Properties of $T_{1/4}$ spaces *

N. Araki, M. Ganster, H. Maki and A. Nishi

Abstract

In 1997, Arenas, Dontchev and Ganster [1] introduced the class of $T_{1/4}$ spaces in their study of generalized continuity and λ -closed sets. The aim of this paper is to continue the investigation of $T_{1/4}$ spaces, in particular to consider products of $T_{1/4}$ spaces. As a result, we obtain an easy way to provide examples of $T_{1/4}$ spaces that fail to be $T_{1/2}$.

1 Introduction and Preliminaries

In 1997, Arenas, Dontchev and Ganster [1] introduced in their study of generalized continuity the notion of a λ -closed set in a topological space. A subset A of a space (X, τ) is called λ -closed if $A = L \cap F$, where L is a Λ -set, i.e. L is an intersection of open sets, and F is closed. Using λ -closed sets, the authors in [1] characterized T_0 spaces as those spaces where each singleton is λ -closed, and $T_{1/2}$ spaces as those spaces where every subset is λ -closed. The notion of a $T_{1/2}$ space has been introduced by Levine in [5]. Dunham [3] showed that a space (X, τ) is $T_{1/2}$ if and only if each singleton is open or closed. One of the most important examples of $T_{1/2}$ spaces is the digital line or Khalimsky line (\mathbb{Z}, κ) (see e.g. [4]). The digital line is the set of integers \mathbb{Z} with the topology κ having $S = \{\{2m-1, 2m, 2m+1\} : m \in \mathbb{Z}\}$ as a subbase. Clearly, (\mathbb{Z}, κ) fails to be T_1 . However, each singleton of the form $\{2m\}$ is

^{*2000} Math. Subject Classification — Primary: 54D10;

Key words and phrases — $T_{1/4}$ space, $T_{1/2}$ space, products, digital line.

closed and each singleton of the form $\{2m-1\}$ is open. It should be observed that (\mathbb{Z}, κ) is even a $T_{3/4}$ space (see [2]).

In [1], the authors also introduced a new separation axiom, called $T_{1/4}$. They pointed out that the class of $T_{1/4}$ spaces is strictly placed between the class of T_0 spaces and the class of $T_{1/2}$ spaces, and that $T_{1/4}$ spaces are precisely those spaces where each finite set is λ -closed. The purpose of this paper is to continue the study of $T_{1/4}$ spaces, in particular to investigate their behaviour under forming products. As a result, we obtain easy ways to construct non- $T_{1/4}$ spaces and also $T_{1/4}$ spaces that fail to be $T_{1/2}$.

Throughout this paper we do not assume any separation axioms unless stated explicitly. The interior and the closure of a subset A of a space (X, τ) will be denoted by intA and \overline{A} , respectively.

2 Properties of $T_{1/4}$ -spaces

Definition 1 [1] A space (X, τ) is called a $T_{1/4}$ space if for every finite subset $F \subseteq X$ and every point $y \notin F$ there exists a subset $A \subseteq X$ such that $F \subseteq A$, $y \notin A$ and A is open or closed.

It is obvious that every $T_{1/4}$ space is T_0 and that (X, τ) is $T_{1/2}$ if and only if for every subset $F \subseteq X$ and every point $y \notin F$ there exists a subset $A \subseteq X$ such that $F \subseteq A$, $y \notin A$ and A is open or closed. The following observation is easily verified.

Proposition 2.1 Let (X, τ) be a $T_{1/4}$ space. Then every subspace of X is a $T_{1/4}$ space.

Recall that a subset F of a space (X, τ) is called locally finite if every point $x \in X$ has an open neighbourhood U_x such that $F \cap U_x$ is at most finite.

Theorem 2.2 For a space (X, τ) the following are equivalent:

1) (X, τ) is a $T_{1/4}$ space,

2) For every locally finite subset $F \subseteq X$ and every point $y \notin F$ there exists a subset $A \subseteq X$ such that $F \subseteq A$, $y \notin A$ and A is open or closed.

Proof. 1) \Rightarrow 2) : Let $F \subseteq X$ be locally finite and let $y \notin F$. If F is finite, we are done. So let us assume that F is infinite. If y has an open neighbourhood U with empty intersection with F then $A = X \setminus U$ is the required set. Otherwise $y \in \overline{F}$ and, since F is locally finite, there exists an open neighbourhood U of y such that $U \cap F$ is finite, say $\{x_1, ..., x_k\}$, and $y \in \overline{\{x_i\}}$ for some x_i . Now pick any $x \in F \setminus \{x_1, ..., x_k\}$. Then $\{x, x_1, ..., x_k\}$ is a finite set not containing y. Since (X, τ) is $T_{1/4}$ there must be a subset $A_x \subseteq X$ such that $\{x, x_1, ..., x_k\} \subseteq A_x$, $y \notin A_x$ and A_x is open or closed. Since $y \in \overline{\{x_i\}} \subseteq \overline{A_x}$, A_x cannot be closed, thus A_x must be open. If $A = \bigcup \{A_x : x \in F \setminus \{x_1, ..., x_k\}$ then A is an open set containing F such that $y \notin A$, and we are done.

