
α-Scattered Spaces II∗

Julian Dontchev, Maximilian Ganster and David Rose

Abstract

The aim of this paper is to continue the study of scattered and primarily of α-
scattered spaces. The relations between the two concepts and some allied topological
properties are investigated. Three problems are left open.

1 Introduction

A topological space X is scattered if the only perfect or equivalently crowded subset of X

is the empty set. Crowded sets are sometimes called dense-in-themselves and scattered sets

are known as dispersed, zerstreut or clairsemé.

For a topological space X, the Cantor-Bendixson derivative D(X) is the set of all non-

isolated points of X. It is a fact that the Cantor-Bendixson derivative of every scattered space

is nowhere dense. That D(X) is nowhere dense is equivalent to the assumption that I(X),

the sets of all isolated points of X, is dense in X. The spaces satisfying this last condition

are precisely the spaces whose α-topologies are scattered. These spaces are called in [23]

α-scattered. The concept was used in [23] to show that in α-scattered spaces the notions

of submaximal spaces and α-spaces coincide and thus a recent result of Arhangel’skĭı and

Collins [3] was improved. Topological spaces with countable Cantor-Bendixson derivative

were studied in [10]. Such spaces are called d-Lindelöf.

The aim of this paper is to continue the study of scattered and α-scattered spaces.
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2 Scattered and α-scattered spaces

The perfect kernel of a given subset A of a topological space X is its largest possible crowded

subset. We denote it by pk(A). Clearly pk(A) is determined for every set A, since arbitrary

union of crowded sets is crowded. Note that for any subset A of a space X, pk(A) is always

a perfect subset of A, and if additionally A is closed in X, then pk(A) is perfect in X. Also,

for every set A, pk(A) is a subset of the Cantor-Bendixson derivative D(A).

The scattered kernel of a subset A of a space X is the set sk(A) = A \ pk(A). Note that

sk(A) is always scattered.

It is well-known that every closed set A of a space X has its unique representation as

the disjoint union of a perfect and a scattered set. In fact, this representation is as follows:

A = pk(A) ∪ sk(A).

Lemma 2.1 Let A be a subset of a space X. Then I(A) ⊆ sk(A) ⊆ Cl(I(A)). The scattered

kernel sk(A) is always open in A.

Proof. Note first that I(A) = A \ D(A) ⊆ A \ pk(A) = sk(A). Since A \ Cl(I(A)) is

crowded, then sk(A) = A\pk(A) ⊆ A\ (A\Cl(I(A))) ⊆ Cl(I(A)). Since pk(A) = A\ sk(A)

is closed in A, then the last claim of the lemma is clear. 2

¿From the above given lemma, we have the following characterization of α-scattered

spaces.

Theorem 2.2 For a topological space (X, τ) the following conditions are equivalent:

(1) X is α-scattered.

(2) The scattered kernel of X is a dense subset of X. 2

Remark 2.3 Even in an α-scattered space, I(X) need not coincide with sk(X). Let X =

{a, b, c}, where the non-trivial open sets are {a} and {a, b}. Clearly I(X) = {a} and sk(X) =

X.

The α-topology [21] on a topological space X is usually denoted by τα. This is the

collection of all subsets of the form U \ N , where U ∈ τ and N is nowhere dense subset of

(X, τ).
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Theorem 2.4 If X = P ∪Q denotes the decomposition of a space (X, τ) into its perfect part

P and its scattered part Q with respect to the α-topology, then Q = Int(Cl(I(X))), where

I(X) is the set of all isolated points of (X, τ).

Proof. By Lemma 2.1, sk(X) ⊆ Cl(I(X)). Thus, X \ Cl(I(X)) ⊆ pk(X). Since every

τ -open, τ -crowded set is τα-crowded, then X \ Cl(I(X)) ⊆ P . Hence, X \ Int(Cl(I(X))) =

Cl(X \ Cl(I(X))) = Clα(X \ Cl(I(X))) ⊆ P (note that P is τα-closed). Thus Q ⊆
Int(Cl(I(X))). Now, suppose that x ∈ P ∩ Int(Cl(I(X))). Then I(X) ⊆ Q ∪ {x} ⊆
Int(Cl(I(X))), and so Q ∪ {x} = V is α-open, and V ∩ P = {x}, a contradiction, since P is

τα-crowded. So, Q = Int(Cl(I(X))). 2

¿From Theorem 2.4, we immediately have the following result:

Corollary 2.5 [23] A topological space (X, τ) is α-scattered (i.e. P = ∅) if and only if I(X)

is dense in X. 2

It is not difficult to find examples of α-scattered spaces that are not scattered (see [23,

Example 1]). Here is one example from the Euclidean plane.

