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Abstract

This paper presents solutions to some recent questions raised by Katetov about the
collection of preopen sets in a topological space.

1 Introduction

In a recent paper Mashour et al. [5] presented and studied a series of questions raised by

Katetov about the collection of preopen sets in a topological space. These questions are as

follows:

K1: Find necessary and sufficient conditions under which every preopen set is open.

K2: Find conditions under which every dense-in-itself set is preopen.

K3: Find conditions under which the intersection of any two preopen sets preopen.

K4: If (X, τ) is a topological space, let τ ∗ denote the topology on X obtained by taking

the collection of all preopen sets of (X, τ) as a subbase. Find conditions under which τ ∗ is

discrete.

∗AMS Subject Classification : 54 A 05, 54 A 10;
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Reilly and Vamanamurthy [7] continued the study of these questions and obtained a

complete solution to K1 as well as partial solutions to the other questions. The purpose of

the present paper is to provide complete solutions to K3 and K4, thus generalizing some

results obtained in [7]. Furthermore, a solution to K2 is given.

2 Preliminaries

For any subset A of a topological space (X, τ) we denote the closure of A resp. the interior

of A with respect to τ by A resp. intA . The relative topology on a subset Y of (X, τ) is

denoted by τ |Y . If A is a subset of Y ⊆ X , the closure of A resp. the interior of A with

respect to τ |Y is denoted by A
Y

resp. intY A .

Definition 1 A subset S of (X, τ) is called

(i) an α–set, if S ⊆ int intS ,

(ii) a semi–open set, if S ⊆ intS ,

(iii) a preopen set, if S ⊆ intS .

These notions were introduced by Njastad [6], Levine [4] and Mashhour et al. [5], respec-

tively. We denote the family of all α–sets in (X, τ) by τα . Njastad [6] has shown that τα

is a topology on X satisfying τ ⊆ τα . Reilly and Vamanamurthy [8] proved that a subset

of a space (X, τ) is an α–set if and only if it is semi–open and preopen. The families of all

semi–open sets and of all preopen sets in (X, τ) are denoted by SO(X, τ) and PO(X, τ) ,

respectively. In general one cannot expect the families SO(X, τ) or PO(X, τ) to be topolo-

gies. Njastad [6] has proved that SO(X, τ) is a topology if and only if (X, τ) is extremally

disconnected. Let us observe that both SO(X, τ) and PO(X, τ) are closed under forming

arbitrary unions. Hence PO(X, τ) is a topology if and only if the intersection of any two

preopen sets is preopen.

The following simple characterization of preopen sets turns out to be very useful.
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Proposition 2.1 For any subset of a space (X, τ) the following are equivalent:

(i) S ∈ PO(X, τ) .

(ii) There is a regular open set G ⊆ X such that S ⊆ G and S = G .

(iii) S is the intersection of a regular open set and a dense set.

(iv) S is the intersection of an open set and a dense set.

Proof. (i) ⇒ (ii) : Let S ∈ PO(X, τ) , i.e. S ⊆ intS . Let G = intS . Then G is regular

open with S ⊆ G and S = G .

(ii) ⇒ (iii) : Suppose (ii) holds. Let D = S ∪ (X \G) . Then D is dense and S = G∩D .

(iii) ⇒ (iv) : This is trivial.

(iv) ⇒ (i) : Suppose S = G ∩ D with G open and D dense. Then S = G , hence

S ⊆ G ⊆ G = S . 2

Obviously open sets and dense sets in (X, τ) are preopen. Proposition 2.1 immediately

shows that the intersection of an open set and a preopen set is preopen again. Moreover,

since PO(X, τ) = PO(X, τα) (see Proposition 2.2 below), the intersection of an α–set and

any preopen set is preopen.

The following result is due to Jankovic [3].

Proposition 2.2 Let (X, τ) be a topological space. Then

(i) (τα)α = τα ,

(ii) SO(X, τ) = SO(X, τα) ,

(iii) PO(X, τ) = PO(X, τα) .

Our next result concerning the existence of non–preopen sets can be easily shown. The

proof is hence ommitted.

