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Abstract

In [2], D. Andrijevic observed that for every topological space (X, τ) we have
PO(X, τ) ∪ SO(X, τ) ⊆ BO(X, τ) ⊆ SPO(X, τ), but that none of these inclusions
can be replaced by equality. The purpose of this note is to characterize those spaces
(X, τ) where BO(X, τ) = SPO(X, τ) holds, and those spaces (X, τ) where PO(X, τ)∪
SO(X, τ) = BO(X, τ) holds.

1 Introduction and Preliminaries

Over the years quite a number of generalizations of the class of open sets in a topological

space have been considered and widely investigated. These variations have many useful

applications, e.g. they are utilized to provide results about decompositions of continuity.

Among the most important classes of generalized open sets are the following:

Definition 1 A subset S of a topological space (X, τ) is called

(i) semi-open [9], if S ⊆ intS ,

(ii) preopen [10], if S ⊆ intS ,

(iii) semi-preopen [3] or β-open [1], if S ⊆ intS ,

(iv) b-open [2], if S ⊆ intS ∪ intS .
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The classes of semi-open, preopen, semi-preopen and b-open subsets of a space (X, τ) are

usually denoted by SO(X, τ), PO(X, τ), SPO(X, τ) and BO(X, τ) respectively. The class

of b-open sets has been introduced and investigated in 1996 by Andrijevic [2]. He made the

following fundamental observation.

Proposition 1.1 For every space (X, τ), PO(X, τ) ∪ SO(X, τ) ⊆ BO(X, τ) ⊆ SPO(X, τ)

holds but none of these implications can be reversed.

The aim of this paper is to provide complete answers to the following open questions.

Question 1. For which spaces (X, τ) does BO(X, τ) = SPO(X, τ) hold?

Question 2. For which spaces (X, τ) does PO(X, τ) ∪ SO(X, τ) = BO(X, τ) hold?

Recall that a space (X, τ) is said to be resolvable if it has two disjoint dense subsets,

otherwise it is called irresolvable. Every space (X, τ) can be represented uniquely as the

disjoint union of a closed and resolvable subspace F and an open, hereditarily irresolvable

subspace G (see e.g. [7] and [5]). We shall call this decomposition the Hewitt-representation

of (X, τ). A space (X, τ) is called strongly irresolvable if every open subspace of (X, τ) is

irresolvable. Clearly, if X = F ∪ G denotes the Hewitt-representation of (X, τ) then (X, τ)

is strongly irresolvable if and only if G = X .

A space (X, τ) is called extremally disconnected if U is open for every open subset U of

(X, τ). Following E. van Douwen [4], x ∈ X is said to be an e.d.-point of (X, τ) if x ∈ U

implies x ∈ intU for every open subset U of (X, τ). We shall denote the set of e.d.-points of

a space (X, τ) by ED(X, τ). Clearly, a space (X, τ) is extremally disconnected if and only

if ED(X, τ) = X.

For the convenience of the reader we now list some known results that will be used later

in our paper.

Proposition 1.2 Let (X, τ) be a space.
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(i) If U ⊆ X is open and S ⊆ X is semi-open (preopen, semi-preopen, b-open respec-

tively) then U ∩ S is semi-open (preopen, semi-preopen, b-open respectively),

(ii) for every subset A ⊆ X, A ∩ intA is preopen,

(iii) [2] S ⊆ X is b-open if and only if S is the union of a semi-open set and a preopen

set.

Proposition 1.3 For a space (X, τ) the following are equivalent:

(1) (X, τ) is extremally disconnected,

(2) SO(X, τ) ⊆ PO(X, τ),

(3) SPO(X, τ) = PO(X, τ),

(4) BO(X, τ) = PO(X, τ).

Proof. (1) ⇔ (2) has been shown in [8] and (1) ⇔ (3) has been shown in [6]. Clearly,

(3) ⇒ (4) and (4) ⇒ (2) follow immediately from Proposition 1.1.

Proposition 1.4 For a space (X, τ) the following are equivalent:

(1) (X, τ) is strongly irresolvable,

(2) PO(X, τ) ⊆ SO(X, τ),

(3) SPO(X, τ) = SO(X, τ)

(4) BO(X, τ) = SO(X, τ).

Proof. (1) ⇔ (2) has been shown in [5] and (1) ⇔ (3) has been shown in [6]. Clearly,

(3) ⇒ (4) and (4) ⇒ (2) follow immediately from Proposition 1.1.

