12. Compactifications

A fundamental historical problem was: characterize the topological spaces (X, τ) that can be embedded in a compact T_2 -space.

And related: characterize (in a useful way) the subspaces of compact T_2 -spaces.

We first observe that any compact T_2 -space is normal and thus completely regular. As a consequence every such space (X, τ) must necessarily be completely regular.

We also observe that for locally compact T_2 -spaces we have constructed such an embedding and obtained the 1-point-compactification.

In the following we want to embed a space in a certain product space. A fundamental tool will be the **diagonal lemma**.

Let (X, τ) be a space, let (Y_i, σ_i) be a space for each $i \in I$ and let $\mathcal{A} = \{f_i : (X, \tau) \to (Y_i, \sigma_i) : i \in I\}$ be a family of continuous functions.

Then \mathcal{A} induces a continuous function $e: X \to \prod_{i \in I} Y_i$ by

 $(e(x))_i = f_i(x)$ i.e. $p_i \circ e = f_i$

(the f_i are the component functions of e)

Definition.

(i) \mathcal{A} is called **point-separating** if for each $x, y \in X$ with $x \neq y$ there exists $i \in I$ with $f_i(x) \neq f_i(y)$.

(ii) \mathcal{A} is said to separate points from closed sets if for each closed subset $A \subseteq X$ and each $x \notin A$ there exists $i \in I$ such that $f_i(x) \notin \overline{f_i(A)}$.

Theorem. (Diagonal lemma)

If $\mathcal{A} = \{f_i : (X, \tau) \to (Y_i, \sigma_i) : i \in I\}$ is a family of continuous

functions that is point-separating and separating points from closed sets, then $e: X \to \prod_{i \in I} Y_i$ is an embedding.

Proof. We already observed that e is continuous.

Now we show that e is injective. Let $x, y \in X$ with $x \neq y$. Then there is $i \in I$ with $f_i(x) \neq f_i(y)$ and so $e(x) \neq e(y)$.

To complete the proof we need to show that $e: X \to e(X)$ is an open function.

Let $U \subseteq X$ be open and $z \in e(U)$. Then there is $x \in U$ with z = e(x), and $x \notin X \setminus U$ and $X \setminus U$ is closed.

By assumption, there is $i \in I$ with

$$f_i(x) \notin \overline{f_i(X \setminus U)}$$
 resp. $f_i(x) = Y_i \setminus \overline{f_i(X \setminus U)}$

Let $W = p_i^{-1}(Y_i \setminus \overline{f_i(X \setminus U)})$. Then W is open in $\prod_{i \in I} Y_i$.

Since $z_i = f_i(x)$, $z \in W \cap e(X)$.

Observe that $W \cap e(X)$ is a neighbourhood of z with respect to the subspace e(X).

We claim that $W \cap e(X) \subseteq e(U)$. Let $z' \in W \cap e(X)$. Then there is $x' \in X$ with z' = e(x').

Then $z'_i = f_i(x') \in Y_i \setminus \overline{f_i(X \setminus U)} \subseteq Y_i \setminus f_i(X \setminus U)$.

It follows that $x' \in U$ (otherwise $f_i(x') \in f_i(X \setminus U)$, a contradiction).

Thus $z' \in e(U)$ showing that e(U) is open in e(X).

So $e: X \to e(X)$ is an open function and $e: X \to \prod_{i \in I} Y_i$ is an embedding.

Remark. If one of the functions of \mathcal{A} , say f_{i_0} , is already an embedding then \mathcal{A} is point-separating and separating points from closed sets (because of f_{i_0}) and therefore $e: X \to \prod_{i \in I} Y_i$ is an embedding.

Example. Let $f_1 : \mathbb{R} \to \mathbb{R}$, $f_1(x) = x$ and $f_2 : \mathbb{R} \to \mathbb{R}$, $f_2(x) = \sin x$ then \mathbb{R} can be embedded in \mathbb{R}^2 via $e(x) = (x, \sin x)$.

Observe that f_1 is already an embedding.

As an application of the diagonal lemma we are able to prove a metrization theorem.

For this let (X, τ) be a regular second countable space.

We mentioned earlier (without proof) that every regular Lindelöf space is normal, and so (X, τ) is a normal space.

Let \mathcal{B} be a countable base for (X, τ) .

We consider pairs (B, B') with $B, B' \in \mathcal{B}$ and $\overline{B} \subseteq B'$.

For each such pair we have $\overline{B} \cap (X \setminus B') = \emptyset$. By the lemma of Urysohn there exists a continuous function

 $f_{(B,B')}:X\to [0,1] \quad \text{with} \ \ f_{(B,B')}|_{\overline{B}}=1 \ \ \text{and} \ \ f_{(B,B')}|_{X\setminus B'}=0 \ .$

Thus the family $\mathcal{A} = \{f_{(B,B')} : X \to [0,1] : B, B' \in \mathcal{B}, \overline{B} \subseteq B'\}$ is a countable (!) family of continuous functions.

