12. Compactifications

A fundamental historical problem was: characterize the topological spaces
(X,7) that can be embedded in a compact Th—space.

And related: characterize (in a useful way) the subspaces of compact
Ts—spaces.

We first observe that any compact T5—space is normal and thus completely
regular. As a consequence every such space (X,7) must necessarily be
completely regular.

We also observe that for locally compact Th—spaces we have constructed
such an embedding and obtained the 1-point-compactification.

In the following we want to embed a space in a certain product space. A
fundamental tool will be the diagonal lemma.

Let (X,7) be a space, let (Y;,0;) be a space for each i € I and let
A={fi: (X,7) = (Y;,;0;) : i € I} be a family of continuous functions.

Then A induces a continuous function e: X — [[Y; by
1€l

(e(x)); = fi(r) ie. pioe=f;

(the f; are the component functions of e)

Definition.

(i) A is called point-separating if for each x,y € X with = # y there
exists ¢ € [ with f;(z) # fi(y) .

(ii)) A is said to separate points from closed sets if for each closed

subset A C X andeach x ¢ A there exists ¢ € [ such that fi(z) ¢ fi(A)

Theorem. (Diagonal lemma)

If A=Afi: (X,7) - (Y;,0;) : i€ I} is a family of continuous



functions that is point-separating and separating points from closed sets,
then e: X — []Y; is an embedding.

el
Proof. We already observed that e is continuous.

Now we show that e isinjective. Let z,y € X with x # y . Then there
is i€l with f;(x)# fi(y) and so e(z) # e(y) .

To complete the proof we need to show that e : X — e(X) is an open
function.

Let U C X beopenand z € e(U) . Then thereis x € U with z = e(x)
,and x ¢ X\ U and X \ U is closed.

By assumption, there is 72 € I with

filx) & fi( X\U) resp. fi(x) =Yi\ fi( X \U)
Let W=p;'(V;\ fi(X\U)). Then W isopenin []Y;.
i€l
Since z; = fi(z), z€e Wne(X).

Observe that W Ne(X) is a neighbourhood of z with respect to the
subspace e(X) .

We claim that W Ne(X) Ce(U). Let 2/ € Wne(X). Then there is
e X with 2/ =e(2) .

Then zj = fi(2") € Vi\ i X\U)) C Y\ (X \U) .
It follows that 2’ € U (otherwise f;(z') € f;i(X \U) , a contradiction).

Thus 2’ € ¢(U) showing that e(U) is openin e(X) .

So e: X — e(X) is an open function and e : X — [[Y; is an embedding.
el

U

Remark. If one of the functions of A | say f;, , is already an embedding

then A is point-separating and separating points from closed sets (because
of f;,) and therefore e: X — []VY; is an embedding.

el



Example. Let fi: R— R, fi(z) =2 and fo:R =R, fo(xr) =sinzx
then R can be embedded in R? via e(z) = (z,sinz) .

Observe that f; is already an embedding.

As an application of the diagonal lemma we are able to prove a metrization
theorem.

For this let (X,7) be a regular second countable space.

We mentioned earlier (without proof) that every regular Lindelof space is
normal, and so (X, 7) is a normal space.

Let B be a countable base for (X,7) .
We consider pairs (B, B’) with B,B'€B and BC B’ .

For each such pair we have BN (X \ B') = . By the lemma of Urysohn
there exists a continuous function

f(B,B') X — [0, 1] Wlth f(B,B')‘E =1 and f(B,B')‘X\B’ = 0 .

Thus the family A= {fpp): X = [0,1] : BB € B, BC B} isa
countable (!) family of continuous functions.

Let x # y . Since (X,7) is regular there exist B, B’ € B such that
r€BCB and y¢ B’ .

Hence fppy(r) =1 # 0 = fipp)(y) showing that A is a point-
separating family.

Now let A C X be closed and = ¢ A . Then there exist B, B’ € B such
that t€ BC B'C X\ A (since X\ A isopen).

Then fppy(r) =1 and, since AC X\ B’,
fz.p)(A) €{0},andso fpp)(A) C{0} and

f.y (@) & fe.B)(A) .

Hence A separates points from closed sets.

