ⇔ countably compact ⇔ Every sequence contains a convergent
subsequence

Proposition. Let (X, τ) be a space, C ⊆ X compact (resp. Lindelöf,
countably compact), A ⊆ X closed with A ⊆ C .

Then A is compact (resp. Lindelöf, countably compact).
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Proof. Let A ⊆
∪
i∈I

Oi , where each Oi is open in X .

Then C ⊆
∪
i∈I

Oi ∪ (X \ A) and, since X \ A is open, there exist

i1, i2, . . . , ik ∈ I such that C ⊆ Oi1 ∪Oi2 ∪ . . . ∪Oik ∪ (X \ A) .

Hence A ⊆ Oi1 ∪Oi2 ∪ . . . ∪Oik . �

Remarks.

(i) Closed subspaces of compact (resp. Lindelöf, countably compact)
spaces are compact (Lindelöf, countably compact).

(ii) Consequently, a closed discrete subspace of a compact (resp. Lindelöf)
space must be finite (resp. at most countable).

Therefore, the Niemitzky plane is not Lindelöf.

(iii) From a theorem in the chapter about bases it follows that every second
countable space is Lindelöf.

Since every subspace of a second countable space is second countable, a
second countable space is hereditarily Lindelöf.

Observe that the Sorgenfrey line is hereditarily Lindelöf but not second
countable.

For metric spaces, however, we have the following important result.

Theorem. Let (X, d) be a metric space with topology τd . Then the
following are equivalent:

1) (X, τd) is second countable,

2) (X, τd) is Lindelöf,

3) (X, τd) is separable, i.e. there is a countable dense subset D ⊆ X
(with D = X).

Proof.

1) ⇒ 2) always holds.
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2) ⇒ 3): For each n ∈ N , X =
∪
x∈X

K(x, 1n) is an open cover.

By assumption there exists a countable subset Dn ⊆ X such that

X =
∪

x∈Dn

K(x, 1n) .

If D =
∪
n∈N

Dn , then D is countable. We claim that D = X .

Suppose ∃ y ∈ X with y /∈ D ⇒ ∃ m ∈ N with K(y, 1
m) ∩D = ∅ .

∃ x ∈ Dm ⊆ D such that y ∈ K(x, 1
m) .

Hence x ∈ K(y, 1
m) , a contradiction. Therefore, D = X .

3) ⇒ 1): Let D be a countable subset with D = X .

Let B = {K(x, 1
2n ) : x ∈ D , n ∈ N} .

Then B is a countable (!) family of open sets. We claim that B is a
base.

Let O ⊆ X be open and y ∈ O . Then ∃ n ∈ N with K(y, 1
2n ) ⊆ O .

Choose x ∈ D ∩K(y, 1
2n+1 ) .

Because of the triangle inequaltiy we have

y ∈ K(x, 1
2n+1 ) ⊆ K(y, 1

2n ) ⊆ O . �

Compactness can also be characterized via filters.

Theorem. For a space (X, τ) the following are equivalent:

1) (X, τ) is compact

2) Every filter on X has an accumulation point

3) Every ultrafilter on X converges.

Proof.

1) ⇒ 2): Let F be a filter on X and suppose that F has no
accumulation point, i.e.

∩
F∈F

F = ∅ .
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Then X =
∪

F∈F
(X \ F ) is an open cover of X .

By assumption, there exist F1, . . . , Fk ∈ F such that

X = (X \ F1) ∪ . . . ∪ (X \ Fk) .

Hence F1 ∩ . . . ∩ Fk = ∅ and so F1 ∩ . . . ∩ Fk = ∅ , a contradiction.

2) ⇒ 3): Let U be an ultrafilter on X . By hypothesis, there exists an
accumulation point x ∈ X of U .

Previously we showed that in such a case U → x .

3) ⇒ 2): Let F be a filter on X . Then there is an ultrafilter U such
that F ⊆ U .

By hypothesis, ∃ x ∈ X such that U → x .

Since x ∈
∩
U∈U

U ⊆
∩

F∈F
F , x is an accumulation point of F .

2) ⇒ 1): We assume that (X, τ) is not compact. Then there is an open
cover {Oi : i ∈ I} of X having no finite subcover.

Hence ∀ I ′ ⊆ I , I ′ finite , we have X ̸=
∪
i∈I ′

Oi resp.

FI ′ =
∩
i∈I ′

(X \Oi) ̸= ∅ . Observe that FI ′ is closed.

The family B = {FI ′ : I ′ ⊆ I , I ′ finite} is obviously a filter base,

since FI ′ ∩ FI ′′ = FI ′∪I ′′ .

Let F be the filter generated by B . By hypothesis, F has an accumu-
lation point x ∈ X .

There exists i0 ∈ I such that x ∈ Oi0 . Let I∗ = {i0} .