Proposition 2.3 Let (X, τ) be a topological space, S ∈ PO(X, τ) and x ∈ S \ intS . Then

S ∪ {x} /∈ PO(X, τ) . In particular, if G is regular open in (X, τ) and x ∈ G \ G then

G ∪ {x} /∈ PO(X, τ) .
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3 Resolvable and irresolvable spaces

A space (X, τ) is called resolvable if there is a subset D of X such that D and X \ D are

both dense in (X, τ) . A subset A of X is resolvable if the subspace (A, τ |A) is resolvable. A

space (X, τ) is called irresolvable if it is not resolvable. Resolvable spaces have been studied

in a paper of Hewitt [2] in 1943. Clearly any resolvable space is dense-in-itself and each open

subspace of a resolvable space is also resolvable. A space (X, τ) is said to be hereditarily

irresolvable if does not contain a nonempty resolvable subset. Dense-in-itself hereditarily

irresolvable spaces have been called SI–spaces by Hewitt [2] .

Recall that (X, τ) is said to be submaximal if each dense subset is open. Reilly and

Vamanamurthy ([7], Theorem 4) have shown that a space (X, τ) is submaximal if and only if

PO(X, τ) = τ , thus answering question K1 . An MI–space is a dense-in-itself submaximal

space. We have the following implications :

submaximal ⇒ hereditarily irresolvable ⇒ irresolvable

MI ⇒ submaximal

SI ⇒ hereditarily irresolvable.

Theorem 3.1 [2] Every topological space (X, τ) can be represented as a disjoint union

X = F ∪ G where F is closed and resolvable and G is open and hereditarily irresolvable.

(X, τ) is resolvable if and only if G = ∅ , and (X, τ) is hereditarily irresolvable if and only if

F = ∅ .

Note that it is not necessary to restrict ourselves to the class of dense-in-itself spaces

as Hewitt [2] did. In addition, one easily checks that the representation of (X, τ) given by

Theorem 3.1 us unique. It will henceforth be called the Hewitt representation of (X, τ) .

In 1969, El’kin [1] studied the class of dense-in-itself irresolvable spaces using ultrafilters.

It is easily seen that Lemma 1 in [1] is also valid if the hypothesis ”dense-in-itself” is dropped.

Thus we have
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Theorem 3.2 For a space (X, τ) the following are equivalent.

(i) (X, τ) contains an open, dense and hereditarily irresolvable subspace.

(ii) Every open ultrafilter on X is a base for an ultrafilter on X .

(iii) Every nonempty open set is irresolvable.

(iv) For each dense subset D of (X, τ) , int D is dense.

(v) For every A ⊆ X , if int A = ∅ then A is nowhere dense.

As a consequence of Theorem 3.2 we obtain a characterization of irresolvable spaces which

seems to be new.

Theorem 3.3 A space (X, τ) is irresolvable if and only if {int D : D = X} is a filterbase

on X .

Proof. Suppose that (X, τ) is resolvable. Then there exist disjoint dense sets D,E ⊆ X

such that X = D ∪ E . Hence int D = ∅ , a contradiction.

To prove the converse, let (X, τ) be irresolvable and let X = F ∪ G be the Hewitt

representation of (X, τ) . Then G is nonempty. If D1 and D2 are both dense in (X, τ) , then

D1∩G and D2∩G are dense in G , hence nonempty. By Theorem 3.2 (iv) , G∩ int(D1∩D2)

is dense in G . Since F is resolvable, we have intF = E1 ∪ E2 with E1 ∩ E2 = ∅ and

intF ⊆ E1 ∩E2 . Let D3 = G∩ int(D1 ∩D2)∪E1 . Then D3 is clearly dense in (X, τ) . Let

us show that intD3 ⊆ G ∩ int(D1 ∩D2) . Let x ∈ intD3 . If x ∈ G ∩ int(D1 ∩D2) we are

done. If x ∈ E1 , then there is an open neighbourhood U of x such that U ⊆ F and U ⊆ D3

. Hence U = U ∩ F ⊆ E1, thus U ∩ (X \ E1) = ∅ . Since E2 ⊆ X \ E1 we have U ∩ E2 = ∅
and thus U ∩ intF = ∅ , a contradiction. It follows that intD3 ⊆ intD1∩ intD2 proving that

{int D : D = X} is a filterbase on X . 2

4 Results

In this section we present solutions to K2, K3 and K4 and study some consequences of the

results obtained.
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Theorem 4.1 For a space (X, τ) the following are equivalent:

(i) (X, τ) contains an open, dense and hereditarily irresolvable subspace,

(ii) PO(X, τ) ⊆ SO(X, τ) ,

(iii) τα = PO(X, τ) ,

(iv) (X, τα) is submaximal.

Proof. (i) ⇒ (ii) : Let S ∈ PO(X, τ) . By Proposition 2.1, S = G ∩ D where G is

open and D is dense. By Theorem 3.2 (iv), intD is dense. Hence intD = intD ∩G = G ,

consequently S ⊆ G ⊆ G = intS . Thus S ∈ SO(X, τ) .