Let $x \neq y$. Since (X, τ) is regular there exist $B, B' \in \mathcal{B}$ such that $x \in \overline{B} \subseteq B'$ and $y \notin B'$.

Hence $f_{(B,B')}(x) = 1 \neq 0 = f_{(B,B')}(y)$ showing that \mathcal{A} is a point-separating family.

Now let $A \subseteq X$ be closed and $x \notin A$. Then there exist $B, B' \in \mathcal{B}$ such that $x \in \overline{B} \subseteq B' \subseteq X \setminus A$ (since $X \setminus A$ is open).

Then $f_{(B,B')}(x) = 1$ and, since $A \subseteq X \setminus B'$,

$$f_{(B,B')}(A) \subseteq \{0\}$$
, and so $\overline{f_{(B,B')}(A)} \subseteq \{0\}$ and
 $f_{(B,B')}(x) \notin \overline{f_{(B,B')}(A)}$.

Hence \mathcal{A} separates points from closed sets.

By the diagonal lemma (X, τ) can be embedded in a countable product

of [0,1].

Next we point out that the countable product of metric spaces is again a metric space. Let (X_n, d_n) be a metric space for each $n \in \mathbb{N}$ (wlog $d_n \leq 1$) and let $X = \prod_{n \in \mathbb{N}} X_n$.

One can show that $d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x_n, y_n)$ is a metric on X generating the product topology.

Therefore we have

Theorem. Let (X, τ) be regular and second countable. Then (X, τ) is metrizable.

Corollary.

1) Let (X, τ) be second countable. Then

 (X, τ) is metrizable $\Leftrightarrow (X, \tau)$ is regular

2) Let (X, τ) be compact and T_2 . Then

 (X, τ) is metrizable $\Leftrightarrow (X, \tau)$ is second countable.

Now suppose that (X, τ) is completely regular and let

 $\mathcal{A} = \{ f_i : X \to [0, 1] : f_i \text{ is continuous }, i \in I \}$

the family of **all** continuous functions $X \to [0, 1]$.

Then obviously the diagonal lemma is applicable and we obtain an embedding $e: X \to [0, 1]^I$, and, by the theorem of Tychonoff, $[0, 1]^I$ is a compact T_2 -space.

Therefore

Theorem. (X, τ) is completely regular if and only if (X, τ) can be embedded in a compact T_2 -space.

Definition. A (T_2-) compactification of a space $(X\tau)$ is a pair (Y, f)where (Y, σ) is a compact (T_2-) space and $f: X \to Y$ is an embedding with $\overline{f(X)} = Y$.

Remarks.

i) If $f : X \to Y$ is an embedding and Y is compact we obtain a compactification (Y^*, f) by setting $Y^* = \overline{f(X)}$.

ii) We already considered the 1-point-compactification of locally compact T_2 -spaces and proved that every completely regular space has a T_2 -compactification.

iii) $(0,1) \to [0,1]\,$ with the inclusion function is another compactification of $\,(0,1)$.

iv) Intuitively, we "add" points to X to obtain a set Y. Then we ask if there is a suitable topology on Y such that X is a subspace of Y.

One of the most prominent compactifications in topology is the Stone-Cech-compactification.

Let (X, τ) be completely regular.

Consider $C^*(X) = \{f : X \to \mathbb{R} : f \text{ is continuous and bounded}\}$.

Obviously, for each $f \in C^*(X)$ there is a compact interval $I_f \subseteq \mathbb{R}$ such that $f(X) \subseteq I_f$ and so we can consider a function $f \in C^*(X)$ also as a function $f: X \to I_f$.

It is also obvious that $C^*(X)$ fulfills the requirements of the diagonal lemma and therefore

$$e: X \to \prod_{f \in C^*(X)} I_f$$
 with $p_f \circ e = f$ is an embedding.

We set $\beta X = \overline{e(X)}$ and $\beta : X \to \beta X$ by $\beta(x) = e(x)$.

By the theorem of Tychonoff $\prod_{f \in C^*(X)} I_f$ is a compact T_2 -space, and as a

closed subspace of $\prod_{f \in C^*(X)} I_f$, βX is also a compact T_2 -space.

Definition. $(\beta X, \beta)$ is called the **Stone-Cech-compactification** of (X, τ) .

Now let $g \in C^*(X)$.

Theorem. There exists a continuous function $\widehat{g} : \beta X \to \mathbb{R}$ such that $\widehat{g} \circ \beta = g$.

