Krummlinige Koordinaten

Einige Koordinatensysteme im \mathbb{R}^3 haben wir bereits kennengelernt :

 x_1, x_2, x_3 ... kartesische Koordinaten

 $r, \varphi, x_3 \dots$ Zylinderkoordinaten

 r, φ, ϑ ... Kugelkoordinaten

Sind andere Koordinaten u_1, u_2, u_3 gegeben, sodass wir die kartesischen Koordinaten x_1, x_2, x_3 als Funktionen von u_1, u_2, u_3 schreiben können, i.e.

$$x_1 = x_1(u_1, u_2, u_3)$$
, $x_2 = x_2(u_1, u_2, u_3)$, $x_3 = x_3(u_1, u_2, u_3)$,

dann können wir umgekehrt (lokal) die u_i durch die x_i ausdrücken, wenn die Jacobi-Determinante verschieden von Null ist, d.h.

$$\begin{vmatrix} \frac{\partial x_1}{\partial u_1} & \frac{\partial x_2}{\partial u_1} & \frac{\partial x_3}{\partial u_1} \\ \frac{\partial x_1}{\partial u_2} & \frac{\partial x_2}{\partial u_2} & \frac{\partial x_3}{\partial u_2} \\ \frac{\partial x_1}{\partial u_3} & \frac{\partial x_2}{\partial u_3} & \frac{\partial x_3}{\partial u_3} \end{vmatrix} = \frac{\partial(x_1, x_2, x_3)}{\partial(u_1, u_2, u_3)} \neq 0$$

Fixieren wir einen Punkt (u_1^0, u_2^0, u_3^0) , dann erhalten wir drei Kurven durch diesen Punkt, indem wir zwei Koordinaten festhalten und die dritte als Kurvenparameter nehmen. Dies sind die **Koordinatenlinien** durch diesen Punkt.

$$\vec{r}(u_1) = \begin{pmatrix} x_1(u_1, u_2^0, u_3^0) \\ x_2(u_1, u_2^0, u_3^0) \\ x_3(u_1, u_2^0, u_3^0) \end{pmatrix} , \ \vec{r}(u_2) = \begin{pmatrix} x_1(u_1^0, u_2, u_3^0) \\ x_2(u_1^0, u_2, u_3^0) \\ x_3(u_1^0, u_2^0, u_3^0) \end{pmatrix}$$

$$\vec{r}(u_3) = \begin{pmatrix} x_1(u_1^0, u_2^0, u_3) \\ x_2(u_1^0, u_2^0, u_3) \\ x_2(u_1^0, u_2^0, u_3) \\ x_3(u_1^0, u_2^0, u_3) \end{pmatrix}$$

Wenn sich die Koordinatenlinien in jedem Punkt jeweils paarweise im rechten Winkel schneiden, spricht man von **rechtwinkeligen** oder auch von **orthogonalen Koordinaten**.

Die Tangenteneinheitsvektoren in einem Punkt $\vec{r}_0 = (u_1^0, u_2^0, u_3^0)$ ergeben sich durch

$$\vec{T}_i\Big|_{\vec{r}=\vec{r}_0} = \vec{e}_{u_i}\Big|_{\vec{r}=\vec{r}_0} = \frac{1}{h_{u_i}} \frac{\partial \vec{r}}{\partial u_i}\Big|_{\vec{r}=\vec{r}_0} \quad \text{mit} \quad h_{u_i} = \left|\frac{\partial \vec{r}}{\partial u_i}\right|$$

Die Vektoren $e_{u_1}, e_{u_2}, e_{u_3}$ hängen von u_1, u_2, u_3 ab und haben daher im allgemeinen eine vom Ort abhängige Richtung. Dies ist bei kartesischen Koordinaten nicht der Fall.

Beispiel. Gelte $x_1 = u_1^2$, $x_2 = u_2u_3$, $x_3 = u_1u_2$. Also ist

$$\vec{r} = \begin{pmatrix} u_1^2 \\ u_2 u_3 \\ u_1 u_2 \end{pmatrix}$$
. Wir betrachten den Punkt P mit $u_1 = u_2 = u_3 = 1$.

