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Abstract

We consider the family of S-sets in a topological space (X, τ) and discuss the
associated co-S-closed topology τ∗ of (X, τ) . It is shown that the co-S-closed topology
may be used to characterize the S-closedness of the space in question. In addition,
we study the relationship between the semi-regularization topology, the co-S-closed
topology and the given topology of a space.

1 Introduction

In 1963, Levine [8] introduced and studied the concept of semi-open sets in topological spaces.

In 1976, Thompson [13] used semi-open sets to define the class of S-closed spaces. In his own

study of S-closed spaces, Noiri [9] investigated certain subsets of a given topological space

(X, τ) which he called S-closed relative to (X, τ) . Di Maio [1] , calling such subsets S-sets,

observed that in any space (X, τ) the family of open sets whose complements are S-sets

forms a base for a coarser topology τ ∗ on X . In [1] this topology was used to define and

study so-called S-continuous functions between topological spaces. Quite recently, Jiang and

Reilly [6] extended Di Maio’s work on S-continuity, and they called the associated topology

τ ∗ the co-S-closed topology of the space (X, τ) .

The purpose of this paper is to discuss in greater detail the concept of co-S-closed topolo-

gies. We will start with various results about S-sets in topological spaces and then move
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on to consider the co-S-closed topology for an arbitrary space. As one might expect, the

co-S-closed topology will be particularly useful in characterizing S-closed spaces. One of our

main results says that a space (X, τ) is S-closed if and only if τs, the semi-regularization of

τ , is coarser than the co-S-closed topology τ ∗ . This result not only has some interesting

consequences, it enables us also to provide very simple proofs for several known results. In

the last section of our paper we will consider the relationship between co-S-closed topologies

and the class of SC-compact spaces due to Garg and Sivaraj [3] . We will close by posing

two open problems.

2 Preliminaries

No separation axioms are assumed unless explicitly stated. For a subset S of a topological

space (X, τ) the closure and the interior of S with respect to (X, τ) will be denoted by

τ − clS and τ − intS respectively. We will, however, usually suppress the τ when there is

no possibility of confusion.

Definition 1 A subset S of a space (X, τ) is called

i) semi-open [8] if S ⊆ cl(intS) ,

ii) regular open if S = int(clS) ,

iii) regular closed if X \ S is regular open, or equivalently, if S = cl(intS) .

The families of regular open subsets and regular closed subsets of a space (X, τ) are

denoted by RO(X, τ) and RC(X, τ) , respectively. Clearly, S ∈ RO(X, τ) if and only if S is

the interior of some closed set, and S ∈ RC(X, τ) if and only if S is the closure of some open

set. Since RO(X, τ) is closed under forming finite intersections, it constitutes a base for a

coarser topology τs on X , and the space (X, τs) is called the semi-regularization of (X, τ) . A

space (X, τ) is called semi-regular if τ = τs . It is well known that (τs)s = τs and thus (X, τs)

is semi-regular. We call a space (X, τ) hyperconnected whenever any pair of nonempty open

sets has nonempty intersection, or equivalently, whenever any nonempty open set is dense in
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(X, τ) . Clearly (X, τ) is hyperconnected if and only if τs = RO(X, τ) = {∅, X} . A space

(X, τ) is said to be extremally disconnected, briefly e.d. , if the closure of any open set is

open. It is obvious that (X, τ) is e.d. if and only if RO(X, τ) = RC(X, τ) . Finally, as a

weaker form of Hausdorffness, Soundararajan [11] defined a space (X, τ) to be weakly T2 if

{x} =
⋂}F ∈ RC(X, τ) : x ∈ F} for every x ∈ X .

Definition 2 A space (X, τ) is called S-closed [13] (respectively quasi-H-closed) if every

cover of X by semi-open sets (respectively open sets) contains a finite subfamily the closures

of whose members cover X .

Observation 2.1 A space (X, τ) is S-closed if and only if every cover of X by regular closed

sets contains a finite subcover.

For convenience we would like to mention the following two results. The first one is a

folklore result while the second one is due to Hermann [4] .

Proposition 2.2 Let τ and σ be topologies on a set X such that τs ⊆ σ ⊆ τ . Then

RO(X, τ) = RO(X, σ) and RO(X, τ) = RO(X, σ) , and thus σs = τs .

Proposition 2.3 [4] Let (X, τ) be weakly-T2 . Then (X, τ) is S-closed if and only if (X, τ)

is quasi-H-closed and e.d. . Moreover, a weakly-T2 S-closed space is T2 .

