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Abstract

In a recent paper Abd El-Monsef et al. consider a certain topology on 2X where
2X is the family of all nonempty closed subsets of a given topological space X . Unfor-
tunately, several results in their paper are incorrect and so the purpose of this note is
to correct, improve and expand these results. In addition, the main question in their
paper turns out to have a quite simple answer.

1 Introduction and Preliminaries

For a topological space (X, τ) the closure of a subset A of X is denoted by clτA and we

will suppress the τ when there is no confusion possible. A space (X, τ) is called R0 if for

any open set U containing a point x we have cl{x} ⊆ U . A subset S of (X, τ) is called

locally closed [2] if S is the intersection of an open set and a closed set, or equivalently, if

S = U ∩ clS for some open set U . We will call a subset S of (X, τ) an Fα-set if S is the

union of closed subsets of (X, τ) .

Observation 1.1 A space (X, τ) is T1 (resp. R0) if and only if every subset (resp. every

open subset) is an Fα-set.
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No separation axioms are assumed unless stated explicitly. Finally, the set of natural

numbers is denoted by ω .

2 The correspondence U → U ∗

Following Michael [3], for a space (X, τ) let 2X be the family of all nonempty closed subsets

of (X, τ) .

Definition 1 For each open subset U of a space (X, τ) let U∗ = {F ∈ 2X : F ⊆ U} .

We now investigate the correspondence U → U∗ for arbitrary spaces (X, τ) . It turns out

that ii), iii) and iv) of Theorem 2.1 in [1] are incorrect and have to be modified.

Observation 2.1 If U and V are open subsets of (X, τ), then

1) ∅∗ = ∅ and X∗ = 2X ,

2) (U ∩ V )∗ = U∗ ∩ V ∗ ,

3) if U ⊆ V then U∗ ⊆ V ∗ ,

4) U∗ ∪ V ∗ ⊆ (U ∪ V )∗ .

Consider the following conditions where U and V are arbitrary open sets in (X, τ) :

(P1) U∗ ⊆ V ∗ implies U ⊆ V ,

(P2) U 6= ∅ implies U∗ 6= ∅ ,

(P3) (U ∪ V )∗ ⊆ U∗ ∪ V ∗ .

It turns out that these conditions have quite useful characterizations. First observe that

for open subsets U and V of (X, τ) , U * V if and only if U \ V is nonempty and locally

closed. In addition, U∗ * V ∗ if and only if there is a nonempty closed set contained in U \V

.

Theorem 2.2 For a space (X, τ) the following are equivalent :

1) (X, τ) satisfies (P1) ,

2) every nonempty locally closed set A contains an Fα-set which is dense in A .
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Proof.

1) ⇒ 2) : Let A ⊆ X be locally closed, i.e. A = U ∩ clA for some open set U . If

S =
⋃{F ⊆ X : F is closed and F ⊆ A} then S is an Fα-set and S ⊆ A . We claim

that A ⊆ clS . Suppose there exists x ∈ A with x /∈ clS . Then there exists an open set G

containing x with G ⊆ U and G ∩ S = ∅ . Now pick F ∈ G∗ . If F ∩ clA is nonempty then

F ∩ clA ⊆ U ∩ clA = A and so F ∩ clA ⊆ S , a contradiction. Hence F ∩ clA = ∅ and so

G∗ ⊆ (X \ clA)∗. By condition (P1) we have G ⊆ X \ clA and G ∩A = ∅ , a contradiction.

Thus A ⊆ clS and we are done.

2)⇒ 1) : Let U, V ⊆ X be open with U∗ ⊆ V ∗ . Suppose that U * V . If A = U∩(X\V )

then A is nonempty and locally closed, so there exists an Fα-set S with S ⊆ A ⊆ clS . In

particular there exists F ∈ 2X with F ⊆ S . Clearly F ∈ U∗ and F /∈ V ∗, a contradiction.

Thus U ⊆ V . ¤

Theorem 2.3 For a space (X, τ) the following are equivalent :

1) (X, τ) satisfies (P2) ,

2) every nonempty open set U contains an Fα-set S which is dense in U .