Die Koordinatenlinien durch P sind gegeben durch

$$\vec{r}(u_1) = \begin{pmatrix} u_1^2 \\ 1 \\ u_1 \end{pmatrix}, \ \vec{r}(u_2) = \begin{pmatrix} 1 \\ u_2 \\ u_2 \end{pmatrix}, \ \vec{r}(u_3) = \begin{pmatrix} 1 \\ u_3 \\ 1 \end{pmatrix}.$$

Weiters ist

$$\frac{\partial \vec{r}}{\partial u_1}\Big|_P = \begin{pmatrix} 2u_1 \\ 0 \\ 1 \end{pmatrix} \Big|_P, \quad \frac{\partial \vec{r}}{\partial u_2}\Big|_P = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \Big|_P, \quad \frac{\partial \vec{r}}{\partial u_3}\Big|_P = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Big|_P \quad \Box$$

Bemerkung. Für orthogonale Koordinaten gilt $\vec{e}_{u_i} \cdot \vec{e}_{u_j} = \delta_{ij}$, i, j = 1, 2, 3. Die Vektoren $\vec{e}_{u_1}, \vec{e}_{u_2}, \vec{e}_{u_3}$ bilden eine (orthogonale) Basis des \mathbb{R}^3 , und da diese Vektoren auch Einheitsvektoren sind, spricht man von einer **Orthonormalbasis**.

Des weiteren spricht man von einem **Rechtssystem** (oder einer rechtshändigen Basis), wenn gilt : $\vec{e}_{u_1} \times \vec{e}_{u_2} = \vec{e}_{u_3}$, $\vec{e}_{u_2} \times \vec{e}_{u_3} = \vec{e}_{u_1}$, $\vec{e}_{u_3} \times \vec{e}_{u_1} = \vec{e}_{u_2}$

Beispiel. (Zylinderkoordinaten)

$$\vec{r} = \begin{pmatrix} x_1(\rho, \varphi) \\ x_2(\rho, \varphi) \\ x_3 \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ x_3 \end{pmatrix} \quad \text{mit}$$
$$0 \le \rho < \infty , \ 0 \le \varphi < 2\pi , \ -\infty < x_3 < +\infty$$

Die Umkehrung ist durch $\rho = \sqrt{x_1^2 + x_2^2}$, $\varphi = \arctan\left(\frac{x_2}{x_1}\right)$ gegeben.

Die Koordinatenlinien sind

•
$$\vec{r}_1(\rho) = \begin{pmatrix} \rho \cos \varphi_0 \\ \rho \sin \varphi_0 \\ x_3^0 \end{pmatrix}$$
 ... eine von der x_3 -Achse in der Höhe x_3^0 im

Winkel φ_0 ausgehende Halbgerade

•
$$\vec{r}_2(\varphi) = \begin{pmatrix} \rho_0 \cos \varphi \\ \rho_0 \sin \varphi \\ x_3^0 \end{pmatrix}$$
 ... ein Kreis mit Radius ρ_0 in der Höhe x_3^0

•
$$\vec{r}_3(x_3) = \begin{pmatrix} \rho_0 \cos \varphi_0 \\ \rho_0 \sin \varphi_0 \\ x_3 \end{pmatrix}$$
 ... eine Gerade von $x_3 = -\infty$ bis $+\infty$ bei ρ_0, φ_0

Die normierten Basisvektoren in einem Punkt (ρ, φ, x_3) sind

$$\vec{e}_{\rho} = \frac{1}{h_{\rho}} \frac{\partial \vec{r}}{\partial \rho} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix} \quad (h_{\rho} = 1)$$

$$\vec{e}_{\varphi} = \frac{1}{h_{\varphi}} \frac{\partial \vec{r}}{\partial \varphi} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix} \quad (h_{\varphi} = \rho)$$

$$\vec{e}_{x_3} = \frac{1}{h_{x_3}} \frac{\partial \vec{r}}{\partial x_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad (h_{x_3} = 1)$$

Die Zylinderkoordinaten sind damit offenbar orthogonale Koordinaten, und die Vektoren $\vec{e}_{\rho}, \vec{e}_{\varphi}, \vec{e}_{x_3}$ bilden ein Rechtssystem.

Beispiel. (Kugelkoordinaten)

$$\vec{r} = \begin{pmatrix} x_1(r, \theta, \varphi) \\ x_2(r, \theta, \varphi) \\ x_3(r, \theta, \varphi) \end{pmatrix} = \begin{pmatrix} r \sin \theta \cos \varphi \\ r \sin \theta \sin \varphi \\ r \cos \theta \end{pmatrix} \quad \text{mit}$$

$$0 \le r < \infty , \ 0 \le \theta \le \pi , \ 0 \le \varphi < 2\pi$$

Die Umkehrung ist durch

$$r = \sqrt{x_1^2 + x_2^2 + x_3^2}$$
, $\vartheta = \arctan \sqrt{\frac{x_1^2 + x_2^2}{x_3^2}}$, $\varphi = \arctan \left(\frac{x_2}{x_1}\right)$ gegeben.

