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Abstract

The purpose of this paper is to raise some very fundamental questions about the
θ-topology which we encountered during our research. We acknowledge the possibility
that some of our questions may have already been answered somewhere in the literature.
Nevertheless we consider it to be quite useful to pose these basic questions (maybe
again) as they appear in one form or another fairly often. We strongly hope that
current researchers will come up with new and interesting answers.

1 Introduction and Preliminaries

Let (X, τ) be a topological space. We shall denote the closure and the interior of a subset

A ⊆ X by clτ (A) and intτ (A), respectively, or simply by cl(A) and int(A) if there is no

danger of confusion. CO(X, τ) denotes the family of all subsets of (X, τ) that are both open

and closed in (X, τ). If A ⊆ X then |A| denotes the cardinality of A, and τ |A will denote

the subspace topology on A. For each x ∈ X, the families of all neighbourhoods (resp. all

open neigbourhoods, all closed neighbourhoods) of x will be denoted by U(x) (resp. Uo(x),

U c(x)). A space (X, τ) will be called regular if for each closed set A ⊆ X and each point

x /∈ A there exist open sets U and V such that A ⊆ U , x ∈ V and U ∩ V = ∅.
The definition of the θ-topology has its origin in the famous paper of Veličko [8] on H-closed

topological spaces. Recall that a space (X, τ) is called H-closed if every open cover of (X, τ)

has a finite subfamily whose closures cover X . Let (X, τ) be a topological space and let
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A ⊆ X. A point x ∈ X is called a θ-contact point [8] (resp. a δ-contact point [8]) of A if

A ∩ cl(U) 6= ∅ (resp. A ∩ int(cl(A)) 6= ∅) for every open set U containing x. The set of all

θ-contact points (resp. δ-contact points) of A ⊆ X is called the θ-closure [8] (resp. δ-closure

[8]) of A and denoted by clθ(A) (resp. clδ(A)). The set A ⊆ X is said to be θ-closed [8] (resp.

δ-closed [8]) if clθ(A) = A (resp. clδ(A) = A). Complements of θ-closed sets (resp. δ-closed

sets) are called θ-open (resp. δ-open). It has been pointed out in [8] that cl(A) ⊆ clθ(A) and

that clθ(A) ⊆ clθ(B) for any subsets A ⊆ B ⊆ X. Moreover, the families of all θ-open sets

(resp. δ-open sets) are topologies on X, called the θ-topology (resp. δ-topology) and denoted

by τθ (resp. τδ). It follows straightforward from the definitions that we have τθ ⊆ τδ ⊆ τ

and that τθ = τ if and only if (X, τ) is regular. Observe also that a subset U ⊆ X is θ-open

(resp. δ-open) if for each x ∈ U there exists V ∈ τ such that x ∈ V ⊆ cl(V) ⊆ U (resp.

x ∈ V ⊆ int(cl(V)) ⊆ U) . The space (X, τδ), having the regular open subsets of (X, τ) as a

base, is frequently also called the semi-regularization of (X, τ).

Definition 1 A topological space (X, τ) is called

(i) semi-regular, if τδ = τ ,

(ii) almost regular [6], if for each regular closed set F ⊆ X and each point x /∈ F there

exist disjoint open sets containing F and x respectively,

(iii) locally indiscrete, if every open subset of (X, τ) is closed.

2 Very basic questions

The most immediate question that comes to mind is the question concerning the existence of

non-trivial θ-open sets in a topological space, i.e. we want to know when the θ-topology fails

to be indiscrete. While we have not been able to resolve this question in a fully satisfactory

way, we do have some interesting results.

Definition 2 A topological space (X, τ) is said to have the (P )-property if for each collection

(Oi)i∈I of open subsets satisfying
⋃

i∈I Oi /∈ {∅, X} we have that
⋃

i∈I Oi 6=
⋃

i∈I cl(Oi) .
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Proposition 2.1 Let (X, τ) be a topological space. Then (X, τθ) is indiscrete if and only if

(X, τ) has the (P )-property.