(If we identify X with $\beta(X) \subseteq \beta X$ then every continuous and bounded function on X can be continuously extended to βX . We say that X is C^* -embedded in βX .)

Proof. Let $g(X) \subseteq I_g$ and $p_g : \prod_{f \in C^*(X)} I_f \to I_g$ the corresponding projection.

Let $\widehat{g} = p_g|_{\beta X} : \beta X \to I_g \subseteq \mathbb{R}$. Then \widehat{g} is continuous.

Also, $\widehat{g} \circ \beta(x) = p_g|_{\beta X} \circ \beta(x) = p_g \circ e(x) = g(x)$.

Observe also, that \hat{g} is uniquely determined since any two extensions coincide on e(X) and therefore on $\beta X = \overline{e(X)}$. \Box

We now prove the so-called "characteristic property" of the Stone-Cechcompactification.

Theorem. Let (X, τ) be completely regular and (Y, σ) a compact T_2 -space.

For every continuous function $f: X \to Y$ there is a continuous function $h: \beta X \to Y$ such that $h \circ \beta = f$.

(i.e. f can be continuously extended to βX .)

Proof. We first observe that if $k : Z_1 \to Z_2$ is a continuous and closed function then $k(\overline{A}) = \overline{k(A)}$ for each $A \subseteq Z_1$.

It follows from the previous discussions that there is also an embedding

$$\widehat{e}: Y \to \prod_{g \in C^*(Y)} I_g$$

where I_g is a compact interval of \mathbb{R} with $g(Y) \subseteq I_g$ for each $g \in C^*(Y)$, and we have $p_g \circ \hat{e} = g$.

Let $g \in C^*(Y)$. Then $g \circ f \in C^*(X)$ and $g \circ f(X) \subseteq I_g$.

By the previous theorem there exists a (unique) continuous function $\widehat{g} \circ \widehat{f}$: $\beta X \to \mathbb{R}$ such that $\widehat{g \circ f} \circ \beta = g \circ f$ and

$$\widehat{g \circ f}(\beta X) = \widehat{g \circ f}(\overline{\beta(X)}) = (\widehat{g \circ f} \circ \beta)(X) = \overline{g \circ f(X)} \subseteq \overline{I_g} = I_g$$

i.e. $\widehat{g \circ f}$ maps βX into I_g .

Hence the function $\widetilde{h}: \beta X \to \prod_{g \in C^*(Y)} I_g$ where $p_g \circ \widetilde{h} = \widehat{g \circ f}$ is continuous.

We now claim that $\widetilde{h} \circ \beta = \widehat{e} \circ f : X \to \prod_{g \in C^*(Y)} I_g$.

For $x \in X$ and $g \in C^*(Y)$ we have $p_g(\tilde{h} \circ \beta(x)) = (p_g \circ \tilde{h})(\beta(x)) = \widehat{g \circ f}(\beta(x)) = \widehat{g \circ f} \circ \beta(x) = g \circ f(x) =$ $= p_g \circ \widehat{e}(f(x)) = p_g(\widehat{e} \circ f(x))$

From this it follows that $\tilde{h} \circ \beta(x) = \hat{e} \circ f(x)$ for each $x \in X$ and so $\tilde{h} \circ \beta = \hat{e} \circ f$.

In addition we have

$$\widetilde{h}(\beta X) = \widetilde{h}(\overline{\beta(X)}) \subseteq \overline{\widetilde{h} \circ \beta(X)} = \overline{\widehat{e} \circ f(X)} = \overline{\widehat{e}(f(X))} \subseteq \overline{\widehat{e}(Y)} = \widehat{e}(Y)$$

Since $\widehat{e}: Y \to \widehat{e}(Y)$ is a homeomorphism there is a continuous inverse function $\widehat{e}^{-1}: \widehat{e}(Y) \to Y$.

Then $h = \widehat{e}^{-1} \circ \widetilde{h} : \beta X \to Y$ is well defined and continuous and we have $h \circ \beta = \widehat{e}^{-1} \circ \widetilde{h} \circ \beta = \widehat{e}^{-1} \circ \widehat{e} \circ f = f$. \Box

Remark. βX is with respect to this extension property uniquely determined, i.e. if (Z, h) is another compactification of (X, τ) with this extension property then Z is homeomorphic to βX .

Proof.

Consider $\ \widehat{\beta} \circ \widehat{h} : \beta X \to \beta X$.

On the dense subset $\beta(X)$ we have

$$\begin{split} \widehat{\beta} \circ \widehat{h}(\beta(x)) &= \widehat{\beta}(h(x)) = \beta(x) \text{, i.e.} \\ \widehat{\beta} \circ \widehat{h}|_{\beta(X)} &= \mathrm{id}_{\beta X}|_{\beta(X)} \text{ and so } \widehat{\beta} \circ \widehat{h} = \mathrm{id}_{\beta X} \end{split}$$

In the same manner we obtain $\widehat{h} \circ \widehat{\beta} = \mathrm{id}_Z$. Therefore βX and Z are homeomorphic. \Box

We now ask for the "size" of βX resp. of $\beta X \setminus X$.