Die Koordinatenlinien sind

- $\vec{r}_1(r) = \vec{r}(r, \vartheta_0, \varphi_0)$... eine Halbgerade vom Ursprung in Richtung ϑ_0, φ_0 .
- $\vec{r}_2(\vartheta) = \vec{r}(r_0, \vartheta, \varphi_0)$... ein Längenkreis mit Radius r_0 in der Ebene durch die x_3 -Achse im Winkel φ_0 zur x_1x_3 -Ebene.
- $\vec{r}_3(\varphi) = \vec{r}(r_0, \vartheta_0, \varphi)$... ein Breitenkreis mit Radius $r_0 \sin \vartheta_0$ parallel zur x_1x_2 -Ebene.

Die normierten Basisvektoren in einem Punkt (r, ϑ, φ) sind

$$\vec{e}_r = \frac{1}{h_r} \frac{\partial \vec{r}}{\partial r} = \begin{pmatrix} \sin \vartheta \cos \varphi \\ \sin \vartheta \sin \varphi \\ \cos \vartheta \end{pmatrix} \quad (h_r = 1)$$

$$\vec{e}_\vartheta = \frac{1}{h_\vartheta} \frac{\partial \vec{r}}{\partial \vartheta} = \begin{pmatrix} \cos \vartheta \cos \varphi \\ \cos \vartheta \sin \varphi \\ -\sin \vartheta \end{pmatrix} \quad (h_\vartheta = r)$$

$$\vec{e}_\varphi = \frac{1}{h_\varphi} \frac{\partial \vec{r}}{\partial \varphi} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix} \quad (h_\varphi = r \sin \vartheta)$$

Die Kugelkoordinaten sind damit ebenfalls orthogonale Koordinaten, und die Vektoren $\vec{e}_r, \vec{e}_{\vartheta}, \vec{e}_{\varphi}$ bilden ein Rechtssystem.

Sobald wir eine Basis in einem Vektorraum haben, können wir die Vektoren des Vektorraums als Linearkombination der Basisvektoren darstellen.

Im Falle einer orthonormalen Basis (hier im \mathbb{R}^3) gilt offenbar

$$\vec{F} = F_{u_1}\vec{e}_{u_1} + F_{u_2}\vec{e}_{u_2} + F_{u_3}\vec{e}_{u_3} \quad \Rightarrow \quad F_{u_i} = \vec{F} \cdot \vec{e}_{u_i} = \frac{1}{h_{u_i}}\vec{F} \cdot \frac{\partial \vec{r}}{\partial u_i}$$

Beispiel. Der Ortsvektor \vec{r} ist in der kartesischen Basis durch $\vec{r} = x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3$ dargestellt, hat also die Komponenten x_1, x_2, x_3 .

In der Basis der Zylinderkoordinaten ist $\vec{r}=r_{\rho}\vec{e}_{\rho}+r_{\varphi}\vec{e}_{\varphi}+r_{x_3}\vec{e}_{x_3}$ mit

$$r_{\rho} = \vec{r} \cdot \vec{e}_{\rho} = (\rho \cos \varphi, \rho \sin \varphi, x_3) \cdot (\cos \varphi, \sin \varphi, 0) = \rho$$

$$r_{\varphi} = \vec{r} \cdot \vec{e}_{\varphi} = (\rho \cos \varphi, \rho \sin \varphi, x_3) \cdot (-\sin \varphi, \cos \varphi, 0) = 0$$

$$r_{x_3} = \vec{r} \cdot \vec{e}_{x_3} = (\rho \cos \varphi, \rho \sin \varphi, x_3) \cdot (0, 0, 1) = x_3$$

Also
$$\vec{r} = \rho \vec{e}_{\rho} + x_3 \vec{e}_{x_3}$$

Beispiel. In Kugelkoordinaten ist $\vec{r} = (r \sin \vartheta \cos \varphi, r \sin \vartheta \sin \varphi, r \cos \vartheta)$ und damit offenbar (siehe vorher) $\vec{r} = r\vec{e_r}$.

(Die Koeffizienten von \vec{e}_{ϑ} und \vec{e}_{φ} sind Null).

