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Abstract

In this paper we introduce the class of countably S-closed spaces which lies between
the familiar classes of S-closed spaces and feebly compact spaces. We characterize
countably S-closed spaces and study their basic properties. In addition, we investigate
the relationship between countably S-closed spaces and feebly compact spaces. Several
examples illustrate our results.

1 Introduction and Preliminaries

In 1976, Thompson [8] introduced the class of S-closed spaces. A space X is called S-

closed if every semi-open cover has a finite subfamily the closures of whose members cover

X , or equivalently, if every regular closed cover of X has a finite subcover. Herrmann [3]

proved that a Hausdorff space is S-closed if and only if it is quasi-H-closed and extremally

disconnected. Recall that a space X is said to be quasi-H-closed if every open cover of X

has a finite subfamily the closures of whose members cover X. If we replace in the definition

of quasi-H-closedness ”every open cover” by ”every countable open cover” we obtain the

important class of feebly compact spaces (also known as lightly compact spaces).

In this paper we introduce and study a new class of spaces, namely countably S-closed

spaces, i. e. spaces in which every countable regular closed cover has a finite subcover. In

Section 2 we provide several characterizations of countably S-closed spaces and investigate

their basic properties. It is pointed out that this class of spaces lies strictly between the
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class of S-closed spaces and the class of feebly compact spaces. In Section 3 we further

explore the relationship between countably S-closed spaces and feebly compact spaces. In

particular, the concept of km-perfect spaces is introduced. Finally, in Section 4 we present

several examples to illustrate the results obtained in Section 2 and Section 3.

For a subset A of a topological space (X, τ) we denote the closure of A and the interior of

A by clA and intA , respectively. The subspace topology on A is denoted by τ |A . A subset

G of (X, τ) is called regular open if G = int(clG) . F ⊆ X is said to be regular closed if

X \F is regular open, or equivalently, if F = cl(intF ) . The families of regular open subsets

and regular closed subsets of (X, τ) are denoted by RO(X, τ) and RC(X, τ) , respectively.

RO(X, τ) is a base for a coarser topology τs on X, called the semi-regularization topology on

X . (X, τ) is said to be extremally disconnected, abbreviated e.d. , if every regular open set

is closed, or equivalently, if RO(X, τ) = RC(X, τ) . It is known that every dense subspace of

an e.d. space is e.d. . In order to facilitate an easy reading of this paper we now summarize

some well known results.

Lemma 1.1 Let (X, τ) be a space. Then

i) RC(X, τ) = RC(X, τs) ,

ii) (X, τ) is e.d. if and only if (X, τs) is e.d. ,

iii) If A ⊆ X is locally dense, i.e. if A ⊆ int(clA) , then

RC(A, τ |A) = {F ∩ A : F ∈ RC(X, τ)} .

A subset S of (X, τ) is called semi-open [5] (regular semi-open [1] , respectively) if there

is an open set U (a regular open set U , respectively) such that U ⊆ S ⊆ clU . A space

(X, τ) is called quasi-H-closed (feebly compact, S-closed [8] , respectively) if every open

cover (every countable open cover, every semi-open cover, respectively) of (X, τ) has a finite

subfamily the closures of whose members cover X . Following Hodel [4] , a cellular family

in a space (X, τ) is a collection of nonempty, pairwise disjoint open sets. We will denote the

set of natural numbers by ω, and βω is the Stone-Cech compactification of ω . Finally, a

sequence {An : n ∈ ω} of subsets of a set X is called decreasing (increasing, respectively) if
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An+1 ⊆ An (An ⊆ An+1 , respectively) for each n ∈ ω . Strictly decreasing sequences and

strictly increasing sequences of subsets are defined in the obvious ways.

No separation axioms are assumed unless explicitly stated.

2 Characterizations and Basic Properties

We begin by defining the class of spaces we will study in this paper.

Definition 1 A topological space (X, τ) is countably S-closed if every countable cover of

regular closed sets has a finite subcover.

