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Abstract

The aim of this paper is to present some new results on mild continuity as well
as to give a pure decomposition of continuity via mild continuity that is without any
assumptions on the domain and the range. The notion of extremal precontinuity is
introduced. Among several results we prove that a function is α-continuous if and only
if it is mildly continuous and extremally precontinuous.

1 Introduction

The decomposition of continuity is a classical problem of Real Analysis.

In 1922, Blumberg [4] introduced the concept of near continuity on Euclidean spaces

by using the term densely approaching and proved that every function f :R → R is nearly

continuous on a dense set of R. Nowadays, near continuity is better known in the topological

community as precontinuity. It is well-known that every linear function from one Banach

space to another is nearly continuous. Nearly continuous function are of importance in

Functional Analysis in connection with the well-known closed graph and open mapping

theorems.
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Quasi-continuity is even an older concept than the one of near continuity. In 1899,

Baire stated that first Volterra observed the fact that every separately continuous function

f :R×R → R is quasi-continuous. It was Kempisty [18], who later on called this property of

separately continuous functions quasi-continuity. It is well-known that near continuity and

quasi-continuity imply continuity if the range is regular.

In 1954, Klee and Utz [19] proved that a function f :R → R is continuous if and only if

f preserves compact sets and f preserves connected sets. Originally they proved the result

in the settings of metric spaces with the domain locally connected.

In 1961, Levine [20] proved that a function is continuous if and only if it is weakly

continuous and weak-* continuous. His result was improved in 1978 by Rose [28], who

replaced weak-* continuity in Levine’s theorem with a weaker form of continuity named

local weak-* continuity. In 1990, weak continuity was reduced to weak α-continuity again

by Rose [29].

In 1985, Reilly and Vamanamurthy [27] proved that a function is α-continuous if and

only if it is semi-continuous and precontinuous. Note that quasi-continuity is same as semi-

continuity.

In 1986, Tong [30] produced an independent of Levine’s decomposition. He showed that

a function is continuous if and only if it is α-continuous and A-continuous. Three years

later Tong [32] decomposed continuity into B-continuity and precontinuity but his result

was improved in 1991 by Ganster, Gressl and Reilly in [13] as B-continuity was replaced

with weak B-continuity.

Some years later, Ganster and Reilly [11] improved Tong’s first decomposition with re-

ducing A-continuity to LC-continuity and furthermore LC-continuity was reduced to sub-

LC-continuity in [10]. In the 1990 paper mentioned above, Ganster and Reilly decomposed

A-continuity.

In 1993, Przemski [25] obtained some new decompositions of continuity as well as of

α-continuity via some newly defined classes of sets. Several new result can be found in

[2, 9, 25].

The theory of the decomposition of continuity was investigated recently by Yalvaç in [33].

In 1987, Tong [31] obtained a decomposition of fuzzy continuity. A decomposition of pairwise
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continuity was constructed by Jelić in [16, 17]. The decomposition of quasi-continuity was

studied in [6] by Borsik and J. Doboš. For more historical background on the problem of

decomposition of continuity the reader may refer to [23].

In this note we give some new results related to mild continuity as well as we search for

the dual of mild continuity to α-continuity and furthermore to continuity.

2 Mild continuity

Definition 1 A function f : (X, τ) → (Y, σ) is called almost continuous [14] (= precontin-

uous [21] = nearly continuous [26]) at a point x ∈ X if for each neighborhood V of f(x),

the set Clf−1(V ) is a neighborhood of x. If the function f is almost continuous at every

x ∈ X, then it is called almost continuous. Since the term precontinuous is most often used

in literature, throughout the sequel we will call almost continuous functions precontinuous.

Definition 2 A function f : (X, τ) → (Y, σ) is called quasi-continuous [18] at a point x ∈ X

if for each neighborhood U of x and each neighborhood V of f(x) there exists a non-empty

open set G ⊆ U such that f(G) ⊆ V . If the function f is quasi-continuous at every x ∈ X,

then it is called quasi-continuous. Quasi-continuous functions are well-known under the

name of semi-continuous.

For a subset A of (X, τ), the preinterior of A and the semi-interior of A are defined as

follows: PintA = A ∩ IntA and SintA = A ∩ IntA, respectively.

For a function f : (X, τ) → (Y, σ) let us define the following subsets of X:

Pf - the set of all points of precontinuity (= almost continuity),

Qf - the set of all points of quasi-continuity (= semi-continuity),

Cf - the set of all points of continuity.

