On $b\tau$ -closed sets

MAXIMILIAN GANSTER AND MARKUS STEINER

ABSTRACT. This paper is closely related to the work of Cao, Greenwood and Reilly in [10] as it expands and completes their fundamental diagram by considering *b*-closed sets. In addition, we correct a wrong assertion in [10] about $T_{\beta s}$ -spaces.

2000 AMS Classification: 54A05

Keywords: b-closed, qr-closed

1. INTRODUCTION AND PRELIMINARIES

In recent years quite a number of generalizations of closed sets has been considered in the literature. We recall the following definitions:

Definition 1.1. Let (X, τ) be a topological space. A subset $A \subseteq X$ is called

- (1) α -closed [18] if $cl(int(cl(A))) \subseteq A$,
- (2) semi-closed [15] if $int(cl(A)) \subseteq A$,
- (3) preclosed [17] if $\operatorname{cl}(\operatorname{int}(A)) \subseteq A$,
- (4) b-closed [3] if $int(cl(A)) \cap cl(int(A)) \subseteq A$,
- (5) semi-preclosed [2] or β -closed [1] if $int(cl(int(A))) \subseteq A$.

The complement of an α -closed (resp. semi-closed, preclosed, b-closed, β closed) set is called α -open (resp. semi-open, preopen, b-open, β -open). The smallest α -closed (resp. semi-closed, preclosed, b-closed, β -closed) set containing $A \subseteq X$ is called the α -closure (resp. semi-closure, preclosure, b-closure, β -closure) of A and shall be denoted by $cl_{\alpha}(A)$ (resp. $cl_{s}(A), cl_{p}(A), cl_{b}(A),$ $cl_{\beta}(A)$).

In 2001, Cao, Greenwood and Reilly [10] introduced the concept of qr-closed sets to deal with various notions of generalized closed sets that had been considered in the literature so far. If $\mathcal{P} = \{\tau, \alpha, s, p, \beta\}$ and $q, r \in \mathcal{P}$ then a subset $A \subseteq X$ is called qr-closed if $cl_q(A) \subseteq U$ whenever $A \subseteq U$ and U is r-open. (For convenience we denote cl(A) by $cl_{\tau}(A)$ and open (resp. semi-open, preopen) by τ -open (resp. s-open, p-open).)

In the following we shall consider the expanded family $\mathcal{P} \cup \{b\}$. As in Corollary 2.6 of [10], it is easily established that the concept of a $b\tau$ -closed set yields the only new type of sets that can be gained by utilizing the *b*-closure (resp. the *b*-interior) in the context of *qr*-closed sets. Thus we give

Definition 1.2. Let (X, τ) be a topological space. A subset $A \subseteq X$ is called $b\tau$ -closed if $cl_b(A) \subseteq U$ whenever $A \subseteq U$ and U is open. The complement of a $b\tau$ -closed set is called $b\tau$ -open.

Remark 1.3. The concepts of *ss*-closed (resp. $s\tau$ -closed, $p\tau$ -closed, $\beta\tau$ -closed) sets have been first introduced in the literature under the name of *sg*-closed [5] (resp. *gs*-closed [4], *gp*-closed [16], *gsp*-closed [11]) sets.

We also consider the following classes of topological spaces:

Definition 1.4. A topological space (X, τ) is called

- (1) sg-submaximal if every codense subset of (X, τ) is ss-closed,
- (2) T_{gs} if every $s\tau$ -closed subset of (X, τ) is ss-closed,
- (3) extremally disconnected if the closure of each open subset of (X, τ) is open,
- (4) resolvable if (X, τ) is the union of two disjoint dense subsets.

For undefined concepts we refer the reader to [10] and [9] and the references given there.

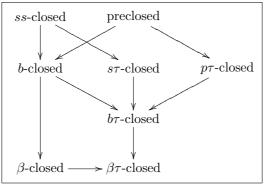
2. $b\tau$ -closed sets and their relationships

In [10] the relationships between various types of generalized closed sets have been summarized in a diagram. We shall expand this diagram by adding b-closed sets and $b\tau$ -closed sets.

Proposition 2.1. Every ss-closed set in a topological space (X, τ) is b-closed.