By the diagonal lemma (X, 7) can be embedded in a countable product

3



of [0,1] .

Next we point out that the countable product of metric spaces is again

a metric space. Let (X,,d,) be a metric space for each n € N (wlog
d, <1) andlet X = ][ X,, .

neN
0
One can show that d(z,y) = Y 5-dy(2n,ys) is a metricon X generating
n=1
the product topology.

Therefore we have

Theorem. Let (X,7) be regular and second countable. Then (X,7) is
metrizable.

Corollary.
1) Let (X,7) be second countable. Then

(X, 7) is metrizable < (X, 7) is regular

2) Let (X,7) be compact and T . Then

(X, 7) is metrizable < (X, 7) is second countable.

Now suppose that (X, 7) is completely regular and let
A={fi: X —1[0,1] : f; is continuous , 7 € [}

the family of all continuous functions X — [0,1] .

Then obviously the diagonal lemma is applicable and we obtain an em-
bedding e : X — [0,1)! , and, by the theorem of Tychonoff, [0,1]! is a
compact Th—space.

Therefore

Theorem. (X,7) is completely regular if and only if (X,7) can be
embedded in a compact To—space.



Definition. A (73—)compactification of a space (X7) is a pair (Y, f)
where (Y, 0) is a compact (Th—)space and f: X — Y is an embedding
with f(X)=Y .

Remarks.

i) If f:X — Y is an embedding and Y is compact we obtain a
compactification (Y™, f) by setting Y* = f(X) .

ii) We already considered the 1-point-compactification of locally com-
pact Th—spaces and proved that every completely regular space has a
Th—compactification.

iii) (0,1) — [0,1] with the inclusion function is another compactification
of (0,1).

iv) Intuitively, we "add” points to X to obtain a set Y . Then we ask
if there is a suitable topology on Y such that X is a subspace of Y .

One of the most prominent compactifications in topology is the Stone-
Cech-compactification.

Let (X,7) be completely regular.
Consider C*(X)={f: X — R : f is continuous and bounded} .

Obviously, for each f € C*(X) there is a compact interval Iy C R such
that f(X) C Iy and so we can consider a function f e C*(X) also as a
function f: X — Iy .

It is also obvious that C*(X) fulfills the requirements of the diagonal
lemma and therefore

e: X — [] Iy with proe=f isan embedding.
feC*(X)

Weset fX =e(X) and f: X — X by B(z)=-e(x).

By the theorem of Tychonoff  [][ I is a compact To—space, and as a
fec(X)



closed subspace of  [[ Iy, X is also a compact Th—space.
feC*(X)

Definition. (8X,3) is called the Stone-Cech-compactification of
(X, 7).

Now let g € C*(X) .

Theorem. There exists a continuous function g : X — R such that
goB=g.
(If we identify X with B(X) C X then every continuous and bounded

function on X can be continuously extended to X . We say that X is
C*—embedded in 5X .)

Proof. Let ¢(X) C I, and p,: [[ I — I, the corresponding
feCx(X)
projection.

Let g =pylpx : BX — I, CR . Then g is continuous.
Also, go B(x) = pylsx o B(r) = pyoe(x) = g(r) .

Observe also, that ¢ is uniquely determined since any two extensions

coincide on e(X) and therefore on X =e(X). O

We now prove the so-called ”characteristic property” of the Stone-Cech-
compactification.

Theorem. Let (X,7) be completely regular and (Y,0) a compact
T>—space.



For every continuous function f: X — Y there is a continuous function
h:BX —Y suchthat hof=f.

(i.e. f can be continuously extended to (X .)

Proof. We first observe that if k£ : Z; — Z3 is a continuous and closed

function then k(A) = k(A) foreach AC Z; .

It follows from the previous discussions that there is also an embedding

e:Y— I 1,
geC*(Y)

where I, is a compact interval of R with ¢(Y') C I, for each g € C*(Y)
, and we have p,oe=g.

Let g€ C*(Y). Then go fe C*(X) and go f(X) C I, .

By the previous theorem there exists a (unique) continuous function g/o\f :
BX — R such that gofof=gof and

go f(BX)=go f(B(X))=(gofoB)(X)=gof(X)C =1,

ie. g/o\f maps SBX into I, .