Example 2.6 Examples of α-scattered spaces that are not scattered can be found in R2.

Let Y be the subset of the plane consisting of all points (m
n
, 1

n
), where n > 0 and the greatest

common divisor of m and n is 1. Clearly Y is discrete. Let X = ClY . Note that X is

α-scattered, since I(X) = Y but X is not scattered as shown next. Set A = [0, 1]×{0}. We

will show that A ⊆ X. Let x be any rational number from the open interval (0, 1). Then

x = m
n
, where n > 0 and 1 is the greatest common divisor of m and n. Clearly for every

prime number p there corresponds a number k ∈ {1, . . . , p− 1}, such that |k
p
−x| ≤ 1

p
. Then

the distance between (k
p
, 1

p
) and (x, 0) is less or equal to |k

p
− x| + 1

p
≤ 2

p
. Hence (x, 0) ∈ X

and consequently A ⊆ X. Since A is crowded and nonempty, then X is non-scattered.

The following result settles an open problem from [23].

Theorem 2.7 (i) Scatteredness is finitely productive.

(ii) [23] α-scatteredness is finitely productive.

(iii) [23] α-scatteredness is not infinitely productive.
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Proof. Let X and Y be two scattered topological spaces. Assume that X × Y is not

scattered and we will arrive at a contradiction. Let A be a nonempty crowded subset of

X × Y and let p be the canonical projection X × Y → X. Since p(A) is a nonempty subset

of the scattered space X, then there exists a point a ∈ p(A) and an open set U of X such

that U ∩ p(A) = {a}. Then W (a) = {y ∈ Y : (a, y) ∈ A} is a nonempty subset of the

scattered space Y . Thus, there exists a point b ∈ W (a) and an open set V of Y such that

V ∩W (a) = {b}. Note that {(a, b)} ⊆ (U ×V )∩A. Next we show that the reverse inclusion

is also true. For let (x, y) ∈ (U × V ) ∩ A. Since (x, y) ∈ A, then x = p(x, y) ∈ p(A) and

hence x ∈ U ∩p(A) = {a}. Thus y ∈ W (x) = W (a) and so y ∈ V ∩W (a) = {b}. This shows

that (x, y) = (a, b); hence (U × V ) ∩ A = {(a, b)}. The last equality shows that A has an

isolated point. Contradiction. 2

Recall that Arhangel’skĭı calls a topological property P Dutch [2] if P is closed hereditary

and preserved under finite products. Several classes of spaces have the Dutch property, for

example metrizable spaces, developable spaces, first countable spaces. The real line with a

topology in which a nonempty proper subset is open iff it consists of rational numbers is an

example of an α-scattered space containing a nonempty crowded closed subspace. Thus we

have the following result:

Corollary 2.8 Scatteredness is Dutch property; α-scatteredness is not. 2

Remark 2.9 Henriksen and Isbell call a topological property P fitting (see [4]) if whenever

f : (X, τ) → (Y, σ) is a perfect mapping then X has property P if and only if Y has property

P . Let (X, τ) be the real line with a topology in which the only nontrivial open subsets

are the sets of all rational numbers Q and all irrational numbers P. If (Y, σ) is its subspace

(0,
√

2), then the function

f(x) =

{
0, x ∈ Q,√

2, otherwise.

is perfect, X is crowded (hence not α-scattered) and Y is discrete (hence scattered). Thus

neither scatteredness nor α-scatteredness is a fitting property.

4



It is proved in [23, Theorem 1] that a space X is α-scattered iff every somewhere dense

subspace of X has an isolated point iff I(X) is dense in X. The following theorem gives

further characterizations of α-scattered spaces.

Theorem 2.10 For a topological space (X, τ) the following conditions are equivalent:

(1) X is α-scattered.

(2) I(X) is dense in the semi-regularization τs.

(3) I(X) is θ-dense, i.e. ClθI(X) = X. 2

A set A has the Baire property (= BP-set) if there is an open set U with A4U (=

(A \ U) ∪ (U \ A)) meager [17].

Theorem 2.11 If X is α-scattered, then every subset of X has the Baire property.