Proof. Let $A \subseteq X$ be ss-closed and let $x \in \operatorname{cl}_b(A)$. Since singletons are either preopen or nowhere dense (see [14]), we distinguish two cases. If $\{x\}$ is preopen, it is also b-open and hence $\{x\} \cap A \neq \emptyset$, i.e. $x \in A$. If $\{x\}$ is nowhere dense, then $X \setminus \{x\}$ is semi-open. Suppose that $x \notin A$. Then $A \subseteq X \setminus \{x\}$ and, since A is ss-closed, we have $\operatorname{cl}_b(A) \subseteq \operatorname{cl}_s(A) \subseteq X \setminus \{x\}$. Hence $x \notin \operatorname{cl}_b(A)$, a contradiction. Therefore $\operatorname{cl}_b(A) \subseteq A$, and so A is b-closed. \Box

The remaining relationships in the following diagram can easily be established.



We now address the question of when the above implications can be reversed.

On $b\tau\text{-}\mathrm{closed}$ sets

Proposition 2.2. Let (X, τ) be a topological space. Then:

- (1) Each b-closed set is ss-closed iff (X, τ) is sg-submaximal.
- (2) Each b-closed set is $s\tau$ -closed iff (X, τ) is sg-submaximal.
- (3) Each $s\tau$ -closed set is b-closed iff (X, τ) is T_{gs} .
- (4) Each $b\tau$ -closed set is b-closed iff (X, τ) is T_{gs} .
- (5) Each $b\tau$ -closed set is $s\tau$ -closed iff (X, τ) is sg-submaximal.
- (6) Each $b\tau$ -closed set is $p\tau$ -closed iff (X, τ) is extremally disconnected.
- (7) Each $b\tau$ -closed set is β -closed iff (X, τ) is T_{gs} .
- (8) Each β -closed set is b-closed iff cl(W) is open for every open resolvable subspace W of (X, τ) .

Proof. We will only show (1). The other assertions can be proved in a similar manner using the standard methods that can be found in [10], and (8) has been shown in [13].

First recall that a space is sg-submaximal iff every preclosed set is ss-closed (see [7]). If every *b*-closed set is ss-closed then every preclosed set ss-closed, i.e. (X, τ) is sg-submaximal.

Conversely, suppose that (X, τ) is *sg*-submaximal and let *A* be *b*-closed. Then *A* is the intersection of a semi-closed and a preclosed set (see [3]). Since every semi-closed set is *ss*-closed, by hypothesis, *A* is the intersection of two *ss*closed sets. Since the arbitrary intersection of *ss*-closed sets is always *ss*-closed (see [12]), we conclude that *A* is *ss*-closed.

Proposition 2.3. Let (X, τ) be a topological space. Then the following statements are equivalent:

- (1) Each $\beta\tau$ -closed set is $b\tau$ -closed.
- (2) Each β -closed set is $b\tau$ -closed.

Proof. The necessity is clear, so we only have to show the sufficiency. Let A be a $\beta\tau$ -closed set and U be an open subset of X such that $A \subseteq U$. Since A is $\beta\tau$ -closed we have $\operatorname{cl}_{\beta}(A) \subseteq U$. Now, $\operatorname{cl}_{\beta}(A)$ is β -closed and hence $b\tau$ -closed by hypothesis. Therfore $\operatorname{cl}_b(A) \subseteq \operatorname{cl}_b(\operatorname{cl}_{\beta}(A)) \subseteq U$ and thus our claim is proved.

Remark 2.4. If $A \subseteq X$, then the largest *b*-open subset of *A* is called the *b*-interior of *A* and is denoted by bint(A). It is well known that $bint(A) = (cl(int(A)) \cup int(cl(A))) \cap A$ (see [3]). Consequently, a subset *A* is $b\tau$ -open iff for every closed subset *F* satisfying $F \subseteq A$ we have $F \subseteq cl(int(A)) \cup int(cl(A))$.

We shall now present one of our major results.

Theorem 2.5. Let (X, τ) be a topological space. Then the following are equivalent:

- (1) Each β -closed set is b-closed.
- (2) Each β -closed set is $b\tau$ -closed.
- (3) cl(W) is open for every open resolvable subspace W of (X, τ) .

