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1 Introduction

The following decompositions of continuity have been recently obtained:

Theorem 1.1 For a function f : (X, τ) → (Y, σ) the following conditions are equivalent:

(0) f is continuous.

(1) [14, Levine] f is weakly continuous and weak-* continuous: improved later by Rose

[19, 20].

(2) [23, Tong] f is α-continuous and A-continuous.

(3) [24, Tong] f is precontinuous and B-continuous: this is an improvement of (2).

(4) [11, 12, Ganster and Reilly] f is (sub-)LC-continuous and precontinuous: this is also

an improvement of (2).

(5) [13, Ganster and Reilly] f is semi-continuous (= quasi-continuous) and ic-continuous.

(6) [10, Ganster, Gressl and Reilly] f is nearly continuous (= precontinuous) and weakly

B-continuous: this is an improvement of (3).

(7) [3, Chew and Tong] f is weakly continuous and relatively continuous.

Several decompositions of generalized continuity can be found in [7, 8, 18, 25].
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In this paper, we try to establish a decomposition of continuity via the recently introduced

notion of generalized continuity [2], i.e. we shall provide a (strictly) weaker form of continuity,

which together with generalized continuity will imply continuity. Recall that a function

f : (X, τ) → (Y, σ) is called generalized continuous [2] if the preimage of every closed subset

of Y is generalized closed in X. A subset A of a topological space (X, τ) is called generalized

closed (= g-closed) [15] if the closure of A belongs to every open superset of A.

We also introduce two new separation axioms. The first one is called T 1
4

and it is properly

placed between T0 and T 1
2

but independent from TD. The other one is called weak R0.

2 λ-sets

In 1986, Maki [16] introduced the concept of Λ-sets in topological spaces as the sets that

coincide with their kernel. The kernel of a set A, denoted by A∧ [16], is the intersection of

all open supersets of A. In T1-spaces every set is a Λ-set [16] and moreover it is easy to see

that if every subset (or equivalently every singleton) of a topological space (X, τ) is a Λ-set,

then X is T1. In connection of searching for the dual of generalized continuity we make the

following definition:

Definition 1 A subset A of a topological space (X, τ) is called a λ-set (or λ-closed) if

A = L ∩ F , where L is a Λ-set and F is closed. Complements of λ-closed sets will be called

λ-open.

Lemma 2.1 For a subset A of a topological space (X, τ) the following conditions are equiv-

alent:

(1) A is λ-closed.

(2) A = L ∩ A, where L is a Λ-set.

(3) A = A∧ ∩ A. 2

Lemma 2.2 (i) Every locally closed set is λ-closed.

(ii) Every Λ-set is λ-closed. 2
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Since locally closed sets and Λ-sets are concepts, independent from each other, then a

λ-closed set need not be locally closed or a Λ-set either.

Definition 2 A subset A of a space (X, τ) is called a generalized closed set (briefly g-closed)

[15] if A ⊂ U whenever A ⊂ U and U is open.

Lemma 2.3 A subset A ⊆ (X, τ) is g-closed if and only if A ⊆ A∧. 2

Theorem 2.4 For a subset A of a topological space (X, τ) the following conditions are equiv-

alent:

(1) A is closed.

(2) A is g-closed and locally closed.

(3) A is g-closed and λ-closed.

Proof. (1) ⇒ (2) Every closed set is both g-closed and locally closed.

(2) ⇒ (3) is Lemma 2.2 (i).

(3) ⇒ (1) A is g-closed, so by Lemma 2.3 A ⊆ A∧. A is λ-closed, so by Lemma 2.1

A = A∧ ∩ A. Hence A = A, i.e. A is closed. 2

Theorem 2.5 For a topological space (X, τ) the following conditions are equivalent:

(1) X is a T0-space.

(2) Every singleton of X is λ-closed.

Proof. (1) ⇒ (2) Let x ∈ X. Since X is T0, then for every point y 6= x there exists a set

Ay containing x and disjoint from {y} such that Ay is either open or closed. Let L be the

intersection of all open sets Ay and let F be the intersection of all closed sets Ay. Clearly, L

is a Λ-set and F is closed. Note that {x} = L ∩ F . This shows that {x} is λ-closed.