Proof. Suppose that (X, τθ) is indiscrete and that (X, τ) does not have the (P )-property.

Then there is a collection (Oi)i∈I of τ -open sets with
⋃

i∈I Oi /∈ {∅, X} and
⋃

i∈I Oi =
⋃

i∈I cl(Oi) . Let V =
⋃

i∈I Oi. If x ∈ V then there is some i ∈ I such that x ∈ Oi . By

assumption we clearly have x ∈ Oi ⊆ cl(Oi) ⊆ V and so V ∈ τθ, a contradiction.

To show the converse, suppose that (X, τθ) is not indiscrete. Then there exists V ∈ τθ with

V /∈ {∅, X}. For each x ∈ V there exists some τ -open set Ox such that cl(Ox) ⊆ V . Clearly

we have that V =
⋃

x∈V Ox =
⋃

x∈V cl(Ox) and so (X, τ) does not have the (P )-property.

Proposition 2.2 Let (X, τ) be a topological space. Suppose there is some x ∈ X such that

U c(x) \ {X} is a base for U(x). Then (X, τθ) is not indiscrete.

Proof. We write the (nonempty) family U c(x) \ {X} in the form (Wi)i∈I and claim that
⋂

i∈I Wi =
⋂

i∈I int(Wi) . Suppose that y ∈ ⋂
i∈I Wi and there exists j ∈ I such that

y /∈ int(Wj) . Since int(Wj) is an open neighbourhood of x, there exists k ∈ I such that

Wk ⊆ int(Wj) and so y /∈ Wk, a contradiction. Thus our claim is proved. Now let Oi = X\Wi

for each i ∈ I. Then (Oi)i∈I is a collection of τ -open sets satisfying
⋃

i∈I Oi /∈ {∅, X} and
⋃

i∈I Oi =
⋃

i∈I cl(Oi) . Hence (X, τ) does not have the (P )-property. By Proposition 2.1,

(X, τθ) fails to be indisrete.

Proposition 2.3 Let (X, τ) be a topological space with |X| > 1 . Then (X, τθ) is indiscrete

if and only if for each subset T ⊆ X with T 6= X there exists some x /∈ T such that T and

{x} cannot be separated by open sets.

Proof. Suppose that (X, τθ) is indiscrete. Let T ⊆ X with T /∈ {∅, X}. Hence, if

O = X \ T then O /∈ τθ and so there exists x ∈ O such that for no τ -open set V we have

that x ∈ V ⊆ cl(V ) ⊆ O. But this means that T and {x} cannot be separated by open sets.

To show the converse, suppose that (X, τθ) is not indiscrete. Then there exists a subset

O ∈ τθ with O /∈ {∅, X}. Let T = X \ O . If x ∈ O, i.e. if x /∈ T , there is a τ -open set V
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such that x ∈ V ⊆ cl(V ) ⊆ O. Clearly x ∈ V and T ⊆ X \ cl(V ), and so T and {x} can be

separated by open sets.

Recall that a space (X, τ) is said to be hyperconnected if every open subset is dense. It is

very well known that (X, τ) is hyperconnected if and only if (X, τδ) is indiscrete. We shall

say that a point p ∈ X is a point of hyperconnectedness if every (open) neighbourhood of p

is dense.

Proposition 2.4 Let (X, τ) be a topological space such that p ∈ X is a point of hypercon-

nectedness. Then (X, τθ) is indiscrete.

Proof. Let W ∈ τθ be nonempty and let x ∈ W . Hence there is a τ -open set Ux such that

x ∈ Ux ⊆ cl(Ux) ⊆ W . Since every neighbourhood of p is dense it follows that p ∈ cl(Ux) and

so p ∈ W . So there has to be a τ -open set Vp such that p ∈ Vp ⊆ cl(Vp) ⊆ W . Consequently,

W = X.