 $F_{\varphi} = \vec{F} \cdot \vec{e}_{\varphi} = -r \cos \vartheta \sin \varphi$

Beispiel. Wir bestimmen die Komponenten des Vektors $\vec{F} = (x_3, 0, 0)$ im Basissystem der Kugelkoordinaten.

$$F_r = \vec{F} \cdot \vec{e}_r = (r \cos \vartheta, 0, 0) \cdot (\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta) =$$

$$= r \sin \vartheta \cos \vartheta \cos \varphi$$

$$F_{\vartheta} = \vec{F} \cdot \vec{e}_{\vartheta} = (r \cos \vartheta, 0, 0) \cdot (\cos \vartheta \cos \varphi, \cos \vartheta \sin \varphi, -\sin \vartheta) =$$

$$= r \cos^2 \vartheta \cos \varphi$$

Beim Differenzieren von Vektoren (in allgemeinen krummlinigen Koordinaten) ist nun zu beachten, dass nicht nur die Komponenten, sondern auch

die Basisvektoren differenziert werden müssen.

$$\vec{F} = \sum_{i=1}^{3} F_{u_i} \vec{e}_{u_i} \quad \Rightarrow \quad \frac{\partial \vec{F}}{\partial u_j} = \sum_{i=1}^{3} \left(\frac{\partial F_{u_i}}{\partial u_j} \vec{e}_{u_i} + F_{u_i} \frac{\partial \vec{e}_{u_i}}{\partial u_j} \right)$$

Ähnliches gilt für die Differenziation nach anderen Parametern.

Beispiel. Man bestimme aus dem Ortsvektor $\vec{r}(t)$ durch Ableitung nach der Zeit den Geschwindigkeitsvektor $\vec{v}(t)$.

Im Falle kartesischer Koordinaten sind die Basisvektoren konstante Vektoren und deren Ableitung verschwindet. Man braucht also nur die Komponenten nach t ableiten.

Betrachten wir nun Zylinderkoordinaten. Hier gilt

$$\vec{v}(t) = \dot{\vec{r}}(t) = \frac{d}{dt}(\rho\vec{e}_{\rho} + x_3\vec{e}_{x_3}) = \dot{\rho}\vec{e}_{\rho} + \dot{\rho}\dot{\vec{e}}_{\rho} + \dot{x}_3\vec{e}_{x_3} + x_3\dot{\vec{e}}_{x_3}$$

Die Ableitung eines Einheitsvektors steht senkrecht auf diesen und ist damit eine Linearkombination der beiden anderen Vektoren. In unserem Fall gilt

$$\dot{\vec{e}}_{
ho}=\dot{arphi}\vec{e}_{arphi}$$
, $\dot{\vec{e}}_{x_3}=\vec{0}$ und folglich $\vec{v}(t)=\dot{
ho}\vec{e}_{
ho}+\rho\dot{arphi}\vec{e}_{arphi}+\dot{x}_3\vec{e}_{x_3}$

Beispiel. Beschreiben wir die Bewegung eines Punktes durch einen zeitabhängigen Ortsvektor $\vec{r}(t)$ in Kugelkoordinaten, so gilt

$$\vec{r}(t) = r(t)\vec{e}_r \implies \vec{v}(t) = \dot{\vec{r}}(t) = r(t)\frac{d\vec{e}_r}{dt} + \frac{dr(t)}{dt}\vec{e}_r$$
.

Da $\frac{d\vec{e_r}}{dt} \perp \vec{e_r}$ gilt, muß $\frac{d\vec{e_r}}{dt}$ durch $\vec{e_{\vartheta}}$ und $\vec{e_{\varphi}}$ darstellbar sein.

Tatsächlich gilt $\frac{d\vec{e}_r}{dt} = \dot{\vartheta}\vec{e}_{\vartheta} + \sin\vartheta\dot{\varphi}\vec{e}_{\varphi}$ und damit ist

$$\vec{v}(t) = \frac{dr(t)}{dt}\vec{e}_r + r(t)\dot{\vartheta}\vec{e}_{\vartheta} + r(t)\sin\vartheta\dot{\varphi}\vec{e}_{\varphi}$$
 bzw.

$$\vec{v}(t) = \dot{r}\vec{e}_r + r\dot{\vartheta}\vec{e}_\vartheta + r\sin\vartheta\dot{\varphi}\vec{e}_\varphi \ .$$

Bemerkung. Die Komponenten eines Vektors sind immer bezogen auf ein zuvor definiertes Basissystem.

Der Vektor \vec{a} habe in der kartesischen Basis $\vec{e}_1, \vec{e}_2, \vec{e}_3$ die Darstellung

$$\vec{a} = 5x_1\vec{e}_1 + 5x_2\vec{e}_2 + 5x_3\vec{e}_3$$

Dann sind $5x_1, 5x_2, 5x_3$ die Komponenten von \vec{a} bzgl. der kartesischen Basis.