Clearly Cf ⊆ Pf ∩ Qf . In addition one easily checks that x ∈ Pf if and only if x ∈
Pintf−1(V ) for each neighborhood V of f(x), and x ∈ Qf if and only if x ∈ Sintf−1(V ) for

each neighborhood V of f(x).
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Definition 3 [5, Definition 5] Let f : (X, τ) → (Y, σ). Set Sf = {x ∈ X: there is a base A of

neighborhoods of f(x) such that for every V ∈ A and for every neighborhood U of x the set

f−1(V ) \ Intf−1(V ) is not dense in U}. If the set Sf is dense in X, then f is called mildly

continuous.

Remark 2.1 One easily verifies that x ∈ Sf if and only if there exists a base A of neigh-

borhoods of f(x) such that x 6∈ Intf−1(V ) \ Intf−1(V ) for every V ∈ A.

In order to obtain an alternative description of the set Sf , we first prove the following:

Lemma 2.2 Let A be a subset of (X, τ) and let x ∈ A. Then the following conditions are

equivalent:

(1) x ∈ Int(A \ IntA).

(2) x ∈ PintA \ SintA.

Proof. (1) ⇒ (2) Let x ∈ Int(A \ IntA). Then x ∈ IntA and thus x ∈ PintA. Since

x ∈ Int(X \ IntA) = X \ IntA, then we have x 6∈ SintA.

(2) ⇒ (1) Let x ∈ PintA \ SintA. Then there exists an open neighborhood U of x such

that U ⊆ A and U ∩ IntA = ∅. Next we show that U ⊆ A \ IntA. Let x ∈ U . Assume

that for some open V containing x we have V ∩ (A \ IntA) = ∅. Then W = U ∩ V is an

open neighborhood of x disjoint from A \ IntA such that W ⊆ A. Then clearly W must be a

subset of IntA, which is impossible since even U is disjoint from IntA. Hence U ⊆ A \ IntA

and thus x ∈ Int(A \ IntA). 2

Theorem 2.3 Let f : (X, τ) → (Y, σ) be a function. Then Sf = (X \ Pf ) ∪Qf .

Proof. Let x ∈ Sf and, according to Remark 2.1, let A be a base of neighborhoods of

f(x) such that x 6∈ Intf−1(V ) \ Intf−1(V ) for each V ∈ A. Suppose that x ∈ Pf and let

W be a neighborhood of f(x). Choose V ∈ A with V ⊆ W . Since x ∈ Pintf−1(V ), by

Lemma 2.2 we have x ∈ Sintf−1(V ) ⊆ Sintf−1(W ), i.e. x ∈ Qf . We have thus shown that

Sf ⊆ (X \ Pf ) ∪Qf .
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Now let x 6∈ Sf , i.e. for each base A of neighborhoods of f(x) there exists V ∈ A
with x ∈ Intf−1(V ) \ Intf−1(V ). If W is a neighborhood of f(x), let A = {V ⊆ Y : V is

a neighborhood of f(x) and V ⊆ W}. Hence there exists V ∈ A with x ∈ Pintf−1(V ) ⊆
Pintf−1(W ), by Lemma 2.2. This shows that x ∈ Pf . Since x 6∈ Sintf−1(V ) we have x 6∈ Qf

by Lemma 2.2. Thus Sf = (X \ Pf ) ∪Qf . 2

Thus Lemma 1 (Qf ⊆ Sf ) and Lemma 2 (Sf ⊆ Qf , if f is precontinuous) in [5] are

obvious.

Corollary 2.4 Every quasi-continuous function is mildly continuous. 2

Remark 2.5 See Example 2.9 below. The function there is mildly continuous but not

quasi-continuous.

Corollary 2.6 If Pf ⊆ Qf , then Sf = X. 2

Recall [10] that a function f : (X, τ) → (Y, σ) is called sub-LC-continuous if there is a

subbase (or equivalently a base) B for (Y, σ) such that f−1(V ) is locally closed in (X, τ) for

each V ∈ B. A set A is called locally closed [7] if A can be represented as the intersection of

an open and a closed set.

Sub-LC-continuity plays an important role in the theory of decomposition of continuity:

it is the dual of precontinuity, that is:

Theorem 2.7 [10, Theorem 3] A function f : (X, τ) → (Y, σ) is continuous if and only if it

is precontinuous and sub-LC-continuous. 2

For the different properties of LC- and sub-LC-continuous functions the reader may check

[10].

Next we show how sub-LC-continuity is related to mild continuity.

Corollary 2.8 Every sub-LC-continuous function is mildly continuous.