(2) ⇒ (1) Let x and y be two different points of X. By (2) {x} = L ∩ F , where L is a

Λ-set and F is closed. If F does not contain y, then X \ F is an open set containing y and

we are done. If F contains y, then y 6∈ L and thus for some open set U , containing x, we

have y 6∈ U . Hence X is T0. 2

In each T0 non-T1 space there are singletons that are λ-closed but not Λ-sets.

Recall that a topological space (X, τ) is called a T 1
2
-space [15] if every generalized closed

subset of X is closed or equivalently if every singleton is open or closed [9].
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Theorem 2.6 For a topological space (X, τ) the following conditions are equivalent:

(1) X is a T 1
2
-space.

(2) Every subset of X is λ-closed.

Proof. (1) ⇒ (2) Let A ⊆ X. Let A1 be the set of all open (open in X) singletons of

X \A and let A2 = X \ (A∪A1). Set F = ∩x∈A1X \ {x} and L = ∩x∈A2X \ {x}. Note that

F is closed and L is a Λ-set. Moreover, A = F ∩ L. Thus A is λ-closed.

(2) ⇒ (1) Let x ∈ X. Assume that {x} is not open. Then A = X \ {x} is not closed and

since A is λ-closed, then A is a Λ-set, i.e A = A∧. Since X is the only superset of A, then

A is open. Hence {x} is closed. 2

A topological space (X, τ) is called an R0-space [4, 21] if for every x ∈ X and every U ∈ τ

containing x we have {x} ⊆ U . It is well known that a topological space is T1 if and only if

it is T0 and R0 [4]. In order to improve this result, we make the following definition:

Definition 3 A topological space (X, τ) is called a weak R0-space if every λ-closed singleton

is a Λ-set.

Theorem 2.7 Every R0-space (X, τ) is a weak R0-space.

Proof. Let x ∈ X with {x} = L ∩ F , where L is a Λ-set and F is closed. Let y ∈ {x}∧
such that y 6= x. Clearly y ∈ L. Thus y 6∈ F and since X is R0, then {y} ⊆ X \ F . This

shows that x 6∈ {y}. Thus there exists an open set containing x disjoint from y and so

y 6∈ {x}∧. By contradiction x is the only point in the kernel of x, i.e. {x} is a Λ-set. 2

Example 2.8 A weak R0-space need not be R0. Consider for example X = {a, b, c, d} with

τ = {∅, {c, d}, X}.

Theorem 2.9 For a topological space (X, τ) the following conditions are equivalent:

(1) X is T1.

(2) X is T0 and R0.

(3) X is T0 and weak R0.
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Proof. (1) ⇒ (2) and (2) ⇒ (3) are clear.

(3) ⇒ (1) We need to show that every singleton is a Λ-set. Since X is T0, then in the

notion of Theorem 2.5 every singleton is λ-closed. Since X is weak R0, then each singleton

is a Λ-set. 2

Recall that a topological space (X, τ) is called TD [1] if every point is locally closed. Since

every open and every closed set is locally closed, every T 1
2

space is TD. And since a locally

closed set is λ-closed, every TD space is T0.

Moreover, every T0-Alexandroff space is TD (an Alexandroff space is a space where every

point has a minimal open neighborhood; this is equivalent to the fact that every intersection

of open sets is again open, or with the notation of this paper, that every Λ-set is open).

To see this, if we denote by V (x) the minimal open neighborhood of the point x, it is

clear that x ∈ V (x) ∩ {x}, which is the intersection of an open an a closed set. If we see

that there is no other point in it, we have that the point is locally closed.

Let y ∈ V (x) ∩ {x}, y 6= x. Since y ∈ V (x), every neighborhood of x contains y; since

y ∈ {x}, every neighborhood of y contains x, but this is impossible for two distinct points

in a T0 space, so V (x) ∩ {x} = {x}, as desired.