Diese Komponenten (bzgl. der kartesischen Basis!) können auch durch Kugelkoordinaten ausgedrückt werden.

$$5x_1 = 5r\sin\theta\cos\varphi$$
, $5x_2 = 5r\sin\theta\sin\varphi$, $5x_3 = 5r\cos\theta$

Wählen wir nun die Basis der Kugelkoordinaten $\vec{e}_r, \vec{e}_{\vartheta}, \vec{e}_{\varphi}$, dann gilt $\vec{a}=5r\vec{e}_r$.

Die Komponenten von \vec{a} bzgl. der Basis der Kugelkoordinaten sind also 5r, 0, 0.

Diese Komponenten können wiederum durch kartesische Koordinaten ausgedrückt werden, nämlich durch $5\sqrt{x_1^2+x_2^2+x_3^2},0,0$.

Als nächstes untersuchen wir die Form von $\nabla\Phi$, $\nabla\cdot\vec{A}$, $\nabla\times\vec{A}$, also Gradient, Divergenz und Rotation für orthonormale Basissysteme.

• Gradient. $\nabla \Phi(u_1, u_2, u_3)$

$$\nabla \Phi = \sum_{i=1}^{3} (\nabla \Phi)_{u_i} \vec{e}_{u_i}$$
, wobei $(\nabla \Phi)_{u_i}$ zu bestimmen sind.

$$\frac{\partial \Phi}{\partial u_i} = \sum_{j=1}^3 \frac{\partial \Phi}{\partial x_j} \frac{\partial x_j}{\partial u_i} = \nabla \Phi(x_1(u_1, u_2, u_3), x_2(u_1, u_2, u_3), x_3(u_1, u_2, u_3)) \cdot \frac{\partial \vec{r}}{\partial u_i}$$

Also
$$\frac{1}{h_{u_i}} \frac{\partial \Phi}{\partial u_i} = \nabla \Phi(u_1, u_2, u_3) \cdot \left(\frac{1}{h_{u_i}} \frac{\partial \vec{r}}{\partial u_i} \right) = \nabla \Phi(u_1, u_2, u_3) \cdot \vec{e}_{u_i} = (\nabla \Phi)_{u_i}$$
.

Der Nabla-Operator hat also im neuen Basissystem die Form

$$\nabla = \sum_{i=1}^{3} \frac{1}{h_{u_i}} \frac{\partial}{\partial u_i} \vec{e}_{u_i} .$$

Im besonderen gilt damit etwa $\nabla u_i = \frac{1}{h_{u_i}} \vec{e}_{u_i}$.

Bemerkung. Bilden $\vec{e}_{u_1}, \vec{e}_{u_2}, \vec{e}_{u_3}$ ein Rechtssystem, dann ist

$$\nabla u_2 \times \nabla u_3 = \frac{1}{h_{u_2}} \vec{e}_{u_2} \times \frac{1}{h_{u_3}} \vec{e}_{u_3} = \frac{1}{h_{u_2} h_{u_3}} \vec{e}_{u_2} \times \vec{e}_{u_3} = \frac{1}{h_{u_2} h_{u_3}} \vec{e}_{u_1}$$
.

Folglich ist $\vec{e}_{u_1} = h_{u_2} h_{u_3} \nabla u_2 \times \nabla u_3$. Analog gilt

$$\vec{e}_{u_2} = h_{u_3} h_{u_1} \nabla u_3 \times \nabla u_1$$
 und $\vec{e}_{u_3} = h_{u_1} h_{u_2} \nabla u_1 \times \nabla u_2$.

Damit zeigen wir jetzt, dass mit einer Skalarfunktion $\,\psi\,$ gilt

(a)
$$\nabla \cdot (\psi \vec{e}_{u_1}) = \frac{1}{h_{u_1} h_{u_2} h_{u_3}} \frac{\partial}{\partial u_1} (\psi h_{u_2} h_{u_3})$$

(b)
$$\nabla \times (\psi \vec{e}_{u_1}) = \frac{1}{h_{u_3} h_{u_1}} \frac{\partial}{\partial u_3} (\psi h_{u_1}) \vec{e}_{u_2} - \frac{1}{h_{u_1} h_{u_2}} \frac{\partial}{\partial u_2} (\psi h_{u_1}) \vec{e}_{u_3}$$

(c) Analoges gilt bzgl. der Vektoren $\psi \vec{e}_{u_2}$ und $\psi \vec{e}_{u_3}$.