 $(2) \Rightarrow 1$: This is clear since every finite subset is a locally finite subset. \Box

Remark 2.3 It is natural to consider the following variation of $T_{1/4}$ spaces. A space (X, τ) is said to be $T_{1/4}^c$ if for every at most countable subset $F \subseteq X$ and every point $y \notin F$ there exists a subset $A \subseteq X$ such that $F \subseteq A$, $y \notin A$ and A is open or closed. Clearly, every $T_{1/2}$ space is $T_{1/4}^c$ and every $T_{1/4}^c$ space is $T_{1/4}$. None of these implications is reversible, however, as we shall see in our next two examples.

Example 2.4 Let X be the set of nonnegative integers with the topology τ where $U \in \tau$ if and only if $U = \emptyset$ or $0 \in U$ and $X \setminus U$ is finite. It has been shown in [1] Example 3.2, that (X, τ) is $T_{1/4}$. Now let $F = X \setminus \{0\}$. Then F is countable and $0 \notin F$. Since $\{0\}$ is neither open nor closed, (X, τ) cannot be $T_{1/4}^c$.

Example 2.5 Let Y be an uncountable set, $p \notin Y$ and let $X = Y \cup \{p\}$. A topology τ on X is defined by declaring a subset $U \subseteq X$ to be open if $U = \emptyset$ or $p \in U$ and $X \setminus U$ is at most countable. Since $\{p\}$ is neither open nor closed, (X, τ) cannot be $T_{1/2}$. Now let $F \subseteq X$ be countable and let $y \notin F$. If $y \neq p$ then $\{y\}$ is closed and so $F \subset X \setminus \{y\} = A$ which is open. If y = p then F is closed and we are also done in showing that (X, τ) is $T_{1/4}^c$.

3 Products of $T_{1/4}$ -spaces

Theorem 3.1 Let (X, τ) and (Y, σ) be topological spaces such that $X \times Y$ is $T_{1/4}$. Then both spaces (X, τ) and (Y, σ) are $T_{1/4}$ and at least one of the spaces must be T_1 .

Proof. Since (X, τ) and (Y, σ) are homeomorphic to subspaces of $X \times Y$, it follows from Proposition 2.1 that both spaces have to be $T_{1/4}$.

Now suppose that neither (X, τ) nor (Y, σ) is T_1 . Then there exist $x, x_1 \in X$, $x \neq x_1$ such that $x_1 \in \overline{\{x\}}$, and $y, y_1 \in Y$, $y \neq y_1$ such that $y_1 \in \overline{\{y\}}$. Let $F = \{(x, y_1), (x, y), (x_1, y_1)\} \subseteq X \times Y$. Then $(x_1, y) \notin F$. By hypothesis, there exists a set $A \subseteq X \times Y$ such that $F \subseteq A$, $(x_1, y) \notin A$ and A is closed or open.

If A is closed, i.e. if $X \times Y \setminus A$ is open, there exist open sets $U_1 \subseteq X$ and $V \subseteq Y$ such that $x_1 \in U$, $y \in V$ and $(U_1 \times V) \cap F = \emptyset$. However, since $x_1 \in \overline{\{x\}}$, we have $x \in U_1$ and so $(x, y) \in U_1 \times V$, a contradiction. If A is open, then there exist open sets $U_1 \subseteq X$ and $V_1 \subseteq Y$ such that $x_1 \in U_1$, $y_1 \in V_1$ and $U_1 \times V_1 \subseteq A$. Since $y_1 \in \overline{\{y\}}$ we have $y \in V_1$ and thus $(x_1, y) \in A$, a contradiction. As a consequence, at least one of the spaces (X, τ) or (Y, σ) has to be T_1 . \Box

Theorem 3.2 Let $X = \prod_{i \in I} X_i$ be the product of topological spaces (X_i, τ_i) , $i \in I$. If X is $T_{1/4}$ then all spaces (X_i, τ_i) are $T_{1/4}$ and at most one factor space is not T_1 .

Proof. Each (X_i, τ_i) is homeomorphic to a subspace of X, hence it is $T_{1/4}$ by Proposition 2.1. Now suppose that (X_i, τ_i) and (X_j, τ_j) , $i \neq j$, are not T_1 . Since $X_i \times X_j$ is homeomorphic to a subspace of X, it has to be $T_{1/4}$ by Proposition 2.1. However, this is a contradiction to Theorem 3.1. \Box

Using our previous results it is easy to provide examples of T_0 spaces that are not $T_{1/4}$. For example we have

Corollary 3.3 The digital plane \mathbb{Z}^2 , i.e. the product of two copies of the digital line (\mathbb{Z}, κ) , fails to be $T_{1/4}$.

We now address the question of when a product of topological spaces is $T_{1/4}$. As we shall see, the converses of Theorem 3.1 and Theorem 3.2 also hold.

Theorem 3.4 Let (X, τ) be $T_{1/4}$ and let (Y, σ) be T_1 . Then $X \times Y$ is $T_{1/4}$.