Then FI∗ = X \ Oi0 = FI∗ ∈ F , hence x ∈ X \ Oi0 , a contradiction.
�

Without the (not so easy) proof we mention another important charac-
terization of compactness, known as the Alexander subbase theorem.
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Theorem. A space (X, τ) is compact if and only if every cover of
members by a subbase S of (X, τ) has a finite subcover.

Next we consider the relationships between covering properties and sepa-
ration axioms.

Theorem. Let (X, τ) be T2 , C ⊆ X be compact and x /∈ C .

Then there exist open sets O1 , O2 such that x ∈ O1 , C ⊆ O2 and
O1 ∩O2 = ∅ .

Proof. For each y ∈ C there are open sets Vy,Wy such that

y ∈ Vy , x ∈ Wy and Vy ∩Wy = ∅ .

Since C ⊆
∪
y∈C

Vy there exist y1, . . . , yk ∈ C such that

C ⊆ Vy1 ∪ Vy2 ∪ . . . ∪ Vyk .

If O2 = Vy1 ∪ Vy2 ∪ . . . ∪ Vyk and O1 = Wy1 ∩Wy2 ∩ . . . ∩Wyk then

O1 and O2 are open, x ∈ O1 , C ⊆ O2 and O1 ∩O2 = ∅ . �

Corollary. In a T2−space, compact subsets are closed.

(Note that if τ is the cofinite topology on a infinite set X then every
subspace of (X, τ) is compact but not closed.)

Corollary.

Let (X, τ) be T2 , C1 , C2 ⊆ X be compact and C1 ∩ C2 = ∅ .

Then ∃ O1, O2 ∈ τ such that C1 ∈ O1 , C2 ⊆ O2 and O1 ∩O2 = ∅ .

Proof. With the previous theorem, for each y ∈ C2 there exist open
sets Vy,Wy such that y ∈ Vy , C1 ⊆ Wy and Vy ∩Wy = ∅ .

Since C2 ⊆
∪
y∈C

Vy there exist y1, . . . , yk ∈ C such that
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C2 ⊆ Vy1 ∪ Vy2 ∪ . . . ∪ Vyk .

If O2 = Vy1 ∪ Vy2 ∪ . . . ∪ Vyk and O1 = Wy1 ∩Wy2 ∩ . . . ∩Wyk then

O1 and O2 are open, C1 ⊆ O1 , C2 ⊆ O2 and O1 ∩O2 = ∅ . �

Theorem. Every compact T2−space (X, τ) is normal.

Proof. Let A,B ⊆ X be closed and disjoint. Then A,B are also
compact.

By the previous Corollary, there exist open sets O1 , O2 with A ⊆
O1 , V ⊆ O2 and O1 ∩O2 = ∅ . �

Corollary. Every subspace of a compact T2−space (X, τ) is completely
regular.

Remark. One can show that every regular Lindelöf space is also normal.
Therefore the Sorgenfrey line is normal (since it is easy to see that the
Sorgenfrey line is regular).

Certain covering properties ”behave well” with respect to continuity.

Theorem. Let f : (X, τ) → (Y, σ) be continuous and let A ⊆ X be
compact (resp. Lindelöf, countably compact).

Then f(A) ⊆ Y is compact (resp. Lindelöf, countably compact).

Proof. (for the compact case)

Let f(A) ⊆
∪
i∈I

Vi where each Vi ∈ σ . Then A ⊆
∪
i∈I

f−1(Vi) , so there

exist i1, i2, . . . , ik ∈ I such that A ⊆ f−1(Vi1)∪f−1(Vi2)∪ . . .∪f−1(Vik) .

Hence f(A) ⊆ Vi1 ∪ Vi2 ∪ . . . ∪ Vik . �

Corollary. In particular, if f : (X, τ) → R is continuous and A ⊆ X is
compact, then f(A) ⊆ R is closed and bounded.

8



Therefore there exist a0, a1 ∈ A such that

f(a0) = min{f(a) : a ∈ A} and

f(a1) = max{f(a) : a ∈ A}

Proposition. Let (X, τ) be compact, (Y, σ) be T2 and f : (X, τ) →
(Y, σ) be continuous.

Then f is a closed function.

Proof. A ⊆ X is closed ⇒ A ⊆ X is compact ⇒ f(A) ⊆ Y is
compact ⇒ f(A) ⊆ Y is closed. �

Remark. If f is, in addition, bijective then f is a homeomorphism!

We now consider a family (Xi, τi) , i ∈ I of spaces and the product space
X =

∏
i∈I

Xi .

Since the projections are continuous and surjective we conclude that if
X =

∏
i∈I

Xi is compact then all the spaces (Xi, τi) are also compact.

The converse of this observation is a fundamental theorem in topology with
widespread applications, known as Tychonoff’s theorem .