Beweis.

zu a)
$$\nabla \cdot (\psi \vec{e}_{u_1}) = \nabla \cdot (\psi h_{u_2} h_{u_3} \nabla u_2 \times \nabla u_3) =$$

$$= \nabla (\psi h_{u_2} h_{u_3}) \cdot (\nabla u_2 \times \nabla u_3) + \psi h_{u_2} h_{u_3} \nabla \cdot (\nabla u_2 \times \nabla u_3) =$$

$$= \nabla (\psi h_{u_2} h_{u_3}) \cdot (\frac{1}{h_{u_2}} \vec{e}_{u_2} \times \frac{1}{h_{u_3}} \vec{e}_{u_3}) + 0 = \nabla (\psi h_{u_2} h_{u_3}) \cdot \frac{1}{h_{u_2} h_{u_3}} \vec{e}_{u_1} =$$

$$= (\frac{1}{h_{u_1}} \frac{\partial}{\partial u_1} (\psi h_{u_2} h_{u_3}) \vec{e}_{u_1} + \frac{1}{h_{u_2}} \frac{\partial}{\partial u_2} (\psi h_{u_2} h_{u_3}) \vec{e}_{u_2} + \frac{1}{h_{u_3}} \frac{\partial}{\partial u_3} (\psi h_{u_2} h_{u_3}) \vec{e}_{u_3}) \cdot \frac{1}{h_{u_2} h_{u_3}} \vec{e}_{u_1} =$$

$$= \frac{1}{h_{u_1} h_{u_2} h_{u_3}} \frac{\partial}{\partial u_1} (\psi h_{u_2} h_{u_3})$$
zu b) $\nabla \times (\psi \vec{e}_{u_1}) = \nabla \times (\psi h_{u_1} \nabla u_1) = \nabla (\psi h_{u_1}) \times \nabla u_1 + \psi h_{u_1} \nabla \times \nabla u_1 =$

$$= \nabla (\psi h_{u_1}) \times \frac{1}{h_{u_1}} \vec{e}_{u_1} + \vec{0} =$$

$$= (\frac{1}{h_{u_1}} \frac{\partial}{\partial u_1} (\psi h_{u_1}) \vec{e}_{u_1} + \frac{1}{h_{u_2}} \frac{\partial}{\partial u_2} (\psi h_{u_1}) \vec{e}_{u_2} + \frac{1}{h_{u_3}} \frac{\partial}{\partial u_3} (\psi h_{u_1}) \vec{e}_{u_3}) \times \frac{1}{h_{u_1}} \vec{e}_{u_1} =$$

$$= \frac{1}{h_{u_2} h_{u_3}} \frac{\partial}{\partial u_3} (\psi h_{u_1}) \vec{e}_{u_2} - \frac{1}{h_{u_2} h_{u_3}} \frac{\partial}{\partial u_2} (\psi h_{u_1}) \vec{e}_{u_3}$$

• Divergenz. $\nabla \cdot \vec{A}(u_1, u_2, u_3)$

$$\vec{A} = A_{u_1}\vec{e}_{u_1} + A_{u_2}\vec{e}_{u_2} + A_{u_3}\vec{e}_{u_3} . \text{ Damit ist } \nabla \cdot \vec{A} =$$

$$= \nabla \cdot (A_{u_1}\vec{e}_{u_1} + A_{u_2}\vec{e}_{u_2} + A_{u_3}\vec{e}_{u_3}) = \nabla \cdot (A_{u_1}\vec{e}_{u_1}) + \nabla \cdot (A_{u_2}\vec{e}_{u_2}) + \nabla \cdot (A_{u_3}\vec{e}_{u_3})$$

Mit dem vorhergehenden Ergebnis folgt sofort

$$\nabla \cdot \vec{A}(u_1, u_2, u_3) =$$

$$= \frac{1}{h_{u_1} h_{u_2} h_{u_3}} \left[\frac{\partial}{\partial u_1} (h_{u_2} h_{u_3} A_{u_1}) + \frac{\partial}{\partial u_2} (h_{u_1} h_{u_3} A_{u_2}) + \frac{\partial}{\partial u_3} (h_{u_1} h_{u_2} A_{u_3}) \right]$$

• Rotation.
$$\nabla \times \vec{A}(u_1, u_2, u_3)$$

$$\vec{A} = A_{u_1}\vec{e}_{u_1} + A_{u_2}\vec{e}_{u_2} + A_{u_3}\vec{e}_{u_3}$$
. Damit ist $\nabla \times \vec{A} =$

$$= \nabla \times (A_{u_1}\vec{e}_{u_1} + A_{u_2}\vec{e}_{u_2} + A_{u_3}\vec{e}_{u_3}) =$$

$$= \nabla \times (A_{u_1}\vec{e}_{u_1}) + \nabla \times (A_{u_2}\vec{e}_{u_2}) + \nabla \times (A_{u_3}\vec{e}_{u_3})$$