Proof. 1) ⇒ 2) : Let U ⊆ X be open and let S =
⋃{F ⊆ X : F is closed and F ⊆ U}

. Then S is an Fα-set with S ⊆ U . We claim that U ⊆ clS . Suppose that U ∩ (X \ clS)

is nonempty. By condition (P2) there exists F ∈ 2X with F ⊆ U and F ∩ S = ∅ , a

contradiction. Thus U ⊆ clS and we are done.

2) ⇒ 1) : Let U 6= ∅ be open. By assumption there exists an Fα-set S with S ⊆ U ⊆ clS

. In particular there exists F ∈ 2X with F ⊆ S and so F ∈ U∗, i.e. U∗ 6= ∅ . ¤

Theorem 2.4 For a space (X, τ) the following are equivalent :

1) (X, τ) satisfies (P3) ,

2) if F1, F2 ∈ 2X then F1 ∩ F2 6= ∅ ,

3) if U 6= X is open then U∗ = ∅ .

Proof.
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1) ⇒ 2) : Let F1, F2 ∈ 2X and suppose that F1∩F2 = ∅ . If U = X \F1 , V = X \F2 and

F = F1 ∪F2 then U and V are open with U ∪ V = X and so F ∈ (U ∪ V )∗ , i.e. F ⊆ X \F1

or F ⊆ X \ F2 , a contradiction. Hence F1 ∩ F2 6= ∅ .

2) ⇒ 3) : Let U 6= X be open and suppose there exists F ∈ U∗ . Since X \U is nonempty

and closed, we have F ∩ (X \ U) = ∅ , a contradiction. Thus U∗ = ∅ .

3) ⇒ 2) : Let F1, F2 ∈ 2X . By assumption (X \ F1)
∗ = ∅ and so F2 /∈ (X \ F1)

∗ , i.e.

F1 ∩ F2 6= ∅ .

2) ⇒ 1) : Let U, V ⊆ X be open and let F ∈ (U ∪ V )∗ . Suppose that F /∈ U∗ ∪ V ∗ . If

F1 = F ∩ (X \ U) and F2 = F ∩ (X \ V ) then F1, F2 ∈ 2X . By assumption F1 ∩ F2 6= ∅ , a

contradiction. Thus F ∈ U∗ ∪ V ∗ . ¤

Corollary 2.5 If (X, τ) is T1 and |X| ≥ 2, then (X, τ) does not satisfy (P3) .

From the previous results it is clear that for a space (X, τ) the following implications

hold :

T1 ⇒ R0 ⇒ (P1) ⇒ (P2).

We will now point out that none of these implications is reversible and that there are

spaces which do not satisfy (P2) . First note that the indiscrete topology on an infinite set

yields an R0 space which is not T1 .

Example 2.6 Let X be an infinite set and let p ∈ X . It is clear that τ = {∅} ∪ {G ⊆ X :

p ∈ G and X \ G is finite } is a topology on X . Note that {x} is closed whenever x 6= p

and that {p} is dense. Hence (X, τ) is not R0 . We now show that (X, τ) satisfies (P1) .

Let U, V ⊆ X be open with U∗ ⊆ V ∗ and let x ∈ U . If x 6= p then {x} ∈ U∗ and so x ∈ V

. If x = p then there exists y 6= p with y ∈ U , and so {y} ∈ U∗ , hence V 6= ∅ and p ∈ V .

Thus U ⊆ V .
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Example 2.7 Let R denote the set of reals and let X = R∪ {p} where p /∈ R . A topology

τ on X is defined as follows. Basic neighbourhoods of x ∈ R are of the form (x − ε, x + ε)

where ε > 0 . A basic neighbourhood of p is of the form {p} ∪ (x − ε, x + ε) with ε > 0

. It is easy to check that (X, τ) satisfies (P2) (in fact, every open set contains a suitable

τ -closed interval [a, b] ) . If F ⊆ R is nonempty and closed, then p /∈ F and thus 0 /∈ F . So

R∗ ⊆ (R \ {0})∗ but obviously R is not contained in R \ {0} , i.e. (X, τ) does not satisfy

(P1) .