(ii) ⇒ (iii) : Obvious, since τα = SO(X, τ)∩PO(X, τ) by a result of Reilly and Vamana-

murthy [8] .

(iii) ⇔ (iv) : Follows from Proposition 2.2 and Theorem 4 in [7] .

(iii) ⇒ (i) : Let D ⊆ X be dense. Then D ∈ PO(X, τ) = τα ⊆ SO(X, τ) . Consequently,

D ⊆ intD , hence intD is dense. By Theorem 3.2 , (X, τ) contains an open, dense and

hereditarily irresolvable subspace. 2

Corollary 4.2 If (X, τ) contains an open, dense and hereditarily irresolvable subspace, then

PO(X, τ) is a topology. In fact, PO(X, τ) = τα .

The following lemma will be useful in the sequel. Its proof is straightforward.

Lemma 4.3 Let H be an open subset of a space (X, τ) and let S ⊆ H . Then S ∈ PO(X, τ)

if and only if S ∈ PO(H, τ |H) .

As already pointed out, in proving that PO(X, τ) is a topology it suffices to show that the

intersection of any two preopen sets is preopen. Our next result generalizes this observation.

Its proof follows from Proposition 2.1 .

Proposition 4.4 For a space (X, τ) , the collection PO(X, τ) is a topology if and only if

the intersection of any two dense sets is preopen.
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Theorem 4.5 For a space (X, τ) , let X = F ∪G denote the Hewitt representation of

(X, τ) . Then the following are equivalent:

(i) PO(X, τ) is a topology on X .

(ii) G is open and {x} ∈ PO(X, τ) for each x ∈ intF .

Proof. (i) ⇒ (ii) : Since F is resolvable and closed, F = E1 ∪E2 with E1 ∩E2 = ∅ and

F = E1 = E2 . Let y ∈ F , say y ∈ E1 . Since G ∪ E1 and G ∪ E2 ∪ {y} are both dense,

(G∪E1)∩ (G∪E2∪{y}) = G∪{y} ∈ PO(X, τ) . By Proposition 2.3 , G \ intG = ∅ , hence

G is open.

Let x ∈ intF . Since G ∪ {x} and intF are both preopen, (G ∪ {x}) ∩ intF = {x} ∈
PO(X, τ) .

(ii) ⇒ (i) : If S1, S2 ∈ PO(X, τ) then S1 ∩G and S2 ∩G are preopen, hence preopen in

G by Lemma 4.3 . Since G is an open, dense and hereditarily irresolvable subspace of G ,

(S1 ∩ G) ∩ (S2 ∩ G) is preopen in G by Theorem 4.1 , hence preopen by Lemma 4.3 . By

assumption, S1∩S2∩ intF ∈ PO(X, τ) and thus S1∩S2 = (S1∩S2∩G)∪ (S1∩S2∩ intF ) ∈
PO(X, τ) . Hence PO(X, τ) is a topology on X . 2

Let us consider some applications of Theorem 4.5 .

Corollary 4.6 For a resolvable space (X, τ) the following are equivalent:

(i) PO(X, τ) is a topology.

(ii) Every subset of X is preopen.

(iii) Every open set is closed.

Proof. (i) ⇒ (ii) : If X = F ∪G denotes the Hewitt representation of (X, τ) , then by

hypothesis X = F = intF . Hence {x} ∈ PO(X, τ) for every x ∈ X by Theorem 4.5 .

(ii) ⇔ (iii) : This is Theorem 5 in [7] .

(ii) ⇒ (i) : Trivial. 2

Let X = F ∪G denote the Hewitt representation of (X, τ) . Suppose there is some point

x ∈ intF such that {x} is closed. By Theorem 4.5 , PO(X, τ) fails to be a topology since F

is dense-in-itself. In particular, we have
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Corollary 4.7 Let (X, τ) be a T1 space. If PO(X, τ) is a topology, then PO(X, τ) = τα .

Proof. Since (X, τ) is a T1 space, intF has to be void. Hence G = X and PO(X, τ) = τα

by Theorem 4.1 . 2

Note however, that if PO(X, τ) is a topology, then PO(X, τ) 6= τα in general. For an

indiscrete space (X, τ) we have τα = τ and PO(X, τ) = 2X . Moreover, let X be an infinite

set and pick a point p ∈ X . Then τ = {∅, X, {p}, X \ {p}} is a topology on X . One easily

checks that (X, τ) is irresolvable and PO(X, τ) = 2X . However, for each nonempty proper

subset S of X \ {p} we have intS = ∅ , hence S /∈ τα .