Mit dem vorhergehenden Ergebnis ist dann

$$\nabla \times \vec{A}(u_{1}, u_{2}, u_{3}) =$$

$$= \frac{1}{h_{u_{3}}h_{u_{1}}} \frac{\partial}{\partial u_{3}} (A_{u_{1}}h_{u_{1}}) \vec{e}_{u_{2}} - \frac{1}{h_{u_{1}}h_{u_{2}}} \frac{\partial}{\partial u_{2}} (A_{u_{1}}h_{u_{1}}) \vec{e}_{u_{3}} +$$

$$+ \frac{1}{h_{u_{1}}h_{u_{2}}} \frac{\partial}{\partial u_{1}} (A_{u_{2}}h_{u_{2}}) \vec{e}_{u_{3}} - \frac{1}{h_{u_{2}}h_{u_{3}}} \frac{\partial}{\partial u_{3}} (A_{u_{2}}h_{u_{2}}) \vec{e}_{u_{1}} +$$

$$+ \frac{1}{h_{u_{2}}h_{u_{3}}} \frac{\partial}{\partial u_{2}} (A_{u_{3}}h_{u_{3}}) \vec{e}_{u_{1}} - \frac{1}{h_{u_{3}}h_{u_{1}}} \frac{\partial}{\partial u_{1}} (A_{u_{3}}h_{u_{3}}) \vec{e}_{u_{2}} =$$

$$= \frac{1}{h_{u_{2}}h_{u_{3}}} \left[\frac{\partial}{\partial u_{2}} (A_{u_{3}}h_{u_{3}}) - \frac{\partial}{\partial u_{3}} (A_{u_{2}}h_{u_{2}}) \right] \vec{e}_{u_{1}} +$$

$$+ \frac{1}{h_{u_{3}}h_{u_{1}}} \left[\frac{\partial}{\partial u_{3}} (A_{u_{1}}h_{u_{1}}) - \frac{\partial}{\partial u_{1}} (A_{u_{3}}h_{u_{3}}) \right] \vec{e}_{u_{2}} +$$

$$+ \frac{1}{h_{u_{1}}h_{u_{2}}} \left[\frac{\partial}{\partial u_{1}} (A_{u_{2}}h_{u_{2}}) - \frac{\partial}{\partial u_{2}} (A_{u_{1}}h_{u_{1}}) \right] \vec{e}_{u_{3}}$$

Dies kann wiederum in folgender Form geschrieben werden.

$$\nabla \times \vec{A}(u_1, u_2, u_3) = \frac{1}{h_{u_1} h_{u_2} h_{u_3}} \begin{vmatrix} h_{u_1} \vec{e}_{u_1} & h_{u_2} \vec{e}_{u_2} & h_{u_3} \vec{e}_{u_3} \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_{u_1} A_{u_1} & h_{u_2} A_{u_2} & h_{u_3} A_{u_3} \end{vmatrix}$$

Bemerkung. Daraus folgt etwa, dass auch in krummlinigen (orthonormalen) Koordinatensystemen der Rotor eines Gradienten verschwindet.

Sei $\vec{A} = \nabla \Phi(u_1, u_2, u_3)$ wobei Φ zweimal stetig differenzierbar ist.

rot grad
$$\Phi(u_1, u_2, u_3) = \nabla \times (\nabla \Phi) = \begin{vmatrix} h_{u_1} \vec{e}_{u_1} & h_{u_2} \vec{e}_{u_2} & h_{u_3} \vec{e}_{u_3} \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ \frac{\partial\Phi}{\partial u_1} & \frac{\partial\Phi}{\partial u_2} & \frac{\partial\Phi}{\partial u_2} & \frac{\partial\Phi}{\partial u_3} \end{vmatrix} = 0$$

Bemerkung. Damit kann auch der Laplace-Operator in orthonormalen Koordinatensystemen angegeben werden.

$$\triangle \Phi(u_1, u_2, u_3) = \text{div grad } \Phi(u_1, u_2, u_3) = \nabla \cdot \nabla \Phi(u_1, u_2, u_3) =$$

$$= \frac{1}{h_{u_1} h_{u_2} h_{u_3}} \left\{ \frac{\partial}{\partial u_1} \left(\frac{h_{u_2} h_{u_3}}{h_{u_1}} \frac{\partial \Phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_{u_3} h_{u_1}}{h_{u_2}} \frac{\partial \Phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_{u_1} h_{u_2}}{h_{u_3}} \frac{\partial \Phi}{\partial u_3} \right) \right\}$$

Beispiel. Zylinderkoordinaten ρ, φ, x_3

$$\nabla \Phi(\rho, \varphi, x_3) = \left[\vec{e}_{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho} \vec{e}_{\varphi} \frac{\partial}{\partial \varphi} + \vec{e}_{x_3} \frac{\partial}{\partial x_3} \right] \Phi(\rho, \varphi, x_3)$$

$$\Delta \Phi(\rho, \varphi, x_3) = \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial x_3^2} \right] \Phi(\rho, \varphi, x_3) =$$

$$= \left[\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial x_3^2} \right] \Phi(\rho, \varphi, x_3)$$

Der Laplace-Operator im \mathbb{R}^2 ergibt sich daraus, indem die Ableitung nach x_3 weggelassen wird.