Proof. Assume that f : (X, τ) → (Y, σ) is sub-LC-continuous. Then Pf ⊆ Cf ⊆ Qf and

so it follows from Theorem 2.3 that Sf = X. This shows that f is mildly continuous. 2
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Example 2.9 Not every mildly continuous function is sub-LC-continuous. Let X be the

real line and let I denote the set of all irrational numbers. Set τ = {∅, X} and σ = {∅, I, X}.
Let f : (X, τ) → (X, σ) be the identity function. Note that (for example) the origin of (X, τ)

is a point of quasi-continuity. By Theorem 2.3, 0 ∈ Sf . Thus Sf is dense in (X, τ) or

equivalently f is mildly continuous. To see that f is not sub-LC-continuous, in the notion

of Theorem 2.7, it is enough to check that f is precontinuous but not continuous.

Corollary 2.10 If f : (X, τ) → (Y, σ) has closed graph and Y is locally compact, then f is

mildly continuous.

Proof. Since the inverse image of each compact subset of Y is closed in X, f is sub-LC-

continuous and thus mildly continuous. 2

3 Extremal precontinuity

In 1988, Borsik and Doboš decomposed continuity by assuming regularity of the range of

the function. They proved the following:

Theorem 3.1 [5, Theorem 2] Let (Y, σ) be regular space. Then f : (X, τ) → (Y, σ) is con-

tinuous if and only if it is precontinuous and mildly continuous. 2

Example 2.9 above shows that regularity cannot be removed as an assumption. The

function from Example 2.9 is both precontinuous and mildly continuous. However it fails to

be continuous and Y is not regular.

In what follows, we will try to produce a more general result, i.e. we will try to decompose

continuity via mild continuity without any assumptions on the domain and the range. For

that, we need the following definition:

Definition 4 A function f : (X, τ) → (Y, σ) is called extremally precontinuous

(= e-precontinuous) if f is precontinuous and Sf is a closed subset of (X, τ).

E-precontinuous functions need not be mildly continuous as the following example shows:
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Example 3.2 Consider the classical Dirichlet function f :R → R, where R is real line with

the usual topology:

f(x) =

{
1, x ∈ Q,
0, otherwise.

It is easily observed that f is precontinuous. Moreover Sf coincides with the void set

and hence f is e-precontinuous but not mildly continuous.

On the other hand Example 2.9 provides a mildly continuous function, which is not e-

precontinuous; note that there Sf coincides with Q - the set of all rationals, which obviously

is not τ -closed.

To see where e-precontinuity stands among the other types of generalized continuity,

recall that a function f : (X, τ) → (Y, σ) is called α-continuous [24] if the preimage of every

open subset of Y is an α-set in X. A set A is called an α-set [24] if A ⊆ IntIntA or

equivalently if A = U \ V , where U is open and V is nowhere dense. It is well-known that

the α-sets form a topology finer than the original one and thus continuity always implies

α-continuity. The following decomposition of α-continuity, which will be used later in the

sequel, is probably known:

Theorem 3.3 [27, Corollary 1] A function f : (X, τ) → (Y, σ) is α-continuous if and only if

it is precontinuous and quasi-continuous. 2

Theorem 3.4 Every α-continuous function is e-precontinuous.

Proof. Every α-continuous function is precontinuous. For the second part, in the notion

of Theorem 2.3 and Theorem 3.3 we have: Sf = (X \ Pf ) ∪Qf = ∅ ∪X = X. 2

By definition every e-precontinuous function is precontinuous. But the reverse is not

always true as easily seen from Example 2.9.

Theorem 3.5 For a function f : (X, τ) → (Y, σ) the following conditions are equivalent:

(1) f is α-continuous.

(2) f is quasi-continuous and e-precontinuous.

(3) f is mildly continuous and e-precontinuous.
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Proof. (1) ⇒ (2) Every α-continuous function is quasi-continuous [27]. The second part

was proved in Theorem 3.4 above.

(2) ⇒ (3) is Corollary 2.4.

(3) ⇒ (1) In the notion of Theorem 3.3 it is enough to show that f is quasi-continuous.

By assumption Pf = X and Sf = Sf . Thus from Theorem 2.3 and due to mild continuity

we have: X = Sf = Sf = (X \ Pf ) ∪Qf = ∅ ∪Qf = Qf . 2

In the decomposition above e-precontinuity cannot be reduced to precontinuity. Recall

again Example 2.9. Also, it is easy to find an example of a function, which is both mildly

continuous and e-precontinuous but failing to be continuous. Consider for example the

identity function f : (X, τ) → (Y, σ), where X = Y = {a, b, c}, τ = {∅, {a}, X} and σ =

{∅, {a, b}, Y }.
In 1993, Przemski [25] introduced the concept of D(c, α)-continuity and proved that a

function is continuous if and only if it is α-continuous and D(c, α)-continuous.