Proof. Let A ⊆ X. Note first that A1 = A ∩ I(X) is open in X and hence A1 has the

Baire property. On the other hand D(X) is clearly nowhere dense in X (being closed and

codense). Hence its subset A2 = A∩D(X) is nowhere dense in X. Clearly A2 has the Baire

property (being meager). Since the BP-sets form σ-algebra on X, then A = A1 ∪A2 has the

Baire property. 2

¿From the above given proof, it is clear that every subset of an α-scattered space is

simply-open, since a set is simply-open iff it is union of an open and a nowhere dense set.

Observing that a space is strongly irresolvable [9] iff every subset is simply-open, we have

the following:

Proposition 2.12 Every α-scattered space is α-submaximal, i.e. strongly irresolvable. 2

As mentioned in [23], the crowded submaximal spaces of Hewitt without isolated points

show that there exist strongly irresolvable spaces that fail to be α-scattered.

Not only do all subsets of an α-scattered space have the classical property of Baire, more

particularly, they have the property of Baire relative to the ideal N (τ) of nowhere dense

sets. Let I be an ideal of subsets of a space (X, τ). A subset A has the property of Baire

relative to the ideal I, or more simply A has the I-property of Baire, if A is I-equivalent to
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a τ -open set, i.e., there is an open set U (in τ) whose symmetric difference with A belongs

to I. The family of all subsets having the I-property of Baire is denoted Br(X, τ, I). It is

noted in [26] that for any ideal I, Br(X, τ, I) is closed under finite intersection and finite

union and is a field if and only if Br(X, τ, I) contains the τ -closed sets. In this case, it is a

σ-field if also I is a σ-ideal. Theorem 1 of the same paper states:

Theorem 2.13 [26] If N (τ) is contained in I, then Br(X, τ, I) is a field and the converse

holds if I is τ -codense. 2

Recall that the ideal I is τ -local if I contains all subsets of X which are locally in I. A

subset A is locally in I if it has an open cover each member of which intersects A in an ideal

amount, i.e., each point of A has a neighborhood whose intersection with A belongs to I.

This is equivalent to A being disjoint with A∗(I) where A∗(I) = {x ∈ X: every neighborhood

of x has an intersection with A not belonging to I}. It is known that N (τ) is always τ -local

and the classical Banach Category Theorem asserts that the σ-extension of N (τ), M(τ),

the ideal of meager sets is always τ -local. However, M(τ) is τ -codense if and only if (X, τ)

is a Baire space. It is shown in [24], that every ideal is contained in a smallest local ideal

called the local extension. It is shown there that in any T1-space or perhaps TD-space, the

ideal of scattered sets is the local extension of the ideal of finite sets. It is shown [22] that

if an ideal I is τ -local, then the elements of the topology τ ∗(I) have the simple form U \ E

where U ∈ τ and E ∈ I. Recall that τ ∗(I) is the smallest extension of τ in which members

of I are closed. When this happens, τ ∗(I) is called simple. Theorem 2 of [26] states:

Theorem 2.14 If τ ∗(I) is simple and Br(X, τ, I) is a field, then Br(X, τ, I) = LC(X, τ ∗(I))

(the set of locally closed sets for the expansion topology). If also I is a σ-ideal, Br(X, τ, I) =

Bo(X, τ ∗(I)) (the set of Borel sets for the expansion topology). 2

Proposition 2.15 If X is α-scattered, N (τ) = M(τ) = P(D(X)), where P(A) is the power

set of A. 2

It follows that Br(X, τ,N (τ)) is the family of sets which have the classical property of

Baire. From the two theorems above we have the following.
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Proposition 2.16 If X is α-scattered, then P(X) = LC(X, τα), where τα = τ ∗(N (τ)). 2

Recall that a family W of subsets of a topological space (X, τ) is chain-countable [16]

if every disjoint subfamily of W is countable. It is proved in [16] that if the family of all

open non-meager sets of a topological space (X, τ) is chain-countable, then every point-finite

subfamily of the family of all non-meager BP-sets is countable. As a consequence of that

result we have the following proposition involving α-scattered spaces.

Proposition 2.17 If the family of all open 2. category sets of an α-scattered space (X, τ)

is chain-countable, then every point-finite family of 2. category sets is countable. 2

Unlike scatteredness, α-scatteredness is not a hereditary property [23]. However, the

following results shows that α-scatteredness is an open hereditary property.

Theorem 2.18 Every open subspace of an α-scattered space is α-scattered.

