
11. Connected Spaces

Definition. Let (X, τ) be a topological space.

1) (X, τ) is called connected if X can not be represented as the union
of two disjoint nonempty open sets.

2) A ⊆ X is called connected (or a connected subspace) if (A, τ |A) is
connected.

Remarks.

(i) (X, τ) is connected if and only if ∅ and X are the only subsets that
are both open and closed.

(ii) C = {x} is connected for each x ∈ X .

(iii) A ⊆ X is connected ⇔ whenever A ⊆ O1 ∪O2 where O1, O2 are
nonempty open sets and A ∩O1 ∩O2 = ∅ it follows that A ∩O1 = ∅ or
A ∩O2 = ∅ .

(iv) A = [0, 1] ∪ [2, 3] ⊆ R is not connected.

(A ⊆ O1 ∪O2 with O1 = (−1
2 ,

3
2) and O2 = (32 ,

7
2) and (iii))

Proposition. A subset C ⊆ R with |C| > 1 is connected if and only
if C is a convex subset (i.e. an interval).

Proof.

”⇒”: Suppose that C is not convex. Then ∃ x, y ∈ C ∃ z such that
x < z < y and z /∈ C .

Let O1 = (−∞, z) and O2 = (z,∞) . Then O1, O2 are nonempty and
open. Moreover, C ⊆ O1 ∪O2 and C ∩O1 ∩O2 = ∅ .

However, x ∈ C ∩ O1 ̸= ∅ and y ∈ C ∩ O2 ̸= ∅ , a contradiction. So C
is convex.
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”⇐”: Now let C be convex and suppose that C is not connected.

Then there are nonempty open sets O1, O2 ⊆ R with C ⊆ O1 ∪ O2 ,
C ∩O1 ∩O2 = ∅ and C ∩O1 ̸= ∅ C ∩O2 ̸= ∅ .

Pick x ∈ C ∩O1 , y ∈ C ∩O2 , wlog x < y .

By hypothesis, [x, y] ⊆ C ⊆ O1 ∪O2 .

Let z = sup{O1 ∩ [x, y]} . Then z ∈ [x, y] .

If z ∈ O1 then z ̸= y . So ∃ ε > 0 with [z, z + ε) ⊆ O1 ∩ [x, y]
and therefore ∃ z∗ ∈ O1 ∩ [x, y] with z < z∗ , a contradiction to z =
sup{O1 ∩ [x, y]} .

If z ∈ O2 then z ̸= x . So ∃ ε > 0 with (z− ε, z] ⊆ O2 ∩ [x, y] . This is
again a contradiction to z = sup{O1 ∩ [x, y]} . So C is connected. �

Theorem. Let (X, τ) be a space, C0 ⊆ X be connected and for each
i ∈ I let Ci ⊆ X be connected such that C0 ∩ Ci ̸= ∅ for each i ∈ I .

Then C = C0 ∪
∪
i∈I

Ci is connected.

Proof. Suppose that C is not connected. Then there exist open sets
O1, O2 ⊆ X with C ⊆ O1 ∪O2 , C ∩O1 ∩O2 = ∅ and C ∩O1 ̸= ∅ and
C ∩O2 ̸= ∅ .

For each i ∈ I we have Ci ⊆ O1 ∪O2 and Ci ∩O1 ∩O2 = ∅ .

Therefore Ci ∩O1 = ∅ or Ci ∩O2 = ∅ .

We also have C0 ∩ O1 = ∅ or C0 ∩ O2 = ∅ , wlog we assume that
C0 ∩O2 = ∅ .

Then C0 ⊆ O1 and ∅ ̸= C0 ∩ Ci ⊆ O1 ∩ Ci . And so Ci ∩ O2 = ∅ for
each i ∈ I . Therefore C ∩O2 = ∅ , a contradiction. �

Proposition.

1) Let (X, τ) be a space and let A ⊆ X be connected. Then A is
connected.

2) Let f : (X, τ) → (Y, σ) be continuous and let C ⊆ X be connected.
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Then f(C) ⊆ Y is connected.

Proof. Ad 1) Proof as exercise.

Ad 2) Let f(C) ⊆ V1 ∪ V2 where V1, V2 are open in (Y, σ) and
f(C) ∩ V1 ∩ V2 = ∅ .

Then C ⊆ f−1(V1) ∪ f−1(V2) and C ∩ f−1(V1) ∩ f−1(V2) = ∅ .

Since C is connected, either C ∩ f−1(V1) = ∅ or C ∩ f−1(V2) = ∅ .

Hence either f(C) ∩ V1 = ∅ or f(C) ∩ V2 = ∅ , so f(C) is connected.
�

Remarks.

1) Let α : [0, 1] → (X, τ) be a continuous path. Then α([0, 1]) is a
connected subset of (X, τ) .

In particular, if α : [0, 2π] → R with α(t) = sin t then the function
f : [0, 2π] → R2 with f(t) = (t, α(t)) is continuous. Hence the graph of
the Sinus-function is a connected subset of R2 .

2) (Intermediate value theorem)

Let f : (X, τ) → R be continuous and let C ⊆ X be connected. Let
x, y ∈ C such that f(x) < f(y) .

Then for each t ∈ R with f(x) < t < f(y) there exists at ∈ C such
that f(at) = t .