The following fundamental observation is easily verified.

Proposition 2.1 Every S-closed space is countably S-closed, and every countably S-closed

space is feebly compact.

Note that the converses of these implications are false, however. Example 4.1 provides a

space which is countably S-closed but not S-closed, and in Example 4.3, we present several

feebly compact spaces which are not countably S-closed.

In our next result we present a huge variety of characterizations of countably S-closed

spaces.

Theorem 2.2 For a space (X, τ) the following are equivalent:

1) (X, τ) is countably S-closed ,

2) Every countable cover of X by semi-open sets has a finite subfamily the closures of

whose members cover X ,

3) Every countable cover of X by regular semi-open sets has a finite subfamily the closures

of whose members cover X ,

4) There is no strictly increasing sequence of regular closed sets whose union is X ,

5) If {Fn : n ∈ ω} is a decreasing sequence of nonempty regular closed sets then
⋂{intFn : n ∈ ω} 6= ∅ ,
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6) If {Gn : n ∈ ω} is a decreasing sequence of nonempty regular open sets then
⋂{Gn : n ∈ ω} 6= ∅ ,

7) If {Gn : n ∈ ω} is a sequence of regular open sets satisfying the finite intersection

property then
⋂{Gn : n ∈ ω} 6= ∅ ,

8) If {Gn : n ∈ ω} is a filterbasis consisting of regular open sets then
⋂{Gn : n ∈

ω} 6= ∅ .

Proof. 1) ⇔ 2) ⇔ 3) : This is obvious since the closure of every semi-open set is regular

closed. Furthermore, every regular closed set is regular semi-open and thus semi-open.

1) ⇒ 4) : This is trivial.

4) ⇒ 1) : Suppose that (X, τ) is not countably S-closed. Then there exists a countable

regular closed cover {Fn : n ∈ ω} of X such that for all k ∈ ω ,
⋃{Fn : 1 ≤ n ≤ k} 6= X .

By induction we can construct a family {An : n ∈ ω} as follows : for n = 1 set A1 = F1 . For

n ≥ 2 there must be a least m ∈ ω such that An−1 is strictly contained in F1 ∪ ...∪ Fm 6= X

. Define An by An = F1 ∪ ... ∪ Fm . Since {An : n ∈ ω} is a strictly increasing sequence of

regular closed sets whose union is X , we have a contradiction to 4) .

1) ⇒ 5) : Let {Fn : n ∈ ω} be a decreasing sequence of nonempty regular closed sets.

Suppose that
⋂{intFn : n ∈ ω} = ∅ . Then {cl(X \Fn) : n ∈ ω} is a regular closed cover

of X . By assumption, there exists m ∈ ω such that X =
⋃{cl(X \ Fi) : i = 1, ..., m} =

cl(X \ Fm) . Hence intFm = ∅ , which gives a contradiction.

5) ⇒ 6) : Set Fn = clGn for all n ∈ ω and apply 5) .

6) ⇒ 7) : Let {Gn : n ∈ ω} be a sequence of regular open sets satisfying the finite

intersection property. Set Un = G1∩...∩Gn for all n ∈ ω . Then {Un : n ∈ ω} is a decreasing

sequence of nonempty regular open sets and
⋂{Gn : n ∈ ω} =

⋂{Un : n ∈ ω} 6= ∅ .

7) ⇒ 8) : This is trivial since every filterbase satisfies the finite intersection property.

8) ⇒ 1) : Suppose that (X, τ) is not countably S-closed. Then there is a countable

regular closed cover {Fn : n ∈ ω} of X without a finite subcover. For n ∈ ω define Gn by

Gn = X \(F1∪ ...∪Fn) . Then Gn is nonempty and regular open for all n ∈ ω . Furthermore,

it is easily proved that {Gn : n ∈ ω} is a filterbase with empty intersection, a contradiction

to 8) . ¤
As an immediate consequence of Lemma 1.1 we note the following result.
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Lemma 2.3 Let (X, τ) be a space and suppose that X = A1∪ ...∪An∪E , where each Ai is

a locally dense, countably S-closed subspace and E ⊆ X is finite. Then (X, τ) is countably

S-closed.