3 S-sets in topological spaces

Definition 3 A subset S of a space (X, τ) is called an S-set in (X, τ) if every cover of S by

regular closed sets of (X, τ) contains a finite subcover of S .

Note that Noiri [9] used the term ’S-closed relative to (X, τ)’ . Obviously, (X, τ) is S-

closed if and only if X is an S-set in (X, τ) . Moreover, S ⊆ X is an S-set in (X, τ) if and

only if S is an S-set in (X, τs) . Spaces in which every closed subset is an S-set have been

called SC-compact [3] .

The following result of Noiri is fundamental in dealing with S-sets.
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Proposition 3.1 [9] Let S be an S-set in (X, τ) . Then clS and int(clS) are S-sets, and

S ∩G is an S-set whenever G ∈ RO(X, τ) .

The proof of the preceding result reveals also that whenever S ⊆ X is an S-set and

{Gi : i ∈ I} ⊆ RO(X, τ) then S ∩ A is an S-set where A =
⋂{Gi : i ∈ I} . As a

consequence, if (X, τ) is S-closed then any intersection of regular open sets is an S-set in

(X, τ) .

Our next observation points out that S-sets may be utilized to characterize weakly-T2

spaces.

Proposition 3.2 For a space (X, τ) the following are equivalent :

1) (X, τ) is weakly-T2 ,

2) (X, τs) is T1 ,

3) Every S-set in (X, τ) is closed in (X, τs) .

Proof.

1) ⇔ 2) : This is obvious.

2) ⇒ 3) : Let S be an S-set in (X, τ) and let x /∈ S . Since (X, τs) is T1 , for every

y ∈ S there exists Fy ∈ RC(X, τ) such that y ∈ Fy and x /∈ Fy . Since S is covered by

{Fy : y ∈ S} , there is a finite subfamily whose union contains S . If F denotes this union

then F ∈ RC(X, τ) and X \ F is a τs-open neighborhood of x having empty intersection

with S . Hence S is τs-closed.

3) ⇒ 2) : Observe that {x} is an S-set in (X, τ) for every x ∈ X. ¤

In his fundamental paper on hereditarily compact spaces, Stone [12] defined a space

(X, τ) to be semi-irreducible if every family consisting of nonempty pairwise disjoint open

sets has to be finite. Moreover, in [12] it is shown that (X, τ) is semi-irreducible if and only

if RO(X, τ) is finite.

The following result shows that the semi-irreducibility of a space may also be character-

ized in terms of S-sets.
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Theorem 3.3 A space (X, τ) is semi-irreducible if and only if every subset of X is an S-set.

Proof. If (X, τ) is semi-irreducible, i.e. if RO(X, τ) and thus RC(X, τ) are finite, then

every subset of X is clearly an S-set. To prove the converse, suppose that every subset of X

is an S-set in (X, τ) . Let us assume that RC(X, τ) is infinite. Since RC(X, τ) is a Boolean

algebra, there exists a strictly increasing sequence F0 ⊂ F1 ⊂ F2 ⊂ ... in RC(X, τ) (see e.g.

[7] , page 40). Let ω denote the set of natural numbers. For each n ∈ ω pick xn ∈ Fn+1 \ Fn

and let S = {xn : n ∈ ω} . By construction , S fails to be an S-set and thus we have

arrived at a contradiction. Hence RC(X, τ) is finite, i.e. (X, τ) is semi-irreducible. ¤

In contrast to the preceding result we now address the question to describe spaces in

which every S-set has to be finite. While we have not been able to completely characterize

this class of spaces we do have the following result.

Theorem 3.4 Let (X, τ) be a regular T1 space in which every singleton is the intersection

of two regular closed sets. Then every S-set in (X, τ) is finite.

Proof. Let S ⊆ X be an S-set in (X,τ) . For each x ∈ S , X \ {x} = Gx ∪ Hx where

Gx, Hx ∈ RO(X, τ) . By Proposition 3.1 , S∩Gx and S∩Hx are S-sets, and so S \{x} is an

S-set for each x ∈ S . By Proposition 3.2, S \ {x} is closed in (X, τ) for each x ∈ S . Since

(X, τ) is regular, for each x ∈ S there exists Vx ∈ τ containing x such that clVx∩(S\{x}) = ∅
, i.e. clVx ∩ S = {x} . Now S is an S-set and {clVx : x ∈ S} is a cover of S by regular

closed sets, hence S must be finite. ¤

Corollary 3.5 The set of real numbers with the euclidean topology is a space in which

every S-set is finite.