Corollary 4.8 Let (X, τ) be connected. If PO(X, τ) is a topology, then (X, τ) is indiscrete

or PO(X, τ) = τα .

Proof. Let X = F ∪ G be the Hewitt representation of (X, τ) . Since X = G ∪ intF

either G = ∅ or intF = ∅ . If G = ∅ then (X, τ) is resolvable. By Corollary 4.6 , every

open set is closed, hence (X, τ) has to be indiscrete. If intF = ∅ then PO(X, τ) = τα by

Theorem 4.1 . 2

Recall that the topology on X having PO(X, τ) as a subbase is denoted by τ ∗ .

Lemma 4.9 Let X = F∪G be the Hewitt representation of (X, τ) and let x be a nonisolated

point of G . Then {x} /∈ τ ∗ .

Proof. Suppose that {x} ∈ τ ∗ . By Proposition 2.1 we have {x} = U∩D1∩...∩Dk , where

U is open and each set Di is dense in (X, τ) . By Theorem 3.2 , int(D1∩...∩Dk)∩G is dense in

G . Since x ∈ V = U∩G is an open neighbourhood of x we have V ∩int(D1∩...∩Dk)∩G 6= ∅
and hence {x} = V ∩ int(D1 ∩ ... ∩Dk) , a contradiction. 2

Theorem 4.10 Let X = F ∪ G denote the Hewitt representation of (X, τ) . Then the

following are equivalent:

(i) τ ∗ is discrete.

(ii) F is open and {x} is open for each x ∈ G .
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Proof. (i) ⇒ (ii) : If G = ∅ we are done, so let us assume that G 6= ∅ . By Lemma 4.9

, {x} is open for each x ∈ G , hence G ⊆ D for each dense set D ⊆ X . Let x ∈ F . Then

{x} = U ∩D1 ∩ ... ∩Dk with U open and each Di dense. Since G ⊆ D1 ∩ ... ∩Dk , we have

G ∩ U = ∅ , hence U ⊆ F . Thus x ∈ intF , showing that F is open.

(ii)⇒ (i) : If x ∈ G then clearly {x} ∈ τ ∗ . Let x ∈ F . Since F is resolvable, F = E1∪E2

with E1 ∩ E2 = ∅ and F = E1 = E2 . We may assume that x ∈ E1 . Then G ∪ E1 and

G ∪ E2 ∪ {x} are both dense in (X, τ) , hence (G ∪ E1) ∩ (G ∪ E2 ∪ {x}) = G ∪ {x} ∈ τ ∗ .

Consequently (G ∪ {x}) ∩ F = {x} ∈ τ ∗ . 2

Corollary 4.11 If a space (X, τ) is resolvable then τ ∗ is discrete.

Corollary 4.12 Let (X, τ) be connected. Then τ ∗ is discrete if and only if (X, τ) is resolv-

able.

Theorem 4.13 For a space (X, τ) the following are equivalent:

(i) τ ∗ is discrete.

(ii) For each x ∈ X , either {x} is open or there is a preopen set S such that x ∈ S and

intS = ∅ .

Proof. (i) ⇒ (ii) : Let X = F ∪G be the Hewitt representation of (X, τ) , and let x ∈ X

. If {x} is not open then x ∈ F by Theorem 4.10 . Since F is resolvable, F = E1 ∪ E2 with

E1 ∩E2 = ∅ and F = E1 = E2 . We may assume that x ∈ E1 . Since F is open and G ∪E1

is dense, S = E1 = (G ∪ E1) ∩ F is preopen. Clearly x ∈ S and intS = ∅ .

(ii) ⇒ (i) : If {x} is open then {x} ∈ τ ∗ . Otherwise pick a preopen set S such that

x ∈ S and intS = ∅ . Since X \ S is dense, S ∩ ((X \ S) ∪ {x}) = {x} ∈ τ ∗ . 2

Finally let us consider question K2 . Recall that a subset A of a space (X, τ) is called

perfect if it is closed and dense-in-itself.

Theorem 4.14 For a space (X, τ) the following are equivalent:

(i) Every dense-in-itself subset is preopen.

(ii) Every perfect subset is open.
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Proof. (i) ⇒ (ii) : Let A ⊆ X be perfect. By hypothesis, A is preopen, hence A ⊆
intA = intA . Thus A is open.

(ii) ⇒ (i) : Let A ⊆ X be dense-in-itself. Then A is perfect. By hypothesis, A is open,

hence A ⊆ A = intA . Thus A is preopen. 2
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