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Abstract

In 1997, Arenas, Dontchev and Ganster [1] introduced the class of T} /4 spaces in
their study of generalized continuity and A-closed sets. The aim of this paper is to
continue the investigation of T}/, spaces, in particular to consider products of 714
spaces. As a result, we obtain an easy way to provide examples of T} /4 spaces that fail
to be T 5.

1 Introduction and Preliminaries

In 1997, Arenas, Dontchev and Ganster [1] introduced in their study of generalized continuity
the notion of a A-closed set in a topological space. A subset A of a space (X, 7) is called
A-closed if A= LNF , where L is a A-set, i.e. L is an intersection of open sets, and F’ is
closed. Using A-closed sets, the authors in [1] characterized Ty spaces as those spaces where
each singleton is A-closed, and Tj/, spaces as those spaces where every subset is A-closed.
The notion of a Ti /5 space has been introduced by Levine in [5]. Dunham [3] showed that a
space (X, 7) is Ty, if and only if each singleton is open or closed. One of the most important
examples of 77/, spaces is the digital line or Khalimsky line (Z, x) (see e.g. [4]). The digital
line is the set of integers Z with the topology x having S = {{2m —1,2m,2m+1} : m € Z}

as a subbase. Clearly, (Z, ) fails to be T;. However, each singleton of the form {2m} is
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closed and each singleton of the form {2m — 1} is open. It should be observed that (Z, ) is
even a T3/, space (see [2]).

In [1], the authors also introduced a new separation axiom, called T} /4. They pointed
out that the class of T}/, spaces is strictly placed between the class of Tj spaces and the
class of Tj /5 spaces, and that T/, spaces are precisely those spaces where each finite set is
A-closed. The purpose of this paper is to continue the study of T},4 spaces, in particular
to investigate their behaviour under forming products. As a result, we obtain easy ways to

construct non-T7,4 spaces and also T} /4 spaces that fail to be T s.

Throughout this paper we do not assume any separation axioms unless stated explicitly.
The interior and the closure of a subset A of a space (X, 7) will be denoted by intA and A,

respectively.

2 Properties of T’ /-spaces

Definition 1 [1] A space (X, 7) is called a T34 space if for every finite subset /' C X and
every point y ¢ F' there exists a subset A C X such that FF C A, y ¢ A and A is open or

closed.

It is obvious that every T/, space is Ty and that (X, 7) is T3/ if and only if for every
subset I C X and every point y ¢ F there exists a subset A C X such that F C A, y ¢ A

and A is open or closed. The following observation is easily verified.
Proposition 2.1 Let (X, 7) be a Tj,4 space. Then every subspace of X is a T}/, space.

Recall that a subset F' of a space (X, 7) is called locally finite if every point = € X has
an open neighbourhood U, such that F'N U, is at most finite.

Theorem 2.2 For a space (X, 7) the following are equivalent:

1) (X,7)1is a T4 space,



2) For every locally finite subset F' C X and every point y ¢ F there exists a subset
A C X such that F C A, y ¢ A and A is open or closed.

Proof. 1) = 2) : Let FF C X be locally finite and let y ¢ F . If F is finite, we are
done. So let us assume that F' is infinite. If y has an open neighbourhood U with empty
intersection with F then A = X \ U is the required set. Otherwise y € F and, since F
is locally finite, there exists an open neighbourhood U of y such that U N F' is finite, say
{x1,...,x}, and y € {z;} for some x;. Now pick any z € F\ {z1,...,2x}. Then {z,z1, ..., 21}
is a finite set not containing y. Since (X, 7) is 77,4 there must be a subset A, C X such that
{@, 21,2,y C Ay, y & A, and A, is open or closed. Since y € {x;} C A, , A, cannot be
closed, thus A, must be open. If A=J{A, : z € F\{21,...,2x}} then A is an open set
containing F such that y ¢ A, and we are done.

2) = 1) : This is clear since every finite subset is a locally finite subset. O

Remark 2.3 It is natural to consider the following variation of 7} /4 spaces. A space (X,7)
is said to be T}, if for every at most countable subset F' C X and every point y ¢ F' there
exists a subset A C X such that FF C A, y ¢ A and A is open or closed. Clearly, every T7,
space is 17, and every 17, space is Ty /4. None of these implications is reversible, however,

as we shall see in our next two examples.

Example 2.4 Let X be the set of nonnegative integers with the topology 7 where U € 7 if
and only if U = () or 0 € U and X \ U is finite. It has been shown in [1] Example 3.2, that
(X,7)is Thja. Now let F' = X \ {0}. Then F is countable and 0 ¢ F'. Since {0} is neither

open nor closed, (X, 7) cannot be T3,

Example 2.5 Let Y be an uncountable set, p ¢ Y and let X = Y U {p}. A topology 7 on
X is defined by declaring a subset U C X to be open if U = ) or p € U and X \ U is at
most countable. Since {p} is neither open nor closed, (X, 7) cannot be T /5. Now let F' C X
be countable and let y ¢ F. If y # p then {y} is closed and so I C X \ {y} = A which is

open. If y = p then F is closed and we are also done in showing that (X, 7) is Tf/4.