In concluding this section recall that Ganster [2] has defined a space to be strongly s-

regular if every open set is the union of regular closed sets. The following observation is

easily proved.

Proposition 3.6 If (X, τ) is strongly s-regular then every S-set in (X, τ) is compact.
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4 Co-S-closed topologies

Di Maio [1] has observed that for any space (X, τ) the family {U ∈ τ : X \U is an S-set in

(X, τ) } is a base for a coarser topology τ ∗ on X which we will call the co-S-closed topology

of (X, τ) . A basic result about the co-S-closed topology is the following.

Proposition 4.1 [1] Let τ ∗ be the co-S-closed topology of (X, τ) . If (X, τ ∗) is not hyper-

connected, then (X, τ) is S-closed.

Note that if X denotes the set of real numbers and τ the euclidean topology on X , then

(X, τ) is not S-closed hence (X, τ ∗) is hyperconnected. In fact,τ ∗ is the cofinite topology on

X by Corollary 3.5 .

We are now able to state and prove one of our main results in this section.

Theorem 4.2 Let τ ∗ be the co-S-closed topology of a space (X, τ) . Then the following are

equivalent :

1) (X, τ) is S-closed ,

2) τs ⊆ τ ∗ ,

3) RC(X, τ ∗) = RC(X, τ) .

Proof. 1) ⇒ 2) : Let G ∈ RO(X, τ) and let F = X ⊆ G . Since X is an S-set and

intF ∈ RO(X, τ) , by Proposition 3.1 , intF and F = cl(intF ) are S-sets and thus we have

G ∈ τ ∗ . Consequently, τs ⊆ τ ∗ .

2) ⇒ 3) : Since τs ⊆ τ ∗ ⊆ τ , by Proposition 2.2 we have RC(X, τ ∗) = RC(X, τ) .

3) ⇒ 1) : By Propositon 4.1 , if (X, τ ∗) is not hyperconnected, then (X, τ) is S-closed. If

(X, τ ∗) is hyperconnected, then, by assumption, (X, τ) has to be hyperconnected and thus

S-closed. ¤

The preceding result has a number of interesting consequences whose proofs are easy and

hence left to the reader (just consider the two cases whether (X, τ ∗) is hyperconnected or

not, and apply Proposition 4.1 and Theorem 4.2 ).
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Corollary 4.3 For any space (X, τ) , we always have RC(X, τ ∗) ⊆ RC(X, τ) .

Corollary 4.4 For any space (X, τ) , (X, τ ∗) is always S-closed .

Corollary 4.5 A space (X, τ) is S-closed if and only if (X, τs) is S-closed if and only if

τs = (τs)
∗ .

Motivated by Theorem 4.2 , the question now arises under what conditions on a space

(X, τ) the inclusion ”τ ∗ ⊆ τs” holds. It turns out that a suitable weakening of the property

”weakly-T2” will do the job.

Definition 4 A space (X, τ) is said to be subweakly T2 if τ − cl{x} = τs − cl{x} for every

x ∈ X .

Note that τs− cl{x} =
⋂{F ∈ RC(X, τ) : x ∈ F} . Obviously every semi-regular space

is subweakly-T2 , and (X, τ) is weakly-T2 if and only if (X, τ) is subweakly-T2 and T1 .

Observe also that (X, τ) is subweakly-T2 and hyperconnected if and only if τ is the

indiscrete topology on X . In particular, the cofinite topology on an infinite set yields a

space which is T1 but not subweakly-T2 .

Theorem 4.6 Let τ ∗ be the co-S-closed topology of (X, τ) . Then (X, τ) is subweakly-T2

if and only if τ ∗ ⊆ τs .

Proof. Suppose that (X, τ) is subweakly-T2 . Let U ∈ τ such that X \ U is an S-set

in (X, τ) , and pick x ∈ U . We have to show that there exists G ∈ RO(X, τ)) such that

x ∈ G ⊆ U . For every y ∈ X\U we have τ−cl{y} ⊆ X\U and so there exists Fy ∈ RC(X, τ)

containing y but not x . Since X \ U is an S-set, a finite subfamily of {Fy : y ∈ X \ U}
covers X \ U . If F denotes the union of this finite subfamily then F ∈ RC(X, τ) . Hence

X \ F ∈ RO(X, τ) and x ∈ X \ F ⊆ U . This shows that τ ∗ ⊆ τs .