So both T 1
2

and T0-Alexandroff imply TD. Recall that there is no relation between T 1
2

and

T0-Alexandroff spaces, since the reals with the usual topology is T 1
2

but is not Alexandroff; on

the other hand, every finite and T0 space is T0-Alexandroff; however the space X = {a, b, c}
with τ = {∅, {a}, {a, b}, X} is not T 1

2
, since the point {b} is neither open nor closed.

3 T1
4
-spaces

Definition 4 A topological space (X, τ) is called T 1
4

if for every finite subset F of X and

every y 6∈ F there exists a set Ay containing F and disjoint from {y} such that Ay is either

open or closed. Note that every T 1
4

space is T0 (take F = {x} with x 6= y).

The preceding definition leads the following characterization, which answers the following

question: which spaces have all their finite sets λ-closed? The proof is very similar to that

of Theorem 2.5.
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Theorem 3.1 For a topological space (X, τ) the following conditions are equivalent:

(1) X is a T 1
4
-space.

(2) Every finite subset of X is λ-closed.

Proof. (1) ⇒ (2) Let F ⊂ X be a finite subset of X. Since X is T 1
4
, then for every point

y 6∈ F there exists a set Ay containing F and disjoint from {y} such that Ay is either open

or closed. Let L be the intersection of all open sets Ay and let C be the intersection of all

closed sets Ay. Clearly, L is a Λ-set and C is closed. Note that F = L∩C. This shows that

F is λ-closed.

(2) ⇒ (1) Let F be a finite subset of X and y be a point of X \ F . By (2), F = L ∩ C,

where L is a Λ-set and C is closed. If C does not contain y, then X \ C is an open set

containing y and we are done. If C contains y, then y 6∈ L and thus for some open set U ,

containing F , we have y 6∈ U . Hence X is T 1
4
. 2

The new separation axiom T 1
4

is strictly placed between T 1
2

and T0. Note also that the

separation axioms “weak R0” and T 1
4

are independent from each other.

Example 3.2 Let X be the set of non-negative integers with the topology whose open sets

are those which contain 0 and have finite complement (so closed sets are the finite sets that

do not contain 0). Every point is closed except 0, which is neither open nor closed nor even

locally closed.

This space is neither T 1
2

nor TD, although it is T0. However it is T 1
4
. To see this, we

distinguish the following cases:

(a) y 6∈ F , where y 6= 0 and 0 6∈ F ; then take Ay = F .

(b) y 6∈ F , where y = 0; then take Ay = X \ F .

(c) y 6∈ F , where y 6= 0 and 0 ∈ F ; then take Ay = X \ {y}.

On the other hand, the space X = {a, b, c} with τ = {∅, {a}, {a, b}, X} is TD and hence T0

but not T 1
4
, since {a, c}∧ = {a, b, c} and {a, c} = {a, b, c}, so {a, c} is not λ-closed, although

{a} and {c} are. ({a} and {c} are even locally closed)

So, even a finite union of λ-closed sets need not be λ-closed. However, since any inter-

section of Λ-sets gives a Λ-set [16], then we have:
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Theorem 3.3 An arbitrary intersection of λ-closed sets is a λ-closed set. 2

One can ask the following question: for which spaces is the set of all λ-open subsets a

topology? Call those spaces λ-spaces. Clearly a topological space (X, τ) is a λ-space if and

only if the union of any two λ-closed sets is a λ-closed set. From Theorem 2.6 we have that

every T 1
2

space is a λ-space. And, a T0 λ-space is T 1
4
, since from Theorem 2.5 every singleton

is λ-closed and in a λ-space finite union of λ-closed sets is λ-closed. So,

T 1
2
⇒ T0, λ-space ⇒ T 1

4
⇒ T0

Note that the space X given in Example 3.2 is a λ-space that is not T 1
2
. To see this,

note that a subset of X is a Λ-set if and only if 0 belongs to it (the intersection of open sets

contain 0; on the other hand, if 0 ∈ L, put X \ L =
⋃

i∈I Fi where Fi are finite sets without

0 (this is always possible) and then L =
⋂

i∈I(X \Fi) is a Λ-set). Hence the λ-closed subsets

of X are precisely the closed subsets and the Λ-sets of X, and it is easily seen that this is a

λ-space (This is an example of a space whose λ-sets are the least that are possible: only the

closed sets and the Λ-sets). So:

Question 1: Is every T 1
4

space a λ-space?