Theorem 3.6 For a function f : (X, τ) → (Y, σ) the following conditions are equivalent:

(1) f is continuous.

(2) f is mildly continuous, e-precontinuous and D(c, α)-continuous. 2

A nodec space is a topological space in which all nowhere dense subsets are closed. It

can be easily proved that all nowhere dense sets are closed if and only if every α-set is open.

Nodec spaces need not always satisfy high separation axioms. However every nodec space is

semi-pre-T 1
2

[8]. Now we have:

Theorem 3.7 Let (X, τ) be nodec. For a function f : (X, τ) → (Y, σ) the following condi-

tions are equivalent:

(1) f is continuous.

(2) f is mildly continuous and e-precontinuous. 2

A natural problem is to find a property of functions, weaker than quasi-continuity, which

together with mild continuity would imply quasi-continuity. For that, consider the following

definition:
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Definition 5 Let f : (X, τ) → (Y, σ) be a function and set PQf = Pf∪Qf = {x ∈ X: x ∈ Pf

or x ∈ Qf}, i.e. PQf contains all points of X in which f is precontinuous or quasi-continuous.

If PQf = X and Sf is a closed subset of X, then we say that f is extremally β-continuous

(= e-β-continuous).

Theorem 3.8 For a function f : (X, τ) → (Y, σ) the following conditions are equivalent:

(1) f is quasi-continuous.

(2) f is mildly continuous and e-β-continuous.

Proof. (1) ⇒ (2) It is proved above that quasi-continuity implies mild continuity. More-

over, since f is quasi-continuous, then the set Sf is closed. It coincides with X. Since every

point of X belongs to Qf , then f is e-β-continuous.

(2) ⇒ (1) Since Sf is closed and dense in X, then Sf = X = (X \Pf )∪Qf . If we assume

that some point x of X is not a point of quasi-continuity, then it would not be a point of

precontinuity. This obviously contradicts with the assumption that f is e-β-continuous and

hence f is quasi-continuous. 2

Remark 3.9 The Dirichlet function shows that an e-β-continuous function need not be

quasi-continuous. On the other hand the function from Example 2.9 shows that β-continuity

is strictly weaker than e-β-continuity. Recall that a function f : (X, τ) → (Y, σ) is called β-

continuous [1] if the preimage of every open set in Y is β-open in X. A set A is called β-open

if A ⊆ IntA.

Remark 3.10 In the decomposition of quasi-continuity given above e-β-continuity can not

be reduced to β-continuity. Note again that the function from Example 2.9 is β-continuous

and mildly continuous but not quasi-continuous.

Recall that a an extremally disconnected (= ED) space is a topological space in which

open sets have open closures or equivalently a space in which all semi-open sets are α-sets

[15]. Thus as a consequence of Theorem 3.8 we have the following result:
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Corollary 3.11 Let (X, τ) be nodec and ED. For a function f : (X, τ) → (Y, σ) the following

conditions are equivalent:

(1) f is continuous.

(2) f is mildly continuous and e-β-continuous. 2

A subset A of a topological space (X, τ) is called interior-closed (= ic-set) [12] if IntA

is closed in A. A function f : (X, τ) → (Y, σ) is called ic-continuous [12] if the inverse image

under f of each open set of Y is an ic-set.

Lemma 3.12 [12, Theorem 2] A function f : (X, τ) → (Y, σ) is continuous if and only if f

is quasi-continuous and ic-continuous.

As another consequence of Theorem 3.8 we have the following decomposition of continu-

ity:

Corollary 3.13 For a function f : (X, τ) → (Y, σ) the following conditions are equivalent:

(1) f is continuous.

(2) f is ic-continuous, mildly continuous and e-β-continuous. 2

The relations between the types of continuity mentioned in this paper are given in the

diagram below. Note that none of the implications is reversible.

LC-continuous // sub-LC-continuous // Mildly continuous

Quasi-continuous

44iiiiiiiiiiiiiiii
//

**UUUUUUUUUUUUUUUU
e-β-continuous

²²
Continuous

==zzzzzzzzzzzzzzzzzzzzz
//

((RRRRRRRRRRRRRR α-continuous

55jjjjjjjjjjjjjjjj

))TTTTTTTTTTTTTTTT
// β-continuous

ic-continuous e-precontinuous //

99tttttttttttttttttttttttt
Precontinuous

OO
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