Now suppose that τ ∗ ⊆ τs . If x ∈ X then τ − cl{x} is an S-set and hence τ ∗-closed. By

assumption, τ − cl{x} is τs-closed and so τ − cl{x} = τs− cl{x} , i.e. (X, τ) is subweakly-T2

. ¤

As an immediate consequence of Theorem 4.2 and Theorem 4.6 we now have
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Corollary 4.7 Let τ ∗ be the co-S-closed topology of the subweakly-T2 space (X, τ) .

Then (X, τ) is S-closed if and only if τ ∗ = τs .

Corollary 4.8 [6] Let τ ∗ be the co-S-closed topology of (X, τ) . Then (X, τ ∗) is weakly-T2

if and only if (X, τ) is S-closed and T2 .

Proof. If (X, τ ∗) is weakly-T2 then it is not hyperconnected and thus (X, τ) is S-closed

by Proposition 4.1 . By Theorem 4.2 we have that (X, τ) is weakly-T2 , and a weakly-T2

S-closed space is T2 by Proposition 2.3 .

Conversely, if (X, τ) is T2 and S-closed , then (X, τs) is T2 and τ ∗ = τs by Corollary 4.7

, hence (X, τ ∗) is clearly weakly-T2 . ¤

In dealing with S-closed spaces (X, τ) , we have the given topology τ , the semi-

regularization topology τs , and the co-S-closed topology τ ∗ of (X, τ) . The relationship

between these topologies is τs ⊆ τ ∗ ⊆ τ . Note that if X is an infinite set and τ is the

cofinite topology on X then τ ∗ = τ and τs 6= τ ∗ . On the other hand, if (X, τ) denotes the

Katetov extension of the natural numbers then (X, τ) is T2 and S-closed but not semi-regular

(see e.g. [10] ) . Hence τs = τ ∗ and τ ∗ 6= τ . These observations lead to the question of

describing the class of spaces (X, τ) which satisfy τ = τ ∗ . Clearly such spaces have to be

S-closed by Theorem 4.2 . It is also obvious that SC-compact spaces (X, τ) [3] , i.e. spaces

in which every closed set is an S-set, and semi-irreducible spaces satisfy τ = τ ∗ . While

we did not succeed in characterizing the class of spaces (X, τ) which satisfy τ = τ ∗ ,we do

have some partial results. The first one is a straightforward consequence of Corollary 4.7

and Theorem 4.6 .

Theorem 4.9 Let τ ∗ be the co-S-closed topology of (X, τ) . Then (X, τ) is S-closed and

semi-regular if and only if (X, τ) is subweakly-T2 and τ = τ ∗ .

Recall that a space (X, τ) is said to be R0 if τ − cl{x} ⊆ U whenever U ∈ τ and x ∈ U .

Jankovic and Konstadilaki [5] have shown that an S-closed space (X, τ) is e.d. if and only

if (X, τs) is R0 . This result can also be stated in the following form.
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Proposition 4.10 A space (X, τ) is quasi-H-closed and e.d. if and only if (X, τ) is S-closed

and (X, τs) is R0 .

As a consequence of Proposition 4.10 we now have

Theorem 4.11 Let τ ∗ be the co-S-closed topology of (X, τ) . If (X, τ) is subweakly-T2 and

(X, τs) is R0 , then τ = τ ∗ if and only if (X, τ) is SC-compact.

Proof. If (X, τ) is SC-compact then clearly τ = τ ∗ . Now suppose that τ = τ ∗ .

Then (X, τ) is S-closed and τ = τ ∗ = τs by Theorem 4.6 . If A ⊆ X is τ -closed then

A =
⋂{F ∈ RC(X, τ) : A ⊆ F} . By Proposition 4.10 , (X, τ) is e.d. and so A is an

intersection of regular open sets in (X, τ) and thus an S-set in (X, τ) . This proves that

(X, τ) is SC-compact. ¤

Corollary 4.12 Let (X, τ) be weakly-T2 . Then τ = τ ∗ if and only if (X, τ) is SC-compact.

In closing this paper we would like to pose the following two open problems.

Problem 1. Characterize the class of spaces in which every S-set is finite.

Problem 2. Let τ ∗ denote the co-S-closed topology of (X, τ) . Does τ = τ ∗ imply in general

that (X, τ) has to be SC-compact ? If the answer is ”no”, what is a useful condition (P)

such that the following holds : ” τ = τ ∗ if and only if (X, τ) is S-closed and satisfies (P)” ?
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