Proof. f(C) ⊆ R is connected, therefore [f(x), f(y)] ⊆ f(C) . �

3) The Sorgenfrey line is not connected.

4) If (X, τ) is connected and σ ⊆ τ then (X, σ) is connected.

5) Let C ⊆ Rn be a star domain, i.e. there exists a ∈ C such that with
each x ∈ C the connecting line from a to x is contained in C .

Then C is connected. (Proof as exercise)
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6) Rn \ {0} is connected. (Proof as exercise)

Let (X, τ) be a space and x ∈ X . Let

Cx =
∪
{C ⊆ X : C is connected and x ∈ C}

Since {x} is connected it follows that Cx is the largest connected subset
that contains x .

Cx is called the connected component of x .

Now the following holds (proof as exercise):

(i) (X, τ) is connected ⇒ Cx = X ∀ x ∈ X

(ii) ∀ x, y ∈ X : Cx ∩ Cy = ∅ or Cx = Cy

(iii) Cx is closed ∀ x ∈ X

(iv) If (X, τ) is the Sorgenfrey line then Cx = {x} ∀ x ∈ X

A stronger version of connectedness is provided by the notion of path
connectedness.

Definition. Let (X, τ) be a space and x, y ∈ X .

A (continuous) path from x to y is a continuous function α : [0, 1] → X
such that α(0) = x and α(1) = y .

Definition.

1) (X, τ) is called path connected if for all x, y ∈ X there is a
continuous path from x to y .

2) C ⊆ X is called path connected if for all x, y ∈ C there is a
continuous path α : [0, 1] → C with α(0) = x and α(1) = y .

Remark. Obviously, Rn , every convex subset of Rn and [0, 1] ⊆ R are
path connected.
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(For x, y ∈ Rn consider α(t) = (1− t)x+ ty )

Proposition. Let f : (X, τ) → (Y, σ) be continuous and let C ⊆ X be
path connected. Then f(C) ⊆ Y is path connected.

Proof. Let y0, y1 ∈ f(C) . Pick x0, x1 ∈ C such that y0 = f(x0) and
y1 = f(x1) .

By assumption there is a continuous function α : [0, 1] → X with
α([0, 1]) ⊆ C and α(0) = x0 and α(1) = x1 .

Then β = f ◦ α : [0, 1] → Y is the required path in f(C) from y0 to
y1 . �

Example. Let f : R → R be continuous. Then F : R → R2 with
F (t) = (t, f(t)) is also continuous. Therefore F (R) , i.e. the graph of f
, is a path connected subset of R2 .

Theorem. If (X, τ) is path connected then (X, τ) is connected.

Proof. Let X = O1 ∪O2 where O1, O2 are open and O1 ∩O2 = ∅ . We
assume that O1 ̸= ∅ and O2 ̸= ∅ .

Pick x ∈ O1 and y ∈ O2 . Then there exists a continuous function
α : [0, 1] → X with α(0) = x and α(1) = y .

Then [0, 1] = α−1(O1) ∪ α−1(O2) with α−1(O1) ∩ α−1(O2) ∩ [0, 1] = ∅ .

However, 0 ∈ α−1(O1) ̸= ∅ and 1 ∈ α−1(O2) ̸= ∅ , which contradicts the
fact that [0, 1] is connected.

Thus O1 = ∅ or O2 = ∅ showing that (X, τ) is connected. �

Example.

Let A = {(x, sin 1
x) : 0 < x ≤ 1} ∪ ({0} × [−1, 1]) ⊆ R2 .

If A∗ = {(x, sin 1
x) : 0 < x ≤ 1} then A∗ is path connected (by a

previous consideration) and thus connected.
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Since A = A∗ , A is connected.

However, one can show that A is not path connected (there is no contin-
uous path from a point from A∗ to a point of {0} × [−1, 1] ).

In concluding we mention some facts whose proofs are left as an exercise.

Proposition.

1) Let (X, τ) be a space and let x, y, z ∈ X .

If there exists a continuous path from x to y and a continuous path
from y to z then there exists a continuous path from x to z .

2) Let C0 ⊆ X be path connected and for each i ∈ I let Ci ⊆ X be
path connected such that C0 ∩ Ci ̸= ∅ for each i ∈ I .

Then C = C0 ∪
∪
i∈I

Ci is path connected.

3) R \ {0} is obviously not path connected but Rn \ {0} for n > 1 is.

Remark. Two continuous paths α, β : [0, 1] → X from x to y are
called homotopic if there is a continuous function F : [0, 1]× [0, 1] → X

such that F (t, 0) = α(t) and F (t, 1) = β(t) for each t ∈ [0, 1] , and
F (0, s) = x and F (1, s) = y for each s ∈ [0, 1]

Observe that for each s ∈ [0, 1] we get a continuous path t 7→ F (t, s) .

For s = 0 we get α , for s = 1 we get β . We can say that α gets
continuously ”deformated” into β .

A loop (in x ∈ X) is a continuous path α : [0, 1] → X with α(0) =
α(1) = x .

Observe that there is always the trivial (or constant) loop with the property
α(t) = x ∀ t ∈ [0, 1] .

This leads to another stronger notion of connectedness. A space (X, τ)
is called simply connected if it is path connected and for each x ∈ X ,
every loop in x ∈ X is homotopic to the constant loop in x ∈ X .
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