Topology - Exercise Sheet 2

- 1. Show that a space is T_3 if and only if for each $x \in X$ the closed neighbourhoods of x form a neighbourhood base (i.e. each neighbourhood contains a closed neighbourhood).
- 2. Show that the arbitrary product of T_3 -spaces is a T_3 -space.
- 3. For each $i \in I$ let (X_i, τ_i) be a non-trivial (i.e. $|X_i| > 1$) first countable space. Let $X = \prod_{i \in I} X_i$ be the product space with the product topology τ . Show that (X, τ) is first countable if |I| is at most countable and that (X, τ) is not first countable if |I| is uncountable.
- 4. Let X be a set. The set $\{f : X \to \mathbb{R}\}$ can be written as \mathbb{R}^X (all factors are \mathbb{R} and the index set is X) and we can consider the product topology on this set. Show that $(f_n) \to f$ if and only if for each $x \in X$ we have $f_n(x) \to f(x)$.
- 5. Prove with the Lemma of Zorn that for each filter \mathcal{F} on a set X there exists an ultrafilter \mathcal{U} satisfying $\mathcal{F} \subseteq \mathcal{U}$.
- 6. Show that every subspace of the Sorgenfrey line is Lindelöf. (Hint: Let $\{O_i : i \in I\}$ be a family of sets open in the Sorgenfrey line. For each $i \in I$ let $intO_i$ be the interior of O_i with respect to the usual topology on \mathbb{R} . Prove that $A = \bigcup_{i \in I} O_i \setminus \bigcup_{i \in I} intO_i$ is at most countable. Use also the facts that \mathbb{R} with the usual topology is second countable and that every family of pairwise disjoint nonempty open sets must be countable.)
- 7. Let (X, τ) be the Sorgenfrey line. Show that $X \times X$ is not Lindelöf.
- 8. Let (X, τ) be the Sorgenfrey line and let $C \subseteq X$ be compact. Show that C is at most countable.

(Hint: For each $x \in C$ consider the open cover $C \subseteq [x, \infty) \cup \bigcup_{n \in \mathbb{N}} (-\infty, x - \frac{1}{n})$. As a consequence there is a nonempty euclidean open interval I_x such that $I_x \cap C = \emptyset$. Show that this family $\{I_x : x \in C\}$ of intervals is pairwise disjoint and therefore must be countable.)