Beispiel. Kugelkoordinaten r, ϑ, φ

$$\nabla \Phi(r, \vartheta, \varphi) = \left[\vec{e}_r \frac{\partial}{\partial r} + \frac{1}{r} \vec{e}_\vartheta \frac{\partial}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \vec{e}_\varphi \frac{\partial}{\partial \varphi} \right] \Phi(r, \vartheta, \varphi)$$

$$\Delta \Phi(r, \vartheta, \varphi) = \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \right] \Phi(r, \vartheta, \varphi) =$$

$$= \left[\frac{\partial}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \vartheta^2} + \frac{\cos \vartheta}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \right] \Phi(r, \vartheta, \varphi)$$

Zum Abschluß betrachten wir noch Bogen-, Flächen- und Volumenselement in orthonormalen Koordinaten.

Aus $\frac{\partial \vec{r}}{\partial u_i} = h_{u_i} \vec{e}_{u_i}$ ergibt sich für die Differenziale in Richtung der u_i -Koordinatenlinie

$$d\vec{r}_{u_i} = \frac{\partial \vec{r}}{\partial u_i} du_i = h_{u_i} du_i \vec{e}_{u_i}$$
.

Der Größe $h_{u_i}du_i$ entspricht daher die lineare Näherung eines kleinen Bogenabschnittes entlang einer u_i -Linie.

Das totale Differenzial ds der Bogenlänge ist weiters (für orthogonale Koordinaten) gegeben durch

$$ds = \sqrt{(h_{u_1}du_1)^2 + (h_{u_2}du_2)^2 + (h_{u_3}du_3)^2}$$

Damit kann auch entlang Kurven in krummlinigen Koordinaten integriert werden.

Beispiel. Bestimme die Länge eines spiralförmigen Drahtes (Zylinderradius a, Ganghöhe des Drahtes $2\pi b$).

Die Kurve ist durch $\rho=a$, $0\leq \varphi \leq 4\pi$, $z=b\varphi$ gegeben.

$$(ds)^{2} = (d\rho)^{2} + \rho^{2}(d\varphi)^{2} + (dz)^{2} = 0 + a^{2}(d\varphi)^{2} + b^{2}(d\varphi)^{2}$$

Also ist
$$ds = \sqrt{a^2 + b^2} d\varphi$$
 und $S = \int_0^{4\pi} \sqrt{a^2 + b^2} d\varphi = 4\sqrt{a^2 + b^2} \pi$

Für das **Flächenelement** einer Koordinatenfläche $\vec{r}(u_1, u_2, u_3^0)$ gilt

$$dA(u_1, u_2) = |(h_{u_1}\vec{e}_{u_1}) \times (h_{u_2}\vec{e}_{u_2})| du_1 du_2 = |h_{u_1}h_{u_2}| du_1 du_2.$$

Analoges gilt für die anderen Koordinatenflächen. Für einen Zylindermantel (Koordinatenfläche bei Zylinderkoordinaten) gilt also etwa

$$dA(\varphi, x_3) = \rho_0 d\varphi dx_3$$

Das Volumselement wird in linearer Näherung als kleiner Quader

$$dV = |(h_{u_1}du_1\vec{e}_{u_1}) \cdot [(h_{u_2}du_2\vec{e}_{u_2}) \times (h_{u_3}du_3\vec{e}_{u_3})]| =$$

$$= |h_{u_1}h_{u_2}h_{u_3}[e_{u_1} \cdot (e_{u_2} \times e_{u_3})]|du_1du_2du_3 = |h_{u_1}h_{u_2}h_{u_3}|du_1du_2du_3$$

Bei dem auftretenden Faktor handelt es sich um eine Determinante, die Jacobi-Determinante, die schon erwähnt wurde. Im speziellen erhalten wir für

- Zylinderkoordinaten: $dV = \rho d\rho d\varphi dx_3$
- Kugelkoordinaten: $dV = r^2 \sin \vartheta dr d\vartheta d\varphi$