Remark 2.5 Consider the space (X, τ) from Example 2.5 in [1]. Proposition 2.4 immedi-

ately shows that (X, τθ) has to be indiscrete while it is easily established that (X, τδ) fails

to be indiscrete. Hence the fact that (X, τθ) is indiscrete does not imply that (X, τδ) must

be indiscrete.

Question 1 What are some other necessary and sufficient conditions on a space (X, τ) such

that (X, τθ) has to be indiscrete?

We shall next consider the relationships between τ , τδ and τθ. It is clear that CO(X, τθ) =

CO(X, τ) ⊆ τθ ⊆ τδ ⊆ τ . Furthermore, τδ = τ if and only if (X, τ) is semi-regular, τθ = τδ if

and only if (X, τ) is almost regular (see [2] and [4]), τθ = τ if and only if (X, τ) is regular, and

CO(X, τ) = τ if and only if (X, τ) is locally indiscrete. We also observe that CO(X, τ) = τθ

if and only if (X, τθ) is locally indiscrete. This leads to the question which property the

space (X, τ) has to satisfy to make (X, τθ) locally indiscrete.
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Definition 3 A topological space (X, τ) is said to have the (P1)-property if for each col-

lection (Oi)i∈I of open subsets satisfying
⋃

i∈I Oi =
⋃

i∈I cl(Oi) we have that
⋃

i∈I Oi is

closed.

Proposition 2.6 For a space (X, τ) the following are equivalent:

(1) CO(X, τ) = τθ ,

(2) (X, τ) has the (P1)-property.

Proof. (1) ⇒ (2) : Suppose that (X, τ) does not have the (P1)-property. Then there is

a collection (Oi)i∈I of τ -open subsets with
⋃

i∈I Oi =
⋃

i∈I cl(Oi) such that
⋃

i∈I Oi is not

closed. If V =
⋃

i∈I Oi then clearly V ∈ τθ , and so, by assumption, V has to be τ -closed,

a contradiction.

(2) ⇒ (1) : We have to show that τθ ⊆ CO(X, τ). Let V ∈ τθ and for each x ∈ V let Ux be

a τ -open set with x ∈ Ux ⊆ cl(Ux) ⊆ V . We clearly have that V =
⋃

x∈V Ux =
⋃

x∈V cl(Ux)

and so, by assumption, V has to be also τ -closed.

Now let (X, τ) be a topological space, W ∈ τθ and y ∈ clτ (W ). Suppose that V is a finite

τ -open neighbourhood of y and that y /∈ W . Then V ∩W is nonempty and finite. For each

x ∈ V ∩W there is a τ -open set Ux such that x ∈ Ux ⊆ cl(Ux) ⊆ W , and, since y /∈ cl(Ux),

there is a τ -open set Vx such that y ∈ Vx and Vx ∩ Ux = ∅ . Clearly, V ∩ ⋂
x∈V ∩W Vx is

a τ -open neighbourhood of y having empty intersection with W , a contradiction. Hence

y ∈ W . As a consequence we have

Proposition 2.7 Let (X, τ) be a topological space and suppose that each x ∈ X has a finite

neighbourhood. Then CO(X, τ) = τθ .

It is very well known that for every topological space (X, τ) we have (τδ)δ = τδ. What can

be said about the corresponding relation (τθ)θ = τθ ? Clearly, (τθ)θ = τθ if and only if (X, τθ)

is regular. Recall that a space (X, τ) is said to be Urysohn if for each pair x, y ∈ X with

x 6= y there exist open sets U and V such that x ∈ U , y ∈ V and cl(U) ∩ cl(V ) = ∅.