Using several previous results we are able to give a short proof.

Theorem. (Tychonoff)

For each i ∈ I let (Xi, τi) be compact. Then X =
∏
i∈I

Xi is compact.

Proof. Let U be an ultrafilter on X . Then pi(U) is an ultrafilter on
Xi for each i ∈ I .

Since each Xi is compact, for each i ∈ I there exists xi ∈ Xi such that
pi(U) → xi .

By a previous result, U → x . Therefore X =
∏
i∈I

Xi is compact. �
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Corollary. The set of all functions f : R → [0, 1] with the topology of
pointwise convergence is a compact Hausdorff space, since it is [0, 1]R .

It is clear that the class of compact spaces plays a fundamental role in
topology and analysis. However, many interesting spaces are not compact
globally but in a local manner.

Definition. A space (X, τ) is called locally compact if each x ∈ X
has a compact neighbourhood.

Remarks.

(i) Every compact space is locally compact.

(ii) Rn is locally compact but not compact. The discrete topology on an
infinite set is locally compact but not compact.

In the following we will show that each locally compact T2 space can be
embedded into a compact T2 space in a special way.

Let (X, τ) be locally compact, T2 and not compact.

Let a /∈ X and let X∗ = X ∪ {a} . We add one point to X , obtain in
this way the set X∗ and construct a topology on X∗ .

Let τ ∗ be the family of all subsets V ⊆ X∗ such that

either V ⊆ X and V ∈ τ or

a ∈ V and X \ V is compact in (X, τ) .

Observe that τ ⊆ τ ∗ and that V ∈ τ ∗ ⇒ V ∩X ∈ τ .

We now show that τ ∗ is a topology on X∗ .

∅ ∈ τ ∗ since ∅ ∈ τ ⊆ τ ∗ .

X∗ ∈ τ ∗ since X \X∗ = ∅ is compact in (X, τ) .
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Let V1, V2 ∈ τ ∗ .

If V1, V2 ⊆ X then V1, V2 ∈ τ and V1 ∩ V2 ∈ τ ⊆ τ ∗ .

If a ∈ V1 and V2 ⊆ X then V1 ∩ V2 = (V1 ∩X) ∩ V2 ∈ τ ⊆ τ ∗ .

Similar if V1 ⊆ X and a ∈ V2 .

If a ∈ V1∩V2 then X \ (V1∩V2) = (X \V1)∪ (X \V2) is the union of two
compact subsets of (X, τ) and therefore compact. Hence V1 ∩ V2 ∈ τ ∗ .

Now let Vi ∈ τ ∗ for each i ∈ I .

If Vi ⊆ X for each i ∈ I then
∪
i∈I

Vi ∈ τ ⊆ τ ∗ .

Otherwise there exists i0 ∈ I such that a ∈ Vi0 . Then X \Vi0 is compact
and closed in (X, τ) .

Then X \ (
∪
i∈I

Vi) is a closed (in (X, τ)) subset of the compact set X \Vi0

and therefore itself compact. Consequently
∪
i∈I

Vi ∈ τ ∗ .

Hence τ ∗ is a topology on X∗ .

Definition. The space (X∗, τ ∗) is called the 1-point-compactification
of (X, τ) .

Remark. It is obvious that τ ∗|X = τ therefore (X, τ) is a subspace of
(X∗, τ ∗) and the inclusion function j : X → X∗ is an embedding.

We now show that (X∗, τ ∗) is compact and T2 .

Let X∗ =
∪
i∈I

Vi where Vi ∈ τ ∗ for each i ∈ I .

Choose i0 ∈ I with a ∈ Vi0 . Then X \ Vi0 ⊆
∪
i∈I

(X ∩ Vi) .

∃ i1, . . . , ik ∈ I such that X \ Vi0 ⊆ (X ∩ Vi1) ∪ . . . ∪ (X ∩ Vik) .

Hence X∗ = Vi0 ∪ Vi1 ∪ . . . ∪ Vik showing that (X∗, τ ∗) is compact .

Now let x, y ∈ X∗ with x ̸= y .
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If x ̸= a and y ̸= a then there exist disjoint open neighbourhoods as
(X, τ) is T2 .

So let x ∈ X and y = a .

Let W ⊆ X be a compact neighbourhood of x (with respect to (X, τ))
and let V = X∗ \W .

Then a ∈ V and V ∈ τ ∗ . Obviously, W and V are the required
disjoint neighbourhoods and therefore (X∗, τ ∗) is T2 .

Remark. According to a previous result (X∗, τ ∗) is also normal, and
therefore every locally compact T2 space is completely regular.

Example. It is easily checked that the 1-point-compactification of R is
homeomorphic to S1 and the 1-point-compactification of R2 is homeo-
morphic to S2 .
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