Lemma 2.4 Let (X, τ) be a space. Suppose there exists x0 ∈ X having an open neighbour-

hood base {Un : n ∈ ω} with the following properties:

i) each clUn+1 is strictly contained in Un ,

ii) U1 = X ,

iii) {x0} =
⋂{Un : n ∈ ω} =

⋂{clUn : n ∈ ω} .

Then (X, τ) is not countably S-closed.

Proof. Let {ωk : k ∈ ω} be a partition of ω where each ωk is infinite. For every

k ∈ ω let Gk =
⋃{Un \ clUn+1 : n ∈ ωk} . Then {Gk : k ∈ ω} is a cellular family.

One checks easily that x0 ∈ clGk and
⋃{clUn \ clUn+1 : n ∈ ωk} ⊆ clGk for each k ∈ ω

. We now show that {clGk : k ∈ ω} covers X . If x 6= x0 then there exists m ∈ ω such

that x ∈ clUm \ clUm+1 . There is some k ∈ ω such that m ∈ ωk and so x ∈ clGk . Since

{Gk : k ∈ ω} is a cellular family, {clGk : k ∈ ω} is a countable regular closed cover of X

without a finite subcover. Thus (X, τ) is not countably S-closed. ¤

Corollary 2.5 1) An infinite regular space which is first countable at some non-isolated

point is not countably S-closed.

2) Suppose that (X, τ)) is an infinite, regular feebly compact space and there exists

x0 ∈ X such that {x0} is a Gδ-set but not open. Then (X, τ) is not countably S-closed.

Proof. 1) is an immediate consequence of Lemma 2.4 . To prove 2) observe that by

Proposition 2.2. in [6] , (X, τ) is first countable at x0 . Now apply 1) . ¤

We now focus on the fundamental properties of countably S-closed spaces. To begin with,

recall that a topological property R is said to be semi-regular provided that a space (X, τ)

has property R if and only if (X, τs) has property R . The property R is called contagious

if a space (X, τ) has property R whenever a dense subspace of (X, τ) has property R . Our

first result is an immediate consequence of Lemma 1.1 .
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Proposition 2.6 Let R be the property ”countably S-closed”. Then R is both semi-regular

and contagious.

Recall that a function f : (X, τ) → (Y, σ) is called irresolute if f−1(S) is semi-open in

(X, τ) whenever S is semi-open in (Y, σ) . It is known that a function which is continuous,

open and onto, is irresolute. Thompson [9] has shown that if (X, τ) is S-closed and f :

(X, τ) → (Y, σ) is irresolute and onto, then (Y, σ) is S-closed. The same idea works to prove

our next result.

Proposition 2.7 i) Let (X, τ) be countably S-closed and let f : (X, τ) → (Y, σ) be irreso-

lute and onto. Then (Y, σ) is countably S-closed.

ii) Let (X, τ) be countably S-closed and let f : (X, τ) → (Y, σ) be continuous, open and

onto. Then (Y, σ) is countably S-closed.

iii) If a product of topological spaces is countably S-closed, then each factor space is

countably S-closed.

Remark 2.8 The converse of Proposition 2.7 iii) is false. βω is S-closed hence countably

S-closed, but βω × βω is not countably S-closed as shown in Example 4.4 .

Proposition 2.9 Let (X, τ) be countably S-closed.

i) If G ∈ RO(X, τ) , then (G, τ |G) is countably S-closed.

ii) If F ∈ RC(X, τ) , then (F, τ |F ) is countably S-closed.

iii) If (A, τ |A) is a countably S-closed subspace of (X, τ) (here (X, τ) need not be

countably S-closed) , and if A ⊆ T ⊆ clA , then (T, τ |T ) is countably S-closed.

iv) Let (X, τ) be regular. If p ∈ X is a non-isolated point, then X \ {p} is a countably

S-closed subspace.