Proposition 2.8 For a topological space (X, τ), in general (τθ)θ 6= τθ holds.
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Proof. Let (X, τ) be a space that is Hausdorff but not Urysohn (see e.g. [7]). Observe that

(X, τθ) is T1, i.e. singletons are τθ-closed, since (X, τ) is Hausdorff. Suppose that (X, τθ) is

regular and let x, y ∈ X with x 6= y . Hence there exist Vx, Vy ∈ τθ such that x ∈ Vx, y ∈ Vy

and Vx∩Vy = ∅. Consequently there exist τ -open sets Ox and Oy with x ∈ Ox ⊆ cl(Ox) ⊆ Vx

and y ∈ Oy ⊆ cl(Oy) ⊆ Vy and so cl(Ox)∩cl(Oy) = ∅. But this shows that (X, τ) is Urysohn,

a contradiction. Observe also, that (X, τθ) fails to be regular.

Question 2 Characterize in additional ways the spaces (X, τ) such that (τθ)θ = τθ.

Remark 2.9 The referee pointed out that (τθ)θ = τθ whenever (X, τ) is almost regular. To

see this, let (X, τ) be almost regular. Then τθ = τδ (see [2] and [4]) and (X, τδ) is regular.

Consequently, (τθ)θ = (τδ)θ = τδ = τθ.

3 On identifying and constructing θ-open sets

In general it seems to be fairly difficult to describe the family of θ-open sets of a given space

(X, τ). Moreover, effective ways to construct θ-open subsets in a (non-regular) space seem to

be rare. By utilizing the concept of a simple extension of a space (X, τ) (due to N. Levine [3])

there is at least one non-trivial way to work with the θ-topology. Let (X, τ) be a topological

space and let D ⊆ X be a non-open subset. The simple extension of τ by D is the (strictly)

finer topology σ defined by σ = {O ∪ (U ∩D) : O, U ∈ τ} . Levine [3] pointed out that

clσ(A) = clτ (A)∩ ((X \D)∪ (D∩ clτ (A∩D))) and clσ(A∩D) = clτ (A∩D) for any subset

A ⊆ X. Moreover, if D is dense in (X, τ) then (X, σ) fails to be regular. The following

observation is probably well known and easily proved.

Lemma 3.1 Let τ and σ be topologies on X with τ ⊆ σ. Then τθ ⊆ σθ.

Proposition 3.2 Let (X, τ) be regular and let D ⊆ X be non-open and dense. If σ denotes

the simple extension of τ by D then τ = σθ.
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Proof. Since (X, τ) is regular we have τθ = τ ⊆ σ and by Lemma 3.1 we conclude that

τ ⊆ σθ.

Now let U ∈ σθ and let x ∈ U . Then there exists V ∈ σ such that x ∈ V ⊆ clσ(V ) ⊆ U .

Let O,O∗ ∈ τ such that V = O ∪ (O∗ ∩D). Since D is dense in (X, τ), it is easily checked

that clτ (V ∩D) = clτ (V ) = clτ (O ∪ O∗) and thus clτ (V ) = clσ(V ). Hence, if W = O ∪ O∗,

then W ∈ τ , x ∈ W and clτ (W ) ⊆ U , proving that U ∈ τ .

Example 3.3 Let X = [0, 1] ⊆ R be the unit interval equipped with the usual topology

denoted by τ . Let D be a non-open dense subset of (X, τ) and let σ be the simple extension

of τ by D. Then (X, σ) is a non-regular Hausdorff space which, of course, cannot be compact.

However, (X, σθ) obviously is a compact Hausdorff space (and thus normal), since σθ = τ .

4 Some topological properties

There are, of course, numerous topological properties that are worth to be discussed with

respect to the θ-topology. We have picked out a few of them along with some interesting

questions.

Proposition 4.1 Let (X, τ) be a topological space. Then (X, τθ) is connected if and only

if (X, τ) is connected.

Proof. Follows from the fact that CO(X, τθ) = CO(X, τ).

Concerning separation axioms we first observe the following result whose proof is elementary.

Proposition 4.2 Let (X, τ) be a topological space. Then (X, τ) is Hausdorff if and only if

(X, τθ) is T1 if and only if (X, τθ) is T0.

Example 4.3 Consider the space (X, τ) of Example 75 in [7], i.e. the irrational slope

topology. Then (X, τ) and thus (X, τδ) are Hausdorff while (X, τθ) is T1 by Proposition 4.2.

