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Abstract

In 1997, Arenas, Dontchev and Ganster [1] introduced the class of T1/4 spaces in
their study of generalized continuity and λ-closed sets. The aim of this paper is to
continue the investigation of T1/4 spaces, in particular to consider products of T1/4

spaces. As a result, we obtain an easy way to provide examples of T1/4 spaces that fail
to be T1/2.

1 Introduction and Preliminaries

In 1997, Arenas, Dontchev and Ganster [1] introduced in their study of generalized continuity

the notion of a λ-closed set in a topological space. A subset A of a space (X, τ) is called

λ-closed if A = L ∩ F , where L is a Λ-set, i.e. L is an intersection of open sets, and F is

closed. Using λ-closed sets, the authors in [1] characterized T0 spaces as those spaces where

each singleton is λ-closed, and T1/2 spaces as those spaces where every subset is λ-closed.

The notion of a T1/2 space has been introduced by Levine in [5]. Dunham [3] showed that a

space (X, τ) is T1/2 if and only if each singleton is open or closed. One of the most important

examples of T1/2 spaces is the digital line or Khalimsky line (Z, κ) (see e.g. [4]). The digital

line is the set of integers Z with the topology κ having S = {{2m−1, 2m, 2m+1} : m ∈ Z}
as a subbase. Clearly, (Z, κ) fails to be T1. However, each singleton of the form {2m} is
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closed and each singleton of the form {2m− 1} is open. It should be observed that (Z, κ) is

even a T3/4 space (see [2]).

In [1], the authors also introduced a new separation axiom, called T1/4. They pointed

out that the class of T1/4 spaces is strictly placed between the class of T0 spaces and the

class of T1/2 spaces, and that T1/4 spaces are precisely those spaces where each finite set is

λ-closed. The purpose of this paper is to continue the study of T1/4 spaces, in particular

to investigate their behaviour under forming products. As a result, we obtain easy ways to

construct non-T1/4 spaces and also T1/4 spaces that fail to be T1/2.

Throughout this paper we do not assume any separation axioms unless stated explicitly.

The interior and the closure of a subset A of a space (X, τ) will be denoted by intA and A,

respectively.

2 Properties of T1/4-spaces

Definition 1 [1] A space (X, τ) is called a T1/4 space if for every finite subset F ⊆ X and

every point y /∈ F there exists a subset A ⊆ X such that F ⊆ A, y /∈ A and A is open or

closed.

It is obvious that every T1/4 space is T0 and that (X, τ) is T1/2 if and only if for every

subset F ⊆ X and every point y /∈ F there exists a subset A ⊆ X such that F ⊆ A, y /∈ A

and A is open or closed. The following observation is easily verified.

Proposition 2.1 Let (X, τ) be a T1/4 space. Then every subspace of X is a T1/4 space.

Recall that a subset F of a space (X, τ) is called locally finite if every point x ∈ X has

an open neighbourhood Ux such that F ∩ Ux is at most finite.

Theorem 2.2 For a space (X, τ) the following are equivalent:

1) (X, τ) is a T1/4 space,
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2) For every locally finite subset F ⊆ X and every point y /∈ F there exists a subset

A ⊆ X such that F ⊆ A, y /∈ A and A is open or closed.

Proof. 1) ⇒ 2) : Let F ⊆ X be locally finite and let y /∈ F . If F is finite, we are

done. So let us assume that F is infinite. If y has an open neighbourhood U with empty

intersection with F then A = X \ U is the required set. Otherwise y ∈ F and, since F

is locally finite, there exists an open neighbourhood U of y such that U ∩ F is finite, say

{x1, ..., xk}, and y ∈ {xi} for some xi. Now pick any x ∈ F \{x1, ..., xk}. Then {x, x1, ..., xk}
is a finite set not containing y. Since (X, τ) is T1/4 there must be a subset Ax ⊆ X such that

{x, x1, ..., xk} ⊆ Ax , y /∈ Ax and Ax is open or closed. Since y ∈ {xi} ⊆ Ax , Ax cannot be

closed, thus Ax must be open. If A =
⋃{Ax : x ∈ F \ {x1, ..., xk}} then A is an open set

containing F such that y /∈ A, and we are done.