Proposition 1.5 [6] For a space (X, τ) the following are equivalent:

(1) SPO(X, τ) = SO(X, τ) ∪ PO(X, τ),

(2) (X, τ) is extremally disconnected or strongly irresolvable.
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2 The results

We start by characterizing those spaces where the class of b-open sets coincides with the

class of semi-preopen sets. The Hewitt-representation of a space (X, τ) will be denoted by

X = F ∪G .

Theorem 2.1 For a space (X, τ) the following are equivalent:

(1) BO(X, τ) = SPO(X, τ),

(2) W is open for every open resolvable subspace W ,

(3) G is open and intF ⊆ ED(X, τ),

(4) (X, τ) is the topological sum of an extremally disconnected space and a strongly

irresolvable space.

Proof. (1) ⇒ (2): If W = ∅, we are done, so let W be a nonempty open resolvable

subspace and let E1 and E2 be disjoint dense subsets of W . Pick x ∈ W . If x ∈ W

then clearly x ∈ intW . If x /∈ W , let S = E1 ∪ {x}. It is easily checked that S = W ,

hence intS = W and so S ∈ SPO(X, τ). If U is an open set such that U ⊆ S, then

∅ = U ∩ E2 = U ∩ E2 = U ∩W = U . Thus intS = ∅. By hypothesis, S ∈ BO(X, τ) and so

x ∈ S ⊆ intS ∪ intS = intS = intW . Thus W is open.

(2) ⇒ (3): Since intF is an open resolvable subspace, intF is open by hypothesis. Since

F is closed and intF ⊆ F , we have intF = intF and so G = intG, i.e. G is open. Now

let x ∈ intF and let U be open such that x ∈ U . If W = U ∩ intF then W is open and

resolvable and x ∈ W . By hypothesis, x ∈ intW ⊆ intU and so x is an e.d.-point of (X, τ).

(3) ⇒ (4): Clearly, X = intF∪G and G is a clopen strongly irresolvable subspace and intF

is clopen and extremally disconnected as a subspace.

(4) ⇒ (1): Let X = E∪C be the topological sum of an extremally disconnected subspace E

and a strongly irresolvable subspace C. Let S ∈ SPO(X, τ). Since E and C are clopen, it is

easily verified that S∩E ∈ SPO(E, τ |E) , hence S∩E ∈ PO(E, τ |E) by Proposition 1.3 and

so S∩E ∈ PO(X, τ). In a similar manner, S∩C ∈ SPO(C, τ |C) , hence S∩C ∈ SO(C, τ |C)

by Proposition 1.4 and so S ∩C ∈ SO(X, τ). Since S = (S ∩E)∪ (S ∩C) , S is the union

of a preopen set and a semi-open set and thus b-open, i.e. S ∈ BO(X, τ). 2

4



Corollary 2.2 Let (X, τ) be resolvable. Then BO(X, τ) = SPO(X, τ) if and only if (X, τ)

is extremally disconnected.

In our next result we characterize those spaces where the class of b-open sets coincides

with PO(X, τ) ∪ SO(X, τ).

Theorem 2.3 For a space (X, τ) the following are equivalent:

(1) PO(X, τ) ∪ SO(X, τ) = BO(X, τ),

(2) for each subset A ⊆ X , intA ⊆ intA or intA ⊆ intA.

Proof. (1) ⇒ (2): Let A ⊆ X and let B = (A ∩ intA) ∪ intA . It is easily checked

that intA = intB and that intA = intB (see e.g. [6], Proposition 11). Since A ∩ intA ∈
PO(X, τ) and intA ∈ SO(X, τ) , we have that B ∈ BO(X, τ). By hypothesis, B ∈
PO(X, τ)∪SO(X, τ) . If B ∈ PO(X, τ), then intA ⊆ B ⊆ intB = intA. If B ∈ SO(X, τ),

then A ∩ intA ⊆ B ⊆ intB = intA and consequently intA ⊆ intA = A ∩ intA ⊆ intA .

(2) ⇒ (1): Let S ∈ BO(X, τ). If intS ⊆ intS , then S ⊆ intS and so S ∈ SO(X, τ). If

intS ⊆ intS , then S ⊆ intS and so S ∈ PO(X, τ). 2

As a consequence we have the following new characterization of spaces (X, τ) where the

class of semi-preopen sets coincides with PO(X, τ) ∪ SO(X, τ) (concerning other charac-

terizations we refer the reader to [6]).

Corollary 2.4 For a space (X, τ) the following are equivalent:

(1) PO(X, τ) ∪ SO(X, τ) = SPO(X, τ),

(2) W is open for every open resolvable subspace W , and for each subset A ⊆ X ,

intA ⊆ intA or intA ⊆ intA.