Example 2.8 Let τ be the following topology on ω , τ = {∅} ∪ { {1, ..., n} : n ∈ ω} . By

Theorem 2.4 it is clear that (ω, τ) satisfies (P3) . Obviously (ω, τ) does not satisfy (P2) .

3 The Space (2X , σ)

It is well known that, given a space (X, τ), one may define several quite interesting topologies

on 2X , see e.g. [3] . In [4], Schmidt discusses a certain topology σ on (X, τ) which has already

been mentioned by Michael in [3]. In their recent paper Abd El-Monsef et al. [1] continued

the study of this space (2X , σ) and we will now improve and correct some of their results.

Given a space (X, τ), it is clear from Observation 2.1 that {U∗ : U ⊆ X is open in

(X, τ)} is a base for a topology σ on 2X . This topology σ will be considered throughout

this section.

Theorem 3.1 For a space (X, τ) let F1, F2 ∈ 2X . If F1 ⊆ F2 then F2 ∈ clσ{F1} . If (X, τ)

is R0, then the converse is also true.

Proof. Suppose that F2 /∈ clσ{F1} . Then there exists U ⊆ X open in (X, τ) with

F2 ∈ U∗ and U∗ ∩ {F1} = ∅ , i.e. F1 /∈ U∗ and this is a contradiction.

Now let (X, τ) be R0 and let F2 ∈ clσ{F1} . Suppose that there exists x ∈ F1 \F2 . Then

clτ{x} ⊆ X \ F2 and so F2 ∈ (X \ clτ{x})∗ . By hypothesis, F1 ∈ (X \ clτ{x})∗ and

consequently x /∈ F1 , a contradiction. Hence F1 ⊆ F2. ¤
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Corollary 3.2 If (X, τ) is T1 and |X| > 1 then (2X , σ) is not T1 . Hence Theorem 3.1.,

Theorem 4.1., Theorem 4.2. and Theorem 4.3. in [1] are false.

Corollary 3.3 Let W ⊆ 2X be an open set in (2X , σ) containing X ∈ 2X . Then W = 2X .

Proof. If F ∈ 2X then F ⊆ X and so X ∈ clσ{F} , i.e. F ∈ W . ¤

From Corollary 3.3 we immediately obtain

Corollary 3.4 (2X , σ) is always compact.

Corollary 3.5 (2X , σ) satisfies condition (P3).

Proof.

Let B1, B2 ⊆ 2X be nonempty and closed in (2X , σ) . Suppose that B1 ∩ B2 = ∅ . Then

2X = (2X \B1) ∪ (2X \B2) and we assume w.l.o.g. that X ∈ 2X \B1 . By Corollary 3.3 we

have 2X \ B1 = 2X , i.e. B1 = ∅ which is a contradiction. So B1 ∩ B2 6= ∅ and hence (2X , σ)

satisfies (P3) . ¤

As a consequence, (2X , σ) is not T1 whenever |X| ≥ 2 .

In concluding this section we will consider the map f : (X, τ) → (2X , σ) where f(x) =

clτ{x} for each x ∈ X . It has been pointed out in [1] that f is a dense embedding provided

that (X, τ) is T1 . Our final result shows that the converse also holds.

Theorem 3.6 [?] If f : (X, τ) → (2X , σ) where f(x) = clτ{x} for each x ∈ X is an

embedding then (X, τ) is T1 .

Proof. Suppose that x, y ∈ X with x 6= y and y ∈ clτ{x} . Since f is one-to-one, (X, τ)

is T0 and so there exists U ⊆ X open in (X, τ) with x ∈ U and y /∈ U . Since f(U) is

open in f(X) there exists V ⊆ X open in (X, τ) with f(x) ∈ V ∗ ∩ f(X) ⊆ f(U) . Hence

f(y) ∈ f(U) since clτ{y} ⊆ clτ{x} . As f is one-to-one, we have y ∈ U , a contradiction.

This proves that (X, τ) is T1 . ¤
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Remark 3.7 The pair ((2X , σ), f) is a compactification of (X, τ) if and only if (X, τ) is a

T1 space.
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