Proof.

i) Let {An : n ∈ ω} ⊆ RC(G, τ |G) be a cover of G . By Lemma 1.1 , for each n ∈ ω

An = G ∩ Fn for some Fn ∈ RC(X, τ) . Since {Fn : n ∈ ω} ∪ {X \ G} is a regular closed
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cover of (X, τ) , there exists m ∈ ω such that X = (X \ G) ∪ F1 ∪ ... ∪ Fm . Consequently,

G = A1 ∪ ... ∪ Am and thus (G, τ |G) is countably S-closed.

ii) Let F ∈ RC(X, τ). Then intF ∈ RO(X, τ) and intF is dense in (F, τ |F ) . By i) and

Proposition 2.6 , (T, τ |T ) is countably S-closed.

iii) Since A is dense in (T, τ |T ), by Proposition 2.6 , (T, τ |T ) is countably S-closed.

iv) Let D = X \ {p} . If D is finite, clearly (D, τ |D) is countably S-closed. Suppose

that D is infinite. Let {An : n ∈ ω} ⊆ RC(D, τ |D) be a cover of D . By Lemma 1.1

, for each n ∈ ω An = D ∩ Fn for some Fn ∈ RC(X, τ) . If X 6= ⋃{Fn : n ∈ ω} ,

then {p} is a Gδ-set in (X, τ) and by Corollary 2.5, (X, τ) and (D, τ |D) are finite spaces,

which is a contradiction. Thus X =
⋃{Fn : n ∈ ω} , and there exists m ∈ ω such that

X = F1 ∪ ... ∪ Fm and D = A1 ∪ ... ∪ Am , i.e. (D, τ |D) is countably S-closed. ¤

Remark 2.10 The property ”countably S-closed” is in general not hereditary with respect

to open, dense or closed subspaces. βω is S-closed hence countably S-closed. ω ⊆ βω is

open and dense in βω but clearly not countably S-closed. Moreover, we show in Example 4.5

that βω \ ω fails to be countably S-closed.

3 Countably S-closed spaces vs. feebly compact spaces

In this section we focus on the relationship between countably S-closed spaces and feebly

compact spaces. We already pointed out in Proposition 2.1 that every countably S-closed

space is feebly compact whereas the converse does not hold in general (see Example 4.3) .

Therefore it is quite natural to search for a condition (P ) such that a space is countably

S-closed if and only if it is feebly compact and satisfies (P ) . For the class of S-closed spaces

there exists the following interesting result [3] : A Hausdorff space is S-closed if and only if

it is quasi-H-closed and e.d. . Unfortunately, there is no analogous result for the class of

countably S-closed spaces. It is obvious that every feebly compact e.d. space is countably

S-closed but in Example 4.2 we show that there exist countably S-closed, compact Hausdorff
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spaces which are not e.d. . We are, however, able to characterize the class of spaces which

are countably S-closed and e.d. .

Definition 2 A space (X, τ) is called km-perfect if for each U ∈ RO(X, τ) and each x /∈ U

there is a sequence {Gn : n ∈ ω} of open sets such that
⋃{Gn : n ∈ ω} ⊆ U ⊆ ⋃{clGn :

n ∈ ω} and x /∈ ⋃{clGn : n ∈ ω} .

Our next result shows that there is a variety of spaces which are km-perfect. Recall that

a space (X, τ) is said to be perfect (RC-perfect [6] , respectively) if every open set is the

countable union of closed sets (regular closed sets, respectively).

Theorem 3.1 If a space (X, τ) is either

i) e.d. , or

ii) hereditarily Lindelöf and Hausdorff, or

iii) second countable and Hausdorff, or

iv) RC-perfect, or

v) regular and perfect,

then it is km-perfect.

