A DECOMPOSITION OF CONTINUITY

Maximilian GANSTER and Ivan REILLY

In 1922 Blumberg[1] introduced the notion of a real valued function on Euclidean space being densely approached at a point in its domain. Continuous functions satisfy this condition at each point of their domains. This concept was generalized by Ptak[7] in 1958 who used the term 'nearly continuous', and by Husain[3] in 1966 under the name of 'almost continuity'. More recently, Mashhour et al. [5] have called this property of functions between arbitrary topological spaces 'precontinuity'.

In this paper we define a new property of functions between topological spaces which is the dual of Blumberg’s original notion, in the sense that together they are equivalent to continuity. Thus we provide a new decomposition of continuity in Theorem 4 (iv) which is of some historical interest.

In a recent paper [10] , Tong introduced the notion of an \mathcal{A}–set in a topological space and the concept of \mathcal{A}–continuity of functions between topological spaces. This enabled him to produce a new decomposition of continuity. In this paper we improve Tong’s decomposition result and provide a decomposition of \mathcal{A}–continuity.

Let S be a subset of a topological space (X, τ) . We denote the closure of S and the interior of S with respect to τ by clS and $intS$ respectively.
Definition 1 A subset S of (X, τ) is called

(i) an α–set if $S \subseteq \text{int}(\text{cl}(\text{int}S))$,

(ii) a semiopen set if $S \subseteq \text{cl}(\text{int}S)$,

(iii) a preopen set if $S \subseteq \text{int}(\text{cl}S)$,

(iv) an \mathcal{A}–set if $S = U \cap F$ where U is open and F is regular closed,

(v) locally closed if $S = U \cap F$ where U is open and F is closed.

Recall that S is regular closed in (X, τ) if $S = \text{cl}(\text{int}S)$. We shall denote the collections of regular closed, locally closed, preopen and semiopen subsets of (X, τ) by $\text{RC}(X, \tau)$, $\text{LC}(X, \tau)$, $\text{PO}(X, \tau)$ and $\text{SO}(X, \tau)$ respectively. The collections of \mathcal{A}–sets in (X, τ) will be denoted by $\mathcal{A}(X, \tau)$. Following the notation of Njastad[6] , τ^α will denote the collection of all α–sets in (X, τ) .

The notions in Definition 1 were introduced by Njastad [6], Levine [4], Mashhour et al. [5], Tong [10] and Bourbaki [2] respectively. Stone [9] used them term FG for a locally closed subset. We note that a subset S of (X, τ) is locally closed iff $S = U \cap \text{cl}S$ for some open set U ([2], I.3.3, Proposition 5).

Corresponding to the five concepts of generalized open set in Definition 1, we have five variations of continuity.

Definition 2 A function $f : X \to Y$ is called α–continuous (semicontinuous, precontinuous, \mathcal{A}–continuous, LC–continuous respectively) if the inverse image under f of each open set in Y is an α–set (semiopen, preopen, \mathcal{A}–set, locally closed respectively) in X.

Njastad [6] introduced α–continuity, Levine [4] semicontinuity and Tong [10] \mathcal{A}–continuity, while LC–continuity seems to be a new notion. It is clear that \mathcal{A}–continuity implies LC–continuity. We now provide an example to distinguish these concepts.

Example 1 Let (X, τ) be the set \mathbb{N} of positive integers with the cofinite topology. Define the function $f : X \to X$ by $f(1) = 1$ and $f(x) = 2$ for all $x \neq 1$. Then $V = X \setminus \{2\}$ is open and $f^{-1}(V) = \{1\}$ which is (locally) closed but not an \mathcal{A}–set. Not that the only regular
closed subsets of (X, τ) are \emptyset and X. For any subset V of X, $f^{-1}(V)$ is $\{1\}$, $X \setminus \{1\}$, \emptyset or X, and these are all locally closed subsets of X. Hence f is LC–continuous but not A–continuous.

Theorem 1 Let S be a subset of a topological space (X, τ). Then S is an A–set if and only if S is semiopen and locally closed.