2) ⇒ 1) : This is clear since every finite subset is a locally finite subset. 2

Remark 2.3 It is natural to consider the following variation of T1/4 spaces. A space (X, τ)

is said to be T c
1/4 if for every at most countable subset F ⊆ X and every point y /∈ F there

exists a subset A ⊆ X such that F ⊆ A, y /∈ A and A is open or closed. Clearly, every T1/2

space is T c
1/4 and every T c

1/4 space is T1/4. None of these implications is reversible, however,

as we shall see in our next two examples.

Example 2.4 Let X be the set of nonnegative integers with the topology τ where U ∈ τ if

and only if U = ∅ or 0 ∈ U and X \ U is finite. It has been shown in [1] Example 3.2, that

(X, τ) is T1/4. Now let F = X \ {0}. Then F is countable and 0 /∈ F . Since {0} is neither

open nor closed, (X, τ) cannot be T c
1/4.

Example 2.5 Let Y be an uncountable set, p /∈ Y and let X = Y ∪ {p}. A topology τ on

X is defined by declaring a subset U ⊆ X to be open if U = ∅ or p ∈ U and X \ U is at

most countable. Since {p} is neither open nor closed, (X, τ) cannot be T1/2. Now let F ⊆ X

be countable and let y /∈ F . If y 6= p then {y} is closed and so F ⊂ X \ {y} = A which is

open. If y = p then F is closed and we are also done in showing that (X, τ) is T c
1/4.
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3 Products of T1/4-spaces

Theorem 3.1 Let (X, τ) and (Y, σ) be topological spaces such that X × Y is T1/4. Then

both spaces (X, τ) and (Y, σ) are T1/4 and at least one of the spaces must be T1.

Proof. Since (X, τ) and (Y, σ) are homeomorphic to subspaces of X × Y , it follows from

Proposition 2.1 that both spaces have to be T1/4.

Now suppose that neither (X, τ) nor (Y, σ) is T1. Then there exist x, x1 ∈ X , x 6=
x1 such that x1 ∈ {x} , and y, y1 ∈ Y , y 6= y1 such that y1 ∈ {y} . Let F =

{(x, y1), (x, y), (x1, y1)} ⊆ X × Y . Then (x1, y) /∈ F . By hypothesis, there exists a set

A ⊆ X × Y such that F ⊆ A , (x1, y) /∈ A and A is closed or open.

If A is closed, i.e. if X × Y \ A is open, there exist open sets U1 ⊆ X and V ⊆ Y such

that x1 ∈ U , y ∈ V and (U1 × V ) ∩ F = ∅ . However, since x1 ∈ {x}, we have x ∈ U1 and

so (x, y) ∈ U1 × V , a contradiction. If A is open, then there exist open sets U1 ⊆ X and

V1 ⊆ Y such that x1 ∈ U1 , y1 ∈ V1 and U1 × V1 ⊆ A . Since y1 ∈ {y} we have y ∈ V1

and thus (x1, y) ∈ A , a contradiction. As a consequence, at least one of the spaces (X, τ)

or (Y, σ) has to be T1 . 2

Theorem 3.2 Let X =
∏
i∈I

Xi be the product of topological spaces (Xi, τi) , i ∈ I . If X

is T1/4 then all spaces (Xi, τi) are T1/4 and at most one factor space is not T1.

Proof. Each (Xi, τi) is homeomorphic to a subspace of X, hence it is T1/4 by Proposi-

tion 2.1. Now suppose that (Xi, τi) and (Xj, τj) , i 6= j , are not T1 . Since Xi × Xj is

homeomorphic to a subspace of X, it has to be T1/4 by Proposition 2.1. However, this is a

contradiction to Theorem 3.1. 2

Using our previous results it is easy to provide examples of T0 spaces that are not T1/4 .