Proof. It is obvious that $(1) \Rightarrow (2)$. Furthermore, it has been shown in [13] that (3) \Leftrightarrow (1), so we only have to prove that (2) \Rightarrow (3).

If $W = \emptyset$, we are done, so let W be a nonempty open resolvable subspace and let E_1 and E_2 be disjoint dense subsets of $(W, \tau|_W)$. Suppose that there exists a point $x \in cl(W) \setminus int(cl(W))$. Let $S = E_1 \cup cl(\{x\})$. It is easily checked that $int(S) = \emptyset$, cl(S) = cl(W) and that S is β -open. By hypothesis, S is $b\tau$ open and so, since $cl(\{x\}) \subseteq S$, we conclude that $\{x\} \subseteq cl(\{x\}) \subseteq int(cl(S)) =$ int(cl(W)). This is, however, a contradiction to our assumption and so cl(W)has to be open.

3. A Remark on $T_{\beta s}$ -spaces

In [10] a space has been called $T_{\beta s}$ if every $\beta \tau$ -closed subset of (X, τ) is $s\tau$ closed. We observe that this is equivalent to the property that every β -closed subset is $s\tau$ -closed, see [6]. Using some of our previous results, we are now able to give the following characterization.

Theorem 3.1. Let (X, τ) be a topological space. Then the following are equivalent:

- (1) (X, τ) is a $T_{\beta s}$ -space.
- (2) Every β -closed set is b-closed and (X, τ) is sg-submaximal.
- (3) Every β -closed set is ss-closed.

Note that the last property in the above theorem has been fully characterized in [8]. It was shown there that every β -closed set is ss-closed iff (X, τ^{α}) is asubmaximal, where τ^{α} denotes the α -topology of (X, τ) (see [18]), and a space is called *q*-submaximal if each codense set is $\tau\tau$ -closed. So the claim in [10] that there exists a $T_{\beta s}$ -space whose α -topology is not g-submaximal turns out to be wrong now. In fact, one can easily check that Example 3.5 of [10] is false. So $T_{\beta s}$ is not a new topological property as we have just seen.

References

- [1] M. E. Abd El-Monsef, S.N. El-Deeb, and R.A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90.
- D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.
 D. Andrijević, On b-open sets, Mat. Vesnik 48 (1996), 69–64.
- [4] S. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. 21 (1990), 717-719. [5] P. Bhattacharya and B. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29
- (1987), 375–382. J. Cao, M. Ganster, Ch. Konstadilaki, and I. Reilly, On preclosed sets and their generaliza-[6]
- tions, Houston J. Math. 28 (2002), 771–780. [7] J. Cao, M. Ganster, and I. Reilly, Submaximality, extremal disconnectedness and generalized
- closed sets, Houston J. Math. 24 (1998), 681-688 J. Cao, M. Ganster, and I. Reilly, On sg-closed sets and $g\alpha$ -closed sets, Mem. Fac. Sci.
- Kochi. Univ. Ser A, Math. 20 (1999), 1-5. [9] J. Cao, M. Ganster, and I. Reilly, On generalized closed sets, Topology Appl. 123 (2002),
- 37 46. [10] J. Cao, S. Greenwood, and I. Reilly, Generalized closed sets: a unified approach, Applied
- General Topology 2 (2001), 179-189. [11] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math.
- 16 (1995), 35-48
- [12] J. Dontchev and H. Maki, On sg-closed sets and semi- λ -closed sets, Questions Answers Gen. Topology 15 (1997), 259-266.

On $b\tau\text{-}\mathrm{closed}$ sets

- [13] M. Ganster and M. Steiner, On some questions about b-open sets, submitted.
 [14] D. Janković and I. Reilly, On semi-separation properties, Indian J. Pure Appl. Math. 16
- (1985), 957-964.
- [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70** (1963), 36–41.
- [16] H. Maki, J. Umehara, and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A, Math. 17 (1996), 33–42.
 [17] A.S. Mashhour, M.E. Abd El-Monsef, and S.N. El-Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [18] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.

M. GANSTER (ganster@weyl.math.tu-graz.ac.at)

Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, AUSTRIA

M. STEINER (msteiner@sbox.tugraz.at)

Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, AUSTRIA