It is obvious that the condition PO(X, τ) ∪ SO(X, τ) = SPO(X, τ) implies that

PO(X, τ) ∪ SO(X, τ) = BO(X, τ). In our next example we point out that this implica-

tion cannot be reversed in general.
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Example 2.5 Let X1 and X2 be disjoint infinite sets, let p /∈ X1 ∪ X2 and let X =

X1 ∪X2 ∪ {p} . A topology τ on X is defined in the following way: a basic neighbourhood

of x ∈ Xi is a cofinite subset of Xi , i ∈ {1, 2} , a basic neighbourhood of p has the form

{p} ∪ C1 ∪ C2 where Ci is a cofinite subset of Xi , i ∈ {1, 2} .

Clearly (X, τ) is a T1 space and X1 and X2 are open subspaces of (X, τ). If Di and Ei

are disjoint infinite subsets of Xi , i ∈ {1, 2} , then D1 ∪D2 and E1 ∪ E2 are disjoint dense

subsets of (X, τ), and so (X, τ) is resolvable. Since p ∈ X1 \ intX1 , (X, τ) is not extremally

disconnected and so SPO(X, τ) 6= PO(X, τ) ∪ SO(X, τ) by Proposition 1.5.

Now let A ⊆ X. If A is finite, then A is closed and so intA = intA ⊆ intA . Hence, we

assume that A is infinite. If both A ∩ X1 and A ∩ X2 are infinite, then A is dense and so

intA ⊆ intA . So we may assume without loss of generality the case that A ∩X1 is infinite

and A ∩X2 is finite. Then p /∈ intA , A ∩X1 = X1 ∪ {p} and A ∩X2 = A ∩X2 . If A ∩X1

is not cofinite in X1 , then intA = ∅ and so intA ⊆ intA . If A ∩X1 is cofinite in X1 , then

intA = A ∩ X1 and intA = X1 ∪ {p} . Furthermore, A = (X1 ∪ {p}) ∪ (A ∩ X2) and

intA = X1 , thus intA ⊆ intA .

Hence, for every subset A ⊆ X we have intA ⊆ intA or intA ⊆ intA , i.e. BO(X, τ) =

PO(X, τ) ∪ SO(X, τ) by Theorem 2.3. 2

We conclude our paper with a result that for a large class of spaces, however, the con-

ditions ”PO(X, τ) ∪ SO(X, τ) = SPO(X, τ)” and ”PO(X, τ) ∪ SO(X, τ) = BO(X, τ)”

coincide. Recall that a space (X, τ) is called quasi-regular [11] if every nonempty open set

contains a nonempty regular closed set (i.e. the closure of a nonempty open set).

Theorem 2.6 For a quasi-regular space (X, τ) the following are equivalent:

(1) PO(X, τ) ∪ SO(X, τ) = SPO(X, τ),

(2) PO(X, τ) ∪ SO(X, τ) = BO(X, τ).

Proof. (1) ⇒ (2): This is obvious.

(2) ⇒ (1): If (X, τ) is strongly irresolvable, then SPO(X, τ) = PO(X, τ) ∪ SO(X, τ) by

Proposition 1.5. So we assume that (X, τ) has a nonempty open resolvable subspace W . Let

6



E1 and E2 be disjoint dense subsets of W . We claim that (X, τ) is extremally disconnected.

Suppose that (X, τ) is not extremally disconnected. Then there is a point x ∈ X and an

open set U such that x ∈ U \ intU = U ∩X \ U . Then W ∩ (U ∪ (X \U) 6= ∅ , and without

loss of generality we assume that W ∩ (X \ U) = W1 6= ∅ . Since (X, τ) is quasi-regular,

there is a nonempty open set V such that V ⊆ W1 . Let S = U ∪{x} . Then S is semi-open

but not preopen. Let T = V ∩ E1 . Then T is preopen but not semi-open, since intT = ∅ .

We obviously have S ⊆ U and T ⊆ X \ U , and T ⊆ V and S ⊆ X \ V .

If we set A = S ∪ T , then clearly A is b-open. Hence, by assumption, A is preopen or

semi-open. If A is preopen, then A ∩ (X \ V ) = S is preopen, a contradiction. If A is

semi-open, then A ∩ (X \ U) = T is semi-open, a contradiction. Thus (X, τ) is extremally

disconnected and so SPO(X, τ) = PO(X, τ) ∪ SO(X, τ) by Proposition 1.5. 2
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