For example we have

Corollary 3.3 The digital plane Z2, i.e. the product of two copies of the digital line (Z, κ),

fails to be T1/4 .
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We now address the question of when a product of topological spaces is T1/4 . As we

shall see, the converses of Theorem 3.1 and Theorem 3.2 also hold.

Theorem 3.4 Let (X, τ) be T1/4 and let (Y, σ) be T1 . Then X × Y is T1/4 .

Proof. Let F = {(x1, y1), ..., (xn, yn)} ⊆ X × Y and let (x0, y0) /∈ F . We denote the

natural projections by p1 : X × Y → X and p2 : X × Y → Y . Let F ′ = {(xi, yi) ∈
F : yi = y0} and F ′′ = {(xi, yi) ∈ F : yi 6= y0} . Then F = F ′ ∪ F ′′ , x0 /∈ p1(F

′) and

y0 /∈ p2(F
′′) . Since p1(F

′) ⊆ X is finite and (X, τ) is T1/4 , there is a subset A ⊆ X such

that p1(F
′) ⊆ A , x0 /∈ A and A is open or closed.

If A is closed in (X, τ), then A×{y0} is closed in X×Y such that F ′ ⊆ A×{y0} and (x0, y0) /∈
A×{y0}. Also, X×p2(F

′′) is closed in X×Y , F ′′ ⊆ X×p2(F
′′) and (x0, y0) /∈ X×p2(F

′′).

Hence there exists a closed set B ⊆ X × Y , namely B = (A× {y0}) ∪ (X × p2(F
′′)) , such

that F ⊆ B and (x0, y0) /∈ B.

If A is open in (X, τ), then A×Y is open in X×Y such that F ′ ⊆ A×Y and (x0, y0) /∈ A×Y .

Also, X × (Y \ {y0}) is open in X × Y , F ′′ ⊆ X × (Y \ {y0}) and (x0, y0) /∈ X × (Y \ {y0}).
So there is an open set B ⊆ X × Y , namely B = (A × Y ) ∪ (X × (Y \ {y0})) , such that

F ⊆ B and (x0, y0) /∈ B. This proves that X × Y is T1/4 . 2

Theorem 3.5 Let X =
∏
i∈I

Xi be the product of topological spaces (Xi, τi) , i ∈ I . If

(Xi, τi) is T1/4 for some i ∈ I and all other spaces (Xj, τj) , j 6= i , are T1 , then X is T1/4 .

Proof. Clearly X is homeomorphic to Xi× (
∏
j 6=i

Xj) . By Theorem 3.4, it follows that X is

T1/4 , since
∏
j 6=i

Xj is T1 . 2

The following result is due to Dunham [3].

Theorem 3.6 ([3], Theorem 4.6) The product X×Y of the spaces (X, τ) and (Y, σ) is T1/2

if and only if one of the following conditions holds:

(a) Both spaces (X, τ) and (Y, σ) are T1 .

(b) One of the spaces is T1/2 but not T1, while the other is discrete.
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Remark 3.7 Combining Theorem 3.4 and Theorem 3.6 provides a way to give a variety of

examples of T1/4 spaces that fail to be T1/2 . In particular, if (X, τ) is T1/2 (and thus T1/4)

but not T1 and (Y, σ) is a non-discrete T1 space then X × Y is T1/4 by Theorem 3.4, but not

T1/2 by Theorem 3.6.

Example 3.8 If (Z, κ) denotes the digital line and R the usual space of reals, then Z × R
is, by Remark 3.7, a T1/4 space but not T1/2 . The space Z × R is interesting insofar as we

may consider maps H : Z × R → Z which describe the movement of digital pictures, i.e.

subsets of Z, through time.
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