Proof. Let $S \in A(X, \tau)$, so $S = U \cap F$ where $U \in \tau$ and $F \in RC(X, \tau)$. Clearly S is locally closed. Now $intS = U \cap int F$, so that $S = U \cap cl(int F) \subseteq cl(U \cap int F) = cl(int S)$, and hence S is semiopen.

Conversely, let S be semiopen and locally closed, so that $S \subseteq cl(int S)$ and $S = U \cap cl S$ where U is open. Then $cl S = cl(int S)$ and so is regular closed. Hence S is an A–set. □

Theorem 2 For a subset S of a topological space (X, τ) the following are equivalent:

1. S is open.
2. S is an α–set and locally closed.
3. S is preopen and locally closed.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (1) : Let S be preopen and locally closed, so that $S \subseteq int(cl S)$ and $S = U \cap cl S$. Then $S \subseteq U \cap int(cl S) = int(U \cap cl S) = int S$, hence S is open. □

Theorem 3 For a topological space (X, τ) the following are equivalent:

1. $A(X, \tau) = \tau$.
2. $A(X, \tau)$ is a topology on X.
3. The intersection of any two A–sets in X is an A–set.
4. $SO(X, \tau)$ is a topology on X.
5. (X, τ) is extremally disconnected.
Proof. (1) ⇒ (2) and (2) ⇒ (3) are clear.

(3) ⇒ (4) : Let $S_1, S_2 \in SO(X, \tau)$. We wish to show $S_1 \cap S_2 \in SO(X, \tau)$. Suppose there is a point $x \in S_1 \cap S_2$ such that $x \notin cl(int(S_1 \cap S_2))$. So there is an open neighbourhood U of x such that $U \cap int(S_1 \cap intS_2) = \emptyset$. Thus $U \cap clS_1 \cap intS_2 = \emptyset$ and hence we have $U \cap int(clS_1 \cap clS_2) = \emptyset$. Therefore $U \cap int(clS_1 \cap clS_2) = \emptyset$, so that $x \notin cl(int(clS_1 \cap clS_2))$.

But, on the other hand we have $clS_1, clS_2 \in RC(X, \tau)$, so that $clS_1, clS_2 \in A(X, \tau) \subseteq SO(X, \tau)$. Then $x \in clS_1 \cap clS_2$ implies $x \in cl(int(clS_1 \cap clS_2))$, which is a contradiction. Thus no such point x exists, and so $S_1 \cap S_2 \in SO(X, \tau)$.

(5) ⇒ (1) : If A is an A–set then $A = U \cap F$ where $U \in \tau$ and $F \in RC(X, \tau)$. Since (X, τ) is extremally disconnected, $F \in \tau$. Hence $A \in \tau$. □

Theorem 1 and 2 show that in any topological space (X, τ) we have the following fundamental relationships between the classes of subsets of X we are considering, namely

(i) $A(X, \tau) = SO(X, \tau) \cap LC(X, \tau)$.

(ii) $\tau = \tau^\alpha \cap LC(X, \tau)$.

(iii) $\tau = PO(X, \tau) \cap LC(X, \tau)$.

(iv) $\tau = PO(X, \tau) \cap A(X, \tau)$.

(v) $\tau^\alpha = PO(X, \tau) \cap SO(X, \tau)$ (is due to Reilly and Vamanamurthy [8])

These relationships provide immediate proofs for the following decompositions. We note that (ii) of Theorem 4 is an improvement of Tong’s decomposition of continuity [10], Theorem 4.1, and that (iii) of Theorem 4 is due to Reilly and Vamanamurthy [8] . Theorem 4 (i), (iv) and (v) seem to be new results and provide new decompositions of continuity.

Theorem 4 Let $f : X \rightarrow Y$ be a function. Then

(i) f is A–continuous if and only if f is semicontinuous and LC–continuous.

(ii) f is continuous if and only if f is α–continuous and LC–continuous.

(iii) f is α–continuous if and only if f is precontinuous and semicontinuous.

(iv) f is continuous if and only if f is precontinuous and LC–continuous.

(v) f is continuous if and only if f is precontinuous and A–continuous.
References

Department of Mathematics, Graz University of Technology, Graz, AUSTRIA.

Department of Mathematics and Statistics, University of Auckland, Auckland, NEW ZEALAND.