Proof. Let U ∈ RO(X, τ) and x /∈ U .

i) Suppose that (X, τ) is e.d. . Then U is closed and we are done by setting Gn = U for

each n ∈ ω .

ii) If (X, τ) is hereditarily Lindelöf and Hausdorff, for each y ∈ U there is an open set

Vy such that y ∈ Vy ⊆ U and x /∈ clVy . Then {Vy : y ∈ U} is an open cover of U which

possesses a countable subcover {Vyn : n ∈ ω} . Then U =
⋃{Vyn : n ∈ ω} and x /∈ clVyn

for each n ∈ ω , proving that (X, τ) is km-perfect.

iii) This follows from ii) since every second countable space is hereditarily Lindelöf.

iv) If (X, τ) is RC-perfect then U =
⋃{Fn ∈ RC(X, τ) : n ∈ ω} . Thus

⋃{intFn ∈
RC(X, τ) : n ∈ ω} ⊆ U ⊆ ⋃{Fn ∈ RC(X, τ) : n ∈ ω} and x /∈ Fn for each n ∈ ω .

v) Suppose that (X, τ) is regular and perfect. Then U =
⋃{An : n ∈ ω} where each

An is closed. For each n ∈ ω , x /∈ An and by regularity there exists an open set Gn with

An ⊆ Gn ⊆ U and x /∈ clGn . Hence (X, τ) is km-perfect. ¤
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The importance of the class of km-perfect spaces is illustrated by

Theorem 3.2 Let (X, τ) be countably S-closed and km-perfect. Then (X, τ) is e.d. .

Proof. Let U ∈ RO(X, τ) and x /∈ U . Let {Gn : n ∈ ω} be a sequence of open

sets with
⋃{Gn : n ∈ ω} ⊆ U ⊆ ⋃{clGn : n ∈ ω} and x /∈ ⋃{clGn : n ∈ ω} . By

Lemma 1.1, {U ∩ clGn : n ∈ ω} ⊆ RC(U, τ |U) is a cover of U . By Proposition 2.9 ,

(U, τ |U) is countably S-closed so there exists m ∈ ω such that U ⊆ clG1 ∪ ...∪ clGm . Since

x ∈ X \ (clG1 ∪ ... ∪ clGm) , we have x /∈ clU . Thus U is closed, i.e. (X, τ) is e.d. . ¤

Corollary 3.3 i) A km-perfect space is countably S-closed if and only if it is feebly compact

and e. d. .

ii) A countably S-closed space is e. d. if and only if it is km-perfect.

In order to characterize countably S-closed spaces in terms of feebly compact spaces

satisfying an additional condition, we need

Lemma 3.4 For a space (X, τ) the following are equivalent:

1) (X, τ) is feebly compact.

2) Every locally finite cellular family is finite.

3) If {Un : n ∈ ω} is a decreasing sequence of nonempty open sets (regular open sets,

respectively), then
⋂{clUn : n ∈ ω} 6= ∅ .

4) If {Fn : n ∈ ω} is a decreasing sequence of nonempty regular closed sets, then
⋂{Fn : n ∈ ω} 6= ∅ .

Proof. 1) ⇔ 2) ⇔ 3) can be found in [7], page 50, and 3) ⇔ 4) is obvious. ¤

Using Theorem 2.2 and Lemma 3.4 the next result is immediate.

Theorem 3.5 A space (X, τ) is countably S-closed if and only if it is feebly compact and

whenever {Fn : n ∈ ω} is a decreasing sequence of nonempty regular closed sets with

nonempty intersection then
⋂{intFn : n ∈ ω} 6= ∅ .
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Theorem 3.6 For a space (X, τ) the following are equivalent :

1) (X, τ) is countably S-closed.

2) Every cellular family {Uλ : λ ∈ Λ} satisfying cl(
⋃{Uλ : λ ∈ Λ}) =

⋃{clUλ : λ ∈ Λ}
is finite.

Proof.

