
12. Compactifications

A fundamental historical problem was: characterize the topological spaces
(X, τ) that can be embedded in a compact T2−space.
And related: characterize (in a useful way) the subspaces of compact
T2−spaces.

We first observe that any compact T2−space is normal and thus completely
regular. As a consequence every such space (X, τ) must necessarily be
completely regular.

We also observe that for locally compact T2−spaces we have constructed
such an embedding and obtained the 1-point-compactification.

In the following we want to embed a space in a certain product space. A
fundamental tool will be the diagonal lemma.

Let (X, τ) be a space, let (Yi, σi) be a space for each i ∈ I and let
A = {fi : (X, τ) → (Yi, σi) : i ∈ I} be a family of continuous functions.

Then A induces a continuous function e : X →
∏
i∈I

Yi by

(e(x))i = fi(x) i.e. pi ◦ e = fi

(the fi are the component functions of e)

Definition.

(i) A is called point-separating if for each x, y ∈ X with x ̸= y there
exists i ∈ I with fi(x) ̸= fi(y) .

(ii) A is said to separate points from closed sets if for each closed
subset A ⊆ X and each x /∈ A there exists i ∈ I such that fi(x) /∈ fi(A)
.

Theorem. (Diagonal lemma)

If A = {fi : (X, τ) → (Yi, σi) : i ∈ I} is a family of continuous
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functions that is point-separating and separating points from closed sets,
then e : X →

∏
i∈I

Yi is an embedding.

Proof. We already observed that e is continuous.

Now we show that e is injective. Let x, y ∈ X with x ̸= y . Then there
is i ∈ I with fi(x) ̸= fi(y) and so e(x) ̸= e(y) .

To complete the proof we need to show that e : X → e(X) is an open
function.

Let U ⊆ X be open and z ∈ e(U) . Then there is x ∈ U with z = e(x)
, and x /∈ X \ U and X \ U is closed.

By assumption, there is i ∈ I with

fi(x) /∈ fi(X \ U) resp. fi(x) = Yi \ fi(X \ U)

Let W = p−1
i (Yi \ fi(X \ U)) . Then W is open in

∏
i∈I

Yi .

Since zi = fi(x) , z ∈ W ∩ e(X) .

Observe that W ∩ e(X) is a neighbourhood of z with respect to the
subspace e(X) .

We claim that W ∩ e(X) ⊆ e(U) . Let z′ ∈ W ∩ e(X) . Then there is
x′ ∈ X with z′ = e(x′) .

Then z′i = fi(x
′) ∈ Yi \ fi(X \ U)) ⊆ Yi \ fi(X \ U) .

It follows that x′ ∈ U (otherwise fi(x
′) ∈ fi(X \ U) , a contradiction).

Thus z′ ∈ e(U) showing that e(U) is open in e(X) .

So e : X → e(X) is an open function and e : X →
∏
i∈I

Yi is an embedding.

�

Remark. If one of the functions of A , say fi0 , is already an embedding
then A is point-separating and separating points from closed sets (because
of fi0) and therefore e : X →

∏
i∈I

Yi is an embedding.
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Example. Let f1 : R → R , f1(x) = x and f2 : R → R , f2(x) = sin x
then R can be embedded in R2 via e(x) = (x, sinx) .

Observe that f1 is already an embedding.

As an application of the diagonal lemma we are able to prove a metrization
theorem.

For this let (X, τ) be a regular second countable space.

We mentioned earlier (without proof) that every regular Lindelöf space is
normal, and so (X, τ) is a normal space.

Let B be a countable base for (X, τ) .

We consider pairs (B,B′) with B,B′ ∈ B and B ⊆ B′ .

For each such pair we have B ∩ (X \B′) = ∅ . By the lemma of Urysohn
there exists a continuous function

f(B,B′) : X → [0, 1] with f(B,B′)|B = 1 and f(B,B′)|X\B′ = 0 .

Thus the family A = {f(B,B′) : X → [0, 1] : B,B′ ∈ B , B ⊆ B′} is a
countable (!) family of continuous functions.

Let x ̸= y . Since (X, τ) is regular there exist B,B′ ∈ B such that
x ∈ B ⊆ B′ and y /∈ B′ .

Hence f(B,B′)(x) = 1 ̸= 0 = f(B,B′)(y) showing that A is a point-
separating family.

Now let A ⊆ X be closed and x /∈ A . Then there exist B,B′ ∈ B such
that x ∈ B ⊆ B′ ⊆ X \ A (since X \ A is open).

Then f(B,B′)(x) = 1 and, since A ⊆ X \B′ ,

f(B,B′)(A) ⊆ {0} , and so f(B,B′)(A) ⊆ {0} and

f(B,B′)(x) /∈ f(B,B′)(A) .