3 Products of 7' /-spaces

Theorem 3.1 Let (X, 7) and (Y,0) be topological spaces such that X x Y is T7/4. Then
both spaces (X, 7) and (Y, o) are T}/, and at least one of the spaces must be T7.

Proof. Since (X, 7) and (Y, o) are homeomorphic to subspaces of X x Y, it follows from
Proposition 2.1 that both spaces have to be T} 4.

Now suppose that neither (X,7) nor (Y,o) is T3. Then there exist z,2y € X | x #
x1 such that =z, € m ,and y,y1 € Y |y # y; such that y; € {_y} Let F =
{(z,11), (x,y), (x1,11)} € X xY. Then (z1,y) ¢ F. By hypothesis, there exists a set
ACX xY suchthat F C A, (z1,y) ¢ A and A is closed or open.

If Ais closed, i.e. if X x Y \ A is open, there exist open sets U; C X and V C Y such
that 1 € U ,y € V and (U x V)N F = () . However, since x; € m, we have x € U; and
so (z,y) € Uy x V| a contradiction. If A is open, then there exist open sets U; C X and
Vi CY such that zy e Uy , y1 € V4 and Uy xV; C A . Sinceylégwehaveye\/l
and thus (x1,y) € A , a contradiction. As a consequence, at least one of the spaces (X, 7)

or (Y,o) has tobe T} . O

Theorem 3.2 Let X = [[ X; be the product of topological spaces (X;,7;) , i €1 . If X
iel

is T’ /4 then all spaces (X;,7;) are T /4 and at most one factor space is not 77.

Proof. FEach (Xj,7;) is homeomorphic to a subspace of X, hence it is 1,4 by Proposi-

tion 2.1. Now suppose that (X;,7;) and (Xj;,7;) , ¢ # j , are not T} . Since X; x Xj is

homeomorphic to a subspace of X, it has to be Tj,4 by Proposition 2.1. However, this is a

contradiction to Theorem 3.1. O

Using our previous results it is easy to provide examples of T spaces that are not T4 .

For example we have

Corollary 3.3 The digital plane Z?, i.e. the product of two copies of the digital line (Z, k),
fails to be T4 .



We now address the question of when a product of topological spaces is T4 . As we

shall see, the converses of Theorem 3.1 and Theorem 3.2 also hold.
Theorem 3.4 Let (X, 7) be Ty, and let (Y,0) be Ty . Then X x Y is Ty, .

Proof. Let F = {(z1,11),-, (Tn,yn)} € X XY and let (zo,y0) ¢ F'. We denote the
natural projections by p; : X XY — X and py: X xY =Y . Let F' = {(z;,y;) €
F :y=vw} and F"={(vs,ys) € F : y; #yo} . Then F = FFUF" | zy ¢ pi(F’) and
Yo ¢ p2(F") . Since p1(F') C X is finite and (X, 7) is T1/4 , there is a subset A C X such
that p1(F') C A, 9 ¢ A and A is open or closed.

If Ais closed in (X, 7), then Ax{yo} is closed in X xY such that F" C Ax{yo} and (xo, yo) ¢
Ax{yo}. Also, X x po(F") is closed in X XY | F” C X X po(F") and (xq,y0) &€ X X p2( F").
Hence there exists a closed set B C X x Y, namely B = (A x {yo}) U (X X po(F")) , such
that /' C B and (x,y0) ¢ B.

If Aisopenin (X, 7), then AxY isopenin X xY such that F" C AxY and (z¢,y0) ¢ AXY.
Also, X X (Y \{yo})isopenin X xY | F”" C X x (Y \ {yo}) and (zo,v0) ¢ X x (Y \{v0}).
So there is an open set B C X x Y, namely B = (A X Y)U (X x (Y \ {yw})) , such that
F C B and (z9,10) ¢ B. This proves that X x Y is Ty, . O

Theorem 3.5 Let X = [[X; be the product of topological spaces (X;,7;) , i € I . If
i€l
(Xi,7;) is Ty for some ¢ € I and all other spaces (Xj,7;) , 7 # 1, are T} , then X is Ty, .

Proof. Clearly X is homeomorphic to X; x (][] X;) . By Theorem 3.4, it follows that X is
J#1
Thja,since [[ X;is Ty . O
J#

The following result is due to Dunham [3].

Theorem 3.6 ([3], Theorem 4.6) The product X x Y of the spaces (X, 7) and (Y, o) is T} 5
if and only if one of the following conditions holds:

(a) Both spaces (X, 7) and (Y, o) are T} .

(b) One of the spaces is 77/, but not 77, while the other is discrete.



Remark 3.7 Combining Theorem 3.4 and Theorem 3.6 provides a way to give a variety of
examples of T} /4 spaces that fail to be 71/, . In particular, if (X, 7) is T2 (and thus T ,4)
but not 77 and (Y, o) is a non-discrete 77 space then X x Y is T} /2 by Theorem 3.4, but not
Ty, by Theorem 3.6.

Example 3.8 If (Z, ) denotes the digital line and R the usual space of reals, then Z x R
is, by Remark 3.7, a T7,4 space but not T/, . The space Z x R is interesting insofar as we
may consider maps H : Z x R — Z which describe the movement of digital pictures, i.e.

subsets of Z, through time.
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