Hence the function h : X — [] 1, where pgo}i = g/o\f is continuous.

geC=(Y)
We now claim that hof =20 f: X — T 1.
geC*(Y)

For v € X and g€ C*(Y) we have

—_—

py(hoB(x)) = (pyo B)(B(x)) = go f(B(x)) = go foB(x) =go fz) =
= pyoe(f(x)) = py(€o f(x))

From this it follows that hop(z) =¢o f(zx) for cach z € X and so
hof=¢€of.

In addition we have

R(BX) = h(B(X)) ChoB(X)=¢0 f(X) =e(f(X)) Ce(Y) =€)




Since e :Y — e(Y) is a homeomorphism there is a continuous inverse
function e 1:e(Y) =Y .

Then h=¢"loh: X — Y is well defined and continuous and we have

hoB=¢lohof=e¢"locof=f. O

Remark. (X is with respect to this extension property uniquely de-
termined, i.e. if (Z,h) is another compactification of (X,7) with this
extension property then Z is homeomorphic to X .

Proof.
X ““‘ﬁ‘“”" = Z ﬁ‘j e £ (/ji"
7 ) -
/S l 7 /\/ Mua/ \J/ - ,\/
7 d &' /S
Ax > )
L, = Z: 4//3 o/f = /& aé'

Consider Bo/}; X — X .
On the dense subset B(X) we have

Boh(B(x)) = B(h(x)) = B(x) , ie.
gomﬁ(ﬁ() = idgx|px) and so Boﬁ = idgyx

In the same manner we obtain h o 3 =1idy . Therefore X and Z are
homeomorphic. [

We now ask for the "size” of SX resp. of X\ X .

Clearly, if (X, 7) is already compact and T, then X = X . In general,
BX can be very large.

For this we consider X = N with the discrete topology.



We first mention (without proof) a very important result in topology.

Theorem. (E. Hewitt)
Let (X;,7;) be separable for each i € [ ,and |I| <c.
Then [] X, is separable.

1€l

Theorem. [AN|=c¢ = (2%)¢ = 2¢

Proof. If I =10,1], then by the previous theorem I = {x:I — I} is
separable, so there exists a countable dense subset D C I7 .

Then there is an injective function ¢g: N — I! with g(N) =D .

Observe that I’ is compact and 7T» and, since N has the discrete
topology, ¢ is continuous.

IN —

AL
> L

It follows that there exists a continuous (and closed function) h: BN — I1
such that g=ho 3 .

Then A(BN) = h(BN) = A(BIN)) = gN) = D = 11 .
Hence h is surjective and so |SN| > |[I| =c° .

On the other hand we know that SN C [[ Iy .
feC*(N)

Since each Iy is homeomorphicto I =1[0,1], [] I is homeomorphic
feC*(N)

to 167N

Now |[I|=c and |C*(N)| < |RN| =cMo = (2%0)% = 2% —¢

Hence |AN| < [I€M| < ¢ andso |AN] =c® resp. [[N\N|=c¢. O
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In concluding we mention without proof some further results about AN .

We may identify N with G(N) C SN so that we consider N as a subset
of AN .

1) Let h:pN — SN be a homeomorphism.

Then h maps isolated points to isolated points. Since N is dense in (SN
the only isolated points of SN are the points of N .

Therefore h induces a permutation of N .

Conversely, each permutation of N induces a homeomorphism AN — SN

So there are ¢ = 2% homeomorphisms AN — AN .

2) Let E C BN be a countable subset.

Then E ' is homeomorphic to SE .

3) Let F C ON be infinite and closed.
Then F contains a subspace homeomorphic to AN .

In particular, SN\ N contains a subspace homeomorphic to AN .

4) Let Nj be the set of even integers and Ny be the set of odd integers.
Obviously N=N; UNj .

Then BN =p3N;UBN; and AN, NANy =0 .
Observe that both BN; and AN; are homeomorphic to AN .

5) Consider NU{p : p is a free ultrafilter on N} .

On this set one can define a suitable topology so that the resulting space
is homeomorphic to AN .
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