Hence A separates points from closed sets.

By the diagonal lemma (X, τ) can be embedded in a countable product
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of [0, 1] .

Next we point out that the countable product of metric spaces is again
a metric space. Let (Xn, dn) be a metric space for each n ∈ N (wlog
dn ≤ 1) and let X =

∏
n∈N

Xn .

One can show that d(x, y) =
∞∑
n=1

1
2ndn(xn, yn) is a metric on X generating

the product topology.

Therefore we have

Theorem. Let (X, τ) be regular and second countable. Then (X, τ) is
metrizable.

Corollary.

1) Let (X, τ) be second countable. Then

(X, τ) is metrizable ⇔ (X, τ) is regular

2) Let (X, τ) be compact and T2 . Then

(X, τ) is metrizable ⇔ (X, τ) is second countable.

Now suppose that (X, τ) is completely regular and let

A = {fi : X → [0, 1] : fi is continuous , i ∈ I}

the family of all continuous functions X → [0, 1] .

Then obviously the diagonal lemma is applicable and we obtain an em-
bedding e : X → [0, 1]I , and, by the theorem of Tychonoff, [0, 1]I is a
compact T2−space.

Therefore

Theorem. (X, τ) is completely regular if and only if (X, τ) can be
embedded in a compact T2−space.
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Definition. A (T2−)compactification of a space (Xτ) is a pair (Y, f)
where (Y, σ) is a compact (T2−)space and f : X → Y is an embedding
with f(X) = Y .

Remarks.

i) If f : X → Y is an embedding and Y is compact we obtain a
compactification (Y ∗, f) by setting Y ∗ = f(X) .

ii) We already considered the 1-point-compactification of locally com-
pact T2−spaces and proved that every completely regular space has a
T2−compactification.

iii) (0, 1) → [0, 1] with the inclusion function is another compactification
of (0, 1) .

iv) Intuitively, we ”add” points to X to obtain a set Y . Then we ask
if there is a suitable topology on Y such that X is a subspace of Y .

One of the most prominent compactifications in topology is the Stone-
Cech-compactification.

Let (X, τ) be completely regular.

Consider C∗(X) = {f : X → R : f is continuous and bounded} .

Obviously, for each f ∈ C∗(X) there is a compact interval If ⊆ R such
that f(X) ⊆ If and so we can consider a function f ∈ C∗(X) also as a
function f : X → If .

It is also obvious that C∗(X) fulfills the requirements of the diagonal
lemma and therefore

e : X →
∏

f∈C∗(X)

If with pf ◦ e = f is an embedding.

We set βX = e(X) and β : X → βX by β(x) = e(x) .

By the theorem of Tychonoff
∏

f∈C∗(X)

If is a compact T2−space, and as a
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closed subspace of
∏

f∈C∗(X)

If , βX is also a compact T2−space.

Definition. (βX, β) is called the Stone-Cech-compactification of
(X, τ) .

Now let g ∈ C∗(X) .

Theorem. There exists a continuous function ĝ : βX → R such that
ĝ ◦ β = g .

(If we identify X with β(X) ⊆ βX then every continuous and bounded
function on X can be continuously extended to βX . We say that X is
C∗−embedded in βX .)

Proof. Let g(X) ⊆ Ig and pg :
∏

f∈C∗(X)

If → Ig the corresponding

projection.

Let ĝ = pg|βX : βX → Ig ⊆ R . Then ĝ is continuous.

Also, ĝ ◦ β(x) = pg|βX ◦ β(x) = pg ◦ e(x) = g(x) .

Observe also, that ĝ is uniquely determined since any two extensions
coincide on e(X) and therefore on βX = e(X) . �

We now prove the so-called ”characteristic property” of the Stone-Cech-
compactification.

Theorem. Let (X, τ) be completely regular and (Y, σ) a compact
T2−space.
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For every continuous function f : X → Y there is a continuous function
h : βX → Y such that h ◦ β = f .

(i.e. f can be continuously extended to βX .)

Proof. We first observe that if k : Z1 → Z2 is a continuous and closed
function then k(A) = k(A) for each A ⊆ Z1 .

It follows from the previous discussions that there is also an embedding

ê : Y →
∏

g∈C∗(Y )

Ig

where Ig is a compact interval of R with g(Y ) ⊆ Ig for each g ∈ C∗(Y )
, and we have pg ◦ ê = g .

Let g ∈ C∗(Y ) . Then g ◦ f ∈ C∗(X) and g ◦ f(X) ⊆ Ig .

By the previous theorem there exists a (unique) continuous function ĝ ◦ f :

βX → R such that ĝ ◦ f ◦ β = g ◦ f and

ĝ ◦ f(βX) = ĝ ◦ f(β(X)) = (ĝ ◦ f ◦ β)(X) = g ◦ f(X) ⊆ Ig = Ig

i.e. ĝ ◦ f maps βX into Ig .