1) ⇒ 2) : Let {Gλ : λ ∈ Λ} be a cellular family with cl(
⋃{Gλ : λ ∈ Λ}) =

⋃{clGλ : λ ∈ Λ} . Suppose that Λ is infinite. Pick a countably infinite subset Λ1 ⊆ Λ

and let Λ2 = Λ \ Λ1 . Set Uλ = Gλ for each λ ∈ Λ1 , U∗ =
⋃{Gλ : λ ∈ Λ2} and

V = int(cl(
⋃{Gλ : λ ∈ Λ})) . Because of cl(

⋃{Gλ : λ ∈ Λ}) =
⋃{clGλ : λ ∈ Λ}

we have V ⊆ ⋃{Uλ : λ ∈ Λ1} ∪ clU∗ . Since V is a regular open subset it follows

from Proposition 2.9 that (V, τ |V ) is countably S-closed. By Lemma 1.1 , {clUλ ∩ V :

λ ∈ Λ1} ∪ {clU∗ ∩ V } ⊆ RC(V, τ |V ) , hence there is a finite subset {λ1, ..., λm} ⊆ Λ1

such that V ⊆ clUλ1 ∪ ... ∪ clUλm ∪ clU∗ . If λ ∈ Λ1 \ {λ1, ..., λm} , then Gλ ⊆ V and

Gλ ∩ (Uλ1 ∪ ... ∪ Uλm ∪ U∗) is empty, thus Gλ is empty, a contradiction. Hence Λ has to be

finite.

2) ⇒ 1) : If (X, τ) is not countably S-closed then by 4) in Theorem 2.2 there is a strictly

increasing sequence {Fn : n ∈ ω} of regular closed sets whose union is X . Define U1 = intF1

and Un = intFn \ Fn−1 for each n ≥ 2 . It is easily checked that {Un : n ∈ ω} is an infinite

cellular family satisfying cl(
⋃{Un : n ∈ ω}) =

⋃{clUn : n ∈ ω} , a contradiction. Hence

(X, τ) is countably S-closed. ¤

Note that condition 2) of the above theorem is a generalization of the condition 2)

of Lemma 3.4 because every locally finite family is closure-preserving. Thus it might be

interesting to know whether the condition ”Every closure-preserving cellular family is finite”

defines a new class of spaces between the countably S-closed spaces and the feebly compact

spaces.

Recall that a space (X, τ) is called a P -space if every Gδ-set is open. Note that if X is

an uncountable set endowed with the co-countable topology τ , then (X, τ) is a countably

S-closed P -space. There is an interesting characterization of countably S-closed P -spaces

which seems to be worth mentioning.
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Proposition 3.7 A P -space (X, τ) is countably S-closed if and only if every dense subspace

is feebly compact.

Proof. Let (X, τ) be countably S-closed and let D ⊆ X be dense. If {Un : n ∈ ω} ⊆ τ

is a cover of D then
⋃{clUn : n ∈ ω} is closed and thus equal to X. Hence there exists

m ∈ ω such that X = clU1 ∪ ...∪ clUm . Consequently, (D, τ |D) is feebly compact. To prove

the converse let {Fn : n ∈ ω} be a regular closed cover of (X, τ). Then
⋃{intFn : n ∈ ω}

is dense and, by assumption, feebly compact. This clearly implies that (X, τ) is covered by

finitely many Fn , i. e. (X, τ) is countably S-closed. ¤

Remark 3.8 Closing this section, we quickly discuss countably S-closed spaces in relation-

ship to first countability and second countability. It is well known that every first countable,

e. d. Hausdorff space is discrete (see [11], page 301), and thus every first countable, e. d.,

countably S-closed Hausdorff space has to be finite. Moreover, since every second count-

able Hausdorff space is km-perfect it follows by Theorem 3.2 and the preceding observation

that every second countable, countably S-closed Hausdorff space is finite. This result is

false, however, in the absence of Hausdorffness since the space obtained by taking the cofi-

nite topology on a countably infinite set is obviously non-Hausdorff, second countable and

countably S-closed.