Proof. Let $F = \{(x_1, y_1), ..., (x_n, y_n)\} \subseteq X \times Y$ and let $(x_0, y_0) \notin F$. We denote the natural projections by $p_1 : X \times Y \to X$ and $p_2 : X \times Y \to Y$. Let $F' = \{(x_i, y_i) \in F : y_i = y_0\}$ and $F'' = \{(x_i, y_i) \in F : y_i \neq y_0\}$. Then $F = F' \cup F''$, $x_0 \notin p_1(F')$ and $y_0 \notin p_2(F'')$. Since $p_1(F') \subseteq X$ is finite and (X, τ) is $T_{1/4}$, there is a subset $A \subseteq X$ such that $p_1(F') \subseteq A$, $x_0 \notin A$ and A is open or closed.

If A is closed in (X, τ) , then $A \times \{y_0\}$ is closed in $X \times Y$ such that $F' \subseteq A \times \{y_0\}$ and $(x_0, y_0) \notin A \times \{y_0\}$. Also, $X \times p_2(F'')$ is closed in $X \times Y$, $F'' \subseteq X \times p_2(F'')$ and $(x_0, y_0) \notin X \times p_2(F'')$. Hence there exists a closed set $B \subseteq X \times Y$, namely $B = (A \times \{y_0\}) \cup (X \times p_2(F''))$, such that $F \subseteq B$ and $(x_0, y_0) \notin B$.

If A is open in (X, τ) , then $A \times Y$ is open in $X \times Y$ such that $F' \subseteq A \times Y$ and $(x_0, y_0) \notin A \times Y$. Also, $X \times (Y \setminus \{y_0\})$ is open in $X \times Y$, $F'' \subseteq X \times (Y \setminus \{y_0\})$ and $(x_0, y_0) \notin X \times (Y \setminus \{y_0\})$. So there is an open set $B \subseteq X \times Y$, namely $B = (A \times Y) \cup (X \times (Y \setminus \{y_0\}))$, such that $F \subseteq B$ and $(x_0, y_0) \notin B$. This proves that $X \times Y$ is $T_{1/4}$. \Box

Theorem 3.5 Let $X = \prod_{i \in I} X_i$ be the product of topological spaces (X_i, τ_i) , $i \in I$. If (X_i, τ_i) is $T_{1/4}$ for some $i \in I$ and all other spaces (X_j, τ_j) , $j \neq i$, are T_1 , then X is $T_{1/4}$.

Proof. Clearly X is homeomorphic to $X_i \times (\prod_{j \neq i} X_j)$. By Theorem 3.4, it follows that X is $T_{1/4}$, since $\prod_{j \neq i} X_j$ is T_1 . \Box

The following result is due to Dunham [3].

Theorem 3.6 ([3], Theorem 4.6) The product $X \times Y$ of the spaces (X, τ) and (Y, σ) is $T_{1/2}$ if and only if one of the following conditions holds:

- (a) Both spaces (X, τ) and (Y, σ) are T_1 .
- (b) One of the spaces is $T_{1/2}$ but not T_1 , while the other is discrete.

Remark 3.7 Combining Theorem 3.4 and Theorem 3.6 provides a way to give a variety of examples of $T_{1/4}$ spaces that fail to be $T_{1/2}$. In particular, if (X, τ) is $T_{1/2}$ (and thus $T_{1/4}$) but not T_1 and (Y, σ) is a non-discrete T_1 space then $X \times Y$ is $T_{1/4}$ by Theorem 3.4, but not $T_{1/2}$ by Theorem 3.6.

Example 3.8 If (\mathbb{Z}, κ) denotes the digital line and \mathbb{R} the usual space of reals, then $\mathbb{Z} \times \mathbb{R}$ is, by Remark 3.7, a $T_{1/4}$ space but not $T_{1/2}$. The space $\mathbb{Z} \times \mathbb{R}$ is interesting insofar as we may consider maps $H : \mathbb{Z} \times \mathbb{R} \to \mathbb{Z}$ which describe the movement of digital pictures, i.e. subsets of \mathbb{Z} , through time.

References

- [1] F. G. Arenas, J. Dontchev and M. Ganster, On λ -sets and the dual of generalized continuity, Q & A in General Topology 15 (1997), 3-13.
- [2] J. Dontchev and M. Ganster, On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 15-31.
- [3] W. Dunham, $T_{1/2}$ -spaces, Kyungpook Math. J. 17 (1977), 161-169.
- [4] E. D. Khalimsky, R. Kopperman and P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), 1-17.
- [5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (2) (1970), 89-96.

Nobuyuki ARAKI, Department of Mathematics, Chienkan High School, Saga, 849-0915, Japan.

Maximilian GANSTER, Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-98010 Graz, Austria.

Haruo MAKI, Wakagidai-2-10-13, Fukutsu-shi, Fukuoka-ken, 811-3221, Japan.

Akihiro NISHI, Department of Mathematics, Saga University, Saga, 840-8502, Japan.