Since any two nonempty regular closed sets have nonempty intersection, (X, τθ) cannot be

Hausdorff.
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Clearly, if (X, τθ) is Hausdorff, then (X, τ) has to be Urysohn. Therefore, the following two

natural questions arise.

Question 3 Is there an Urysohn space (X, τ) such that (X, τθ) fails to be Hausdorff?

Question 4 Find necessary and sufficient conditions on a space (X, τ) such that (X, τθ) is

Hausdorff.

Concerning subspaces we offer the following result.

Proposition 4.4 Let (X, τ) be a topological space and let A ⊆ X. Then (τθ)|A ⊆ (τ |A)θ .

Proof. Let V ∈ (τθ)|A . Then there exists U ∈ τθ such that V = U ∩ A . For each x ∈ V

there exists Ux ∈ τ such that x ∈ Ux ⊆ clτ (Ux) ⊆ U . If Vx = Ux ∩ A, then x ∈ Vx and

Vx ∈ τ |A . Thus x ∈ Vx ⊆ clτ |A(Vx) = clτ (Vx) ∩ A = clτ (Ux ∩ A) ∩ A ⊆ V . Consequently

V ∈ (τ |A)θ .

The following example shows that the inclusion in Proposition 4.4 cannot be reserved.

Example 4.5 Let X = R ∪ Y where R denotes the set of reals and Y is an infinite set

disjoint from R. We define a topology τ on X in the following way: any cofinite subset of

Y is open and a basic open neighbourhood of a point x ∈ R is the union of an open interval

of R and a cofinite subset of Y . Since each point of Y is a point of hyperconnectedness,

(X, τθ) has to be indiscrete by Propostion 2.4. Now let A = R. Then (τθ)|A is clearly

indiscrete. Obviously, τ |A is the usual topology on A = R and so (τ |A)θ = τ |A, showing that

(τθ)|A 6= (τ |A)θ .

Question 5 Let (X, τ) be a topological space. Characterize the subspaces A ⊆ X such that

(τθ)|A = (τ |A)θ .

Question 6 Characterize the spaces (X, τ) such that for every subspace A ⊆ X we have

(τθ)|A = (τ |A)θ .

Question 7 Let (X, τ) be a topological space and let τ × τ be the product topology on

X ×X. What is the relationship between the topologies (τ × τ)θ and τθ × τθ ?
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5 On the θ-closure operator

In [8] Veličko already noted that the θ-closure clθ(A) of a subset A of a space (X, τ) does

not define a Kuratowski closure operator in general, hence cannot be the closure of A with

respect to (X, τθ) which we shall denote by A
θ

. It is easily checked that clθ(A) ⊆ A
θ

but

this implication cannot be reversed in general (see [5], page 313). In fact, clθ is a Kuratowski

closure operator if and only if it is idempotent, i.e. if clθ(clθ(A)) = clθ(A) for every subset

A ⊆ X . Of course, this leads to the question which conditions a space must satisfy so that

clθ is a Kuratowski closure operator.

Proposition 5.1 (see [2]) A space (X, τ) is almost regular if and only if clθ is idempotent.

If we restrict ourselves to H-closed topological spaces, the following results are available in

the literature.

Proposition 5.2 Let (X, τ) be Hausdorff and H-closed.

(1) [8] If (X, τ) is in addition Urysohn, then clθ is a Kuratowski closure operator.

(2) [5] If (X, τ) fails to be Urysohn, then clθ need not be a Kuratowski closure operator.

Suppose that (X, τ) is regular but not Hausdorff. Then clθ clearly is a Kuratowski closure

operator as it coincides with the usual closure. Hence such a space need not necessarily

be Urysohn. However, it has been shown in [6], Theorem 3.2, that every almost regular

Hausdorff space is Urysohn.

Acknowledgement. The authors wish to express their sincere gratitude to the referee for

his/her valuable comments.
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