4 Examples

Example 4.1 Let X = βω \ {p} where p ∈ βω \ ω . It is well known (see e.g. [11], page

301) that X is countably compact, and hence feebly compact, but not compact. Since X

is e.d. , X is countably S-closed. However, X fails to be S-closed since a regular S-closed

space is compact.

Example 4.2 Let (Y, σ) be a space such that Y \ {p} is a countably S-closed subspace for

some non-isolated point p ∈ Y . Let Y1 and Y2 denote two disjoint copies of Y \ {p} . For

any subset A ⊆ Y we will denote the corresponding subsets of Y1 and Y2 by A1 and A2,

respectively. Now let X = Y1 ∪Y2 ∪{p} . We define a topology τ on X in the following way.
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For any x ∈ X , if x ∈ Y1 (x ∈ Y2, respectively), then the basic open neighbourhoods of x

in (X, τ) are of the form V1 (V2, respectively) where V is an open subset of Y \ {p} . For

every open neighbourhood W of p in (Y, σ) , a basic open neighbourhood of p in (X, τ) is

{p}∪ (W \{p})1∪ (W \{p})2 . It is easy to see that both Y1 and Y2 are regular open subsets

of (X, τ) and homeomorphic to Y \ {p} . By Lemma 2.3 , (X, τ) is countably S-closed but

not e.d. since neither Y1 nor Y2 are closed in (X, τ) .

In particular, if (Y, σ) is βω then the resulting space is a compact, countably S-closed

Hausdorff space which is not S-closed since it fails to be e.d. .

Example 4.3 Here we present some familiar spaces which are feebly compact but not count-

ably S-closed.

i) Isbell’s space Ψ [2], page 79, is a locally compact, feebly compact, perfect Hausdorff

space hence also completely regular. It is also first countable and thus cannot be countably

S-closed by Corollary 2.5 .

ii) ω1 , the space of all countable ordinals with the order topology is regular, first countable

and countably compact, thus feebly compact. By Corollary 2.5 , ω1 is not countably S-closed.

iii) Let D be an infinite set with the discrete topology. Let (X, τ) denote the one-point-

compactification of D , where X = D∪{a} and a /∈ D is the only non-isolated point of (X, τ)

. Then (X, τ) is a compact Hausdorff space, hence feebly compact. Let {Dn : n ∈ ω} be

a partition of D where each Dn is infinite. For each n ∈ ω , if Fn = Dn ∪ {a}, then

Fn ∈ RC(X, τ) . Clearly, {Fn : n ∈ ω} is a regular closed cover of (X, τ) without a finite

subcover. Thus (X, τ) is not countably S-closed.

Example 4.4 βω × βω is not countably S-closed.

Consider W = {(n, n) : n ∈ ω} . It is very well known that W is a regular open subset

of βω × βω . By Proposition 2.9 i), βω × βω cannot be countably S-closed since W is also

an infinite discrete subspace of βω × βω .

Example 4.5 ω∗ = βω \ ω is not countably S-closed.

Let f : ω → [0, 1] be a function which maps ω onto the rationals of the unit interval

[0,1] . If βf : βω → [0, 1] denotes the Stone-extension of f , then βf is continuous and
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onto. Let g : ω∗ → [0, 1] denote the restriction of βf to ω∗ , i.e. g = βf |ω∗ . Note that

for each irrational number t ∈ [0, 1] we have g−1({t}) 6= ∅ . By Corollary 2.5 , [0,1] is not

countably S-closed so there exists a regular closed cover {An : n ∈ ω} of [0,1] without a

finite subcover. Clearly each An is a zero-set in [0,1] , and so each g−1(An) is a nonempty

zero-set in ω∗ . By [10] , page 78, {g−1(An) : n ∈ ω} is a countable regular closed cover

of ω∗ . Let m ∈ ω . Then there is an irrational number t ∈ [0, 1] \ (A1 ∪ ... ∪ Am) . Since

g−1({t}) 6= ∅, we have ω∗ 6= g−1(A1) ∪ ... ∪ g−1(Am) . This proves that ω∗ is not countably

S-closed.
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