Recall from [17] that a set is called a ν-set if intB = Bν and a generalized ν-set if

intB ⊂ Bν , where Bν is the union of all closed subsets of B. Clearly, A is a Λ-set if and only

if X \ A is a ν-set, and if we recall [16] that A is a generalized Λ-set if A∧ ⊂ A, then A is a

generalized Λ-set if and only if X \A is a generalized ν-set. From [17] we have that a space is

T 1
2

if and only if every generalized ν-set is a ν-set or equivalently, if every generalized Λ-set

is a Λ-set. On the other hand, from Theorem 2.6, a space is T 1
2

if and only if every set is

λ-closed. If for a T 1
2

space X every λ-closed set is a generalized Λ-set, then every set is a

Λ-set, so X is T1. That is, in every T 1
2

non-T1 space there is a λ-closed set that is not a

generalized Λ-set. Naturally we now have the following question:

Question 2: What about the converse?

A space is called semi-pre-T 1
2

[5] if and only if every singleton is (semi)-preopen or closed.

A space is called semi-T 1
2

[22] if and only if every singleton is (semi)-open or semi-closed.

These two separation axioms are both weaker than T 1
2
, as TD is.
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It is not difficult to find examples of non-T0 spaces that are semi-T 1
2

and semi-pre-T 1
2

respectively, so these spaces cannot be TD.

On the other hand the space X = {a, b, c} with the topology τ = {∅, {a}, {a, b}, X} is

TD and is not semi-pre-T 1
2

(since the point {b} is not preopen, in fact int{b} = ∅). However,

it is known that every TD-space is semi-T 1
2

(note that space is semi-TD if and only if it is

semi-T 1
2

[6]). Thus a space is TD if and only if it is semi-T 1
2

and every semi-closed singleton

is locally closed.

We can also ask about the relations between T 1
4

and semi-T 1
2
. Again, there are semi-T 1

2

and semi-pre-T 1
2

spaces that are not T 1
4
. On the other hand, the space from Example 3.2

is T 1
4

but not semi-pre-T 1
2
, since the zero point is not semi-closed. In fact, it is dense in X;

such points are known as generic points.

Question 3: Is every T 1
4
-space necessarily semi-pre-T 1

2
?

4 The dual of generalized continuity

Definition 5 A function f : (X, τ) → (Y, σ) is called:

(1) g-continuous [2] if f−1(V ) is g-closed in (X, τ) for every closed set V of (Y, σ),

(2) LC-continuous [11] if f−1(U) is locally closed in (X, τ) for every open set U of (Y, σ),

(3) co-LC-continuous if f−1(V ) is locally closed in (X, τ) for every closed set V of (Y, σ),

(4) λ-continuous if f−1(V ) is λ-closed in (X, τ) for every closed set V of (Y, σ).

Every co-LC-continuous function (in particular every continuous function) is λ-continuous

but not vice versa.

Example 4.1 Consider the classical Dirichlet function f :R → R, where R is the real line

with the usual topology:

f(x) =

{
1, x ∈ Q,
0, otherwise.

It is easily observed that f is λ-continuous. But f is neither LC-continuous nor co-LC-

continuous nor g-continuous, hence not continuous.
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To see that g-continuity and λ-continuity are concepts totally independent from each

other, consider the identity function f : (R, τ) → (R, σ), where R is the real line, τ is the

indiscrete topology and σ is the usual topology. Note that f is g-continuous but not λ-

continuous.

Finally, we present the new decomposition of continuity:

Theorem 4.2 For a function f : (X, τ) → (Y, σ) the following conditions are equivalent:

(1) f is continuous.

(2) f is g-continuous and co-LC-continuous.

(3) f is g-continuous and λ-continuous. 2
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