Clearly, if (X, τ) is already compact and T_2 then $\beta X = X$. In general, βX can be very large.

For this we consider $X = \mathbb{N}$ with the discrete topology.

We first mention (without proof) a very important result in topology.

Theorem. (E. Hewitt)

Let (X_i, τ_i) be separable for each $i \in I$, and $|I| \leq c$.

Then $\prod_{i \in I} X_i$ is separable.

Theorem. $|\beta \mathbb{N}| = c^{c} = (2^{\aleph_{0}})^{c} = 2^{c}$

Proof. If I = [0, 1], then by the previous theorem $I^I = \{x : I \to I\}$ is separable, so there exists a countable dense subset $D \subseteq I^I$.

Then there is an injective function $g: \mathbb{N} \to I^I$ with $g(\mathbb{N}) = D$.

Observe that I^I is compact and T_2 and, since \mathbb{N} has the discrete topology, g is continuous.

It follows that there exists a continuous (and closed function) $h: \beta \mathbb{N} \to I^I$ such that $g = h \circ \beta$.

Then
$$h(\beta \mathbb{N}) = h(\overline{\beta(\mathbb{N})}) = \overline{h(\beta(\mathbb{N}))} = \overline{g(\mathbb{N})} = \overline{D} = I^I$$
.

Hence h is surjective and so $|\beta \mathbb{N}| \ge |I^I| = c^c$.

On the other hand we know that $\beta \mathbb{N} \subseteq \prod_{f \in C^*(\mathbb{N})} I_f$.

Since each I_f is homeomorphic to I = [0, 1], $\prod_{f \in C^*(\mathbb{N})} I_f$ is homeomorphic to $I^{C^*(\mathbb{N})}$.

Now |I| = c and $|C^*(\mathbb{N})| \le |\mathbb{R}^{\mathbb{N}}| = c^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0} = c$.

Hence $|\beta \mathbb{N}| \leq |I^{C^*(\mathbb{N})}| \leq c^c$ and so $|\beta \mathbb{N}| = c^c$ resp. $|\beta \mathbb{N} \setminus \mathbb{N}| = c^c$. \Box

In concluding we mention without proof some further results about $\beta \mathbb{N}$.

We may identify \mathbb{N} with $\beta(\mathbb{N}) \subseteq \beta\mathbb{N}$ so that we consider \mathbb{N} as a subset of $\beta\mathbb{N}$.

1) Let $h: \beta \mathbb{N} \to \beta \mathbb{N}$ be a homeomorphism.

Then h maps isolated points to isolated points. Since \mathbb{N} is dense in $\beta \mathbb{N}$ the only isolated points of $\beta \mathbb{N}$ are the points of \mathbb{N} .

Therefore h induces a permutation of \mathbb{N} .

Conversely, each permutation of $\,\mathbb N\,$ induces a homeomorphism $\,\beta\mathbb N\to\beta\mathbb N\,$.

So there are $c = 2^{\aleph_0}$ homeomorphisms $\beta \mathbb{N} \to \beta \mathbb{N}$.

2) Let $E \subseteq \beta \mathbb{N}$ be a countable subset.

Then $\overline{E}^{\beta\mathbb{N}}$ is homeomorphic to βE .

3) Let $F \subseteq \beta \mathbb{N}$ be infinite and closed.

Then F contains a subspace homeomorphic to $\beta \mathbb{N}$.

In particular, $\beta \mathbb{N} \setminus \mathbb{N}$ contains a subspace homeomorphic to $\beta \mathbb{N}$.

4) Let \mathbb{N}_1 be the set of even integers and \mathbb{N}_2 be the set of odd integers. Obviously $\mathbb{N} = \mathbb{N}_1 \cup \mathbb{N}_2$.

Then $\beta \mathbb{N} = \overline{\beta \mathbb{N}_1} \cup \overline{\beta \mathbb{N}_2}$ and $\overline{\beta \mathbb{N}_1} \cap \overline{\beta \mathbb{N}_2} = \emptyset$.

Observe that both $\overline{\beta \mathbb{N}_1}$ and $\overline{\beta \mathbb{N}_1}$ are homeomorphic to $\beta \mathbb{N}$.

5) Consider $\mathbb{N} \cup \{p : p \text{ is a free ultrafilter on } \mathbb{N}\}$.

On this set one can define a suitable topology so that the resulting space is homeomorphic to $\beta \mathbb{N}$.