Hence the function h̃ : βX →
∏

g∈C∗(Y )

Ig where pg◦h̃ = ĝ ◦ f is continuous.

We now claim that h̃ ◦ β = ê ◦ f : X →
∏

g∈C∗(Y )

Ig .

For x ∈ X and g ∈ C∗(Y ) we have

pg(h̃ ◦ β(x)) = (pg ◦ h̃)(β(x)) = ĝ ◦ f(β(x)) = ĝ ◦ f ◦ β(x) = g ◦ f(x) =

= pg ◦ ê(f(x)) = pg(ê ◦ f(x))

From this it follows that h̃ ◦ β(x) = ê ◦ f(x) for each x ∈ X and so
h̃ ◦ β = ê ◦ f .

In addition we have

h̃(βX) = h̃(β(X)) ⊆ h̃ ◦ β(X) = ê ◦ f(X) = ê(f(X)) ⊆ ê(Y ) = ê(Y )
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Since ê : Y → ê(Y ) is a homeomorphism there is a continuous inverse
function ê−1 : ê(Y ) → Y .

Then h = ê−1 ◦ h̃ : βX → Y is well defined and continuous and we have

h ◦ β = ê−1 ◦ h̃ ◦ β = ê−1 ◦ ê ◦ f = f . �

Remark. βX is with respect to this extension property uniquely de-
termined, i.e. if (Z, h) is another compactification of (X, τ) with this
extension property then Z is homeomorphic to βX .

Proof.

Consider β̂ ◦ ĥ : βX → βX .

On the dense subset β(X) we have

β̂ ◦ ĥ(β(x)) = β̂(h(x)) = β(x) , i.e.

β̂ ◦ ĥ|β(X) = idβX |β(X) and so β̂ ◦ ĥ = idβX

In the same manner we obtain ĥ ◦ β̂ = idZ . Therefore βX and Z are
homeomorphic. �

We now ask for the ”size” of βX resp. of βX \X .

Clearly, if (X, τ) is already compact and T2 then βX = X . In general,
βX can be very large.

For this we consider X = N with the discrete topology.
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We first mention (without proof) a very important result in topology.

Theorem. (E. Hewitt)

Let (Xi, τi) be separable for each i ∈ I , and |I| ≤ c .

Then
∏
i∈I

Xi is separable.

Theorem. |βN| = cc = (2ℵ0)c = 2c

Proof. If I = [0, 1] , then by the previous theorem II = {x : I → I} is
separable, so there exists a countable dense subset D ⊆ II .

Then there is an injective function g : N → II with g(N) = D .

Observe that II is compact and T2 and, since N has the discrete
topology, g is continuous.

It follows that there exists a continuous (and closed function) h : βN → II

such that g = h ◦ β .

Then h(βN) = h(β(N)) = h(β(N)) = g(N) = D = II .

Hence h is surjective and so |βN| ≥ |II | = cc .

On the other hand we know that βN ⊆
∏

f∈C∗(N)
If .

Since each If is homeomorphic to I = [0, 1] ,
∏

f∈C∗(N)
If is homeomorphic

to IC
∗(N) .

Now |I| = c and |C∗(N)| ≤ |RN| = cℵ0 = (2ℵ0)ℵ0 = 2ℵ0 = c .

Hence |βN| ≤ |IC∗(N)| ≤ cc and so |βN| = cc resp. |βN \ N| = cc . �
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In concluding we mention without proof some further results about βN .

We may identify N with β(N) ⊆ βN so that we consider N as a subset
of βN .

1) Let h : βN → βN be a homeomorphism.

Then h maps isolated points to isolated points. Since N is dense in βN
the only isolated points of βN are the points of N .

Therefore h induces a permutation of N .

Conversely, each permutation of N induces a homeomorphism βN → βN
.

So there are c = 2ℵ0 homeomorphisms βN → βN .

2) Let E ⊆ βN be a countable subset.

Then E
βN

is homeomorphic to βE .

3) Let F ⊆ βN be infinite and closed.

Then F contains a subspace homeomorphic to βN .

In particular, βN \ N contains a subspace homeomorphic to βN .

4) Let N1 be the set of even integers and N2 be the set of odd integers.
Obviously N = N1 ∪ N2 .

Then βN = βN1 ∪ βN2 and βN1 ∩ βN2 = ∅ .

Observe that both βN1 and βN1 are homeomorphic to βN .

5) Consider N ∪ {p : p is a free ultrafilter on N} .

On this set one can define a suitable topology so that the resulting space
is homeomorphic to βN .
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