Proof. Let U ⊆ X, where U is open (and nonempty) in X and X is α-scattered. Since

I(X) is dense in X, then T = U ∩ I(X) is nonempty. Clearly T = I(U). If V is a nonempty

open subset of U , then V is open in X and hence meets T . Thus T is dense in U and so is

I(U) being its superset. Thus U is α-scattered. 2

Corollary 2.19 Let {Xi: i ∈ I} be a family of spaces and let X denote their topological sum.

Then the following conditions are equivalent:

(1) X is α-scattered.

(2) Xi is α-scattered for each i ∈ I.

Proof. (1) ⇒ (2) follows from the theorem above. (2) ⇒ (1) Let U be an open nonempty

subset of X and let Ui = U ∩Xi. Note that ∪i∈II(Xi) ⊆ I(X). Clearly for some k ∈ I, Uk

is nonempty. Since Uk is open in Xk, then Uk and hence U meets I(Xk). This shows that

U ∩ I(X) 6= ∅. Thus I(X) is dense in X and X is α-scattered. 2

Remark 2.20 It is left to the reader to check that Theorem 2.18 can be improved in a way

such that the openness of the subspace can be reduced to β-openness. Recall that a subset

A of a topological space (X, τ) is β-open if A is dense in some regular closed subspace of X.
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One consequence by Corollary 2.5 of [6] is that Xα is submaximal if X is α-scattered for

certainly then P(X) contains all τα-closed sets.

Theorem 2.21 A space X is strongly irresolvable if and only if every subset has the property

of Baire relative to the ideal of nowhere dense sets.

Proof. The space X is strongly irresolvable if and only if Xα is submaximal which occurs

if and only if LC(Xα) = Br(X, τ,N (τ)) = P(X). 2

The following corollary answers an open problem of [23] in the positive.

Corollary 2.22 Strong irresolvability is finitely productive. 2

Theorem 2.23 Let Xµ = (X, τ ∗(M(τ))). Then Xµ is submaximal if and only if every

subset of X has the (classical) property of Baire.

Proof. Similar to the above with LC(Xµ) = Br(X, τ). 2

Recall that a (nonempty) space (X, τ) is called hyperconnected if every nonempty open

set is dense.

Proposition 2.24 Every hyperconnected space X is either crowded or α-scattered. 2

Often in literature, it is mentioned that the scattered sets of a T1-space form an ideal (the

scattered sets always form a subideal (= h-family [6])). We show next that the separation

property TD (= singletons are locally closed) is enough but first we have the following lemma.

Lemma 2.25 (i) Every scattered subset of a crowded TD-space is nowhere dense.

(ii) Every dense subset of a crowded TD-space is also crowded. 2

Theorem 2.26 Let X be a TD-space. Then the collection S of all scattered subsets of X

forms an ideal on X.
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Proof. Heredity is clear even if X is not TD. Thus we need to verify only finite additivity.

For let S1, S2 ∈ S and let A be a crowded subset of S = S1 ∪ S2. We will show that A

coincides with the void set. By heredity, W = A∩S1 is scattered and by Lemma 2.25 (i), W

is nowhere dense and hence codense in A. Hence V = A \ S1 is dense in A. By Lemma 2.25

(ii), V is crowded. Since V is a subset of the scattered set S2, then by heredity V is empty.

Thus A ⊆ S1. Applying again the heredity of S, we have that A = ∅. Hence S is scattered

and we have the finite additivity of S. 2

Here is how α-scatteredness is related to some weak separation properties.

Theorem 2.27 Every α-scattered space is semi-T 1
2
.

Proof. In the notion of [27, Theorem 4.8], we need to show that every singleton is semi-

open or semi-closed. This is clear, since every point in I(X) is open and every point of D(X)

is nowhere dense. 2

However, there are α-scattered spaces that fail to be even T 1
2
; even T ∗

1 . (Every infra-space

with an isolated point for instance - but not the Sierpinski space of course.)

Recall that a topological space (X, τ) is called Katetov T [18] (for a given separation

axiom T ) if there is some subtopology of τ that is a minimal T topology on X. A minimal

T topology is a topology that satisfies T , but that contains no proper subtopology satisfying

T . It is shown in [18] that every scattered space is Katetov TD. We can easily find an

α-scattered space that is not Katetov TD. The relation between Katetov T and α-scattered

spaces is given as follows.

Theorem 2.28 Every α-scattered space is Katetov semi-TD.

Proof. Let (X, τ) be nonempty and α-scattered. Let x ∈ I(X). Consider the infra

topology σ = {∅, {x}, X}. Note that σ is a minimal semi-TD subtopology of τ , since none of

the points of the indiscrete topology is open or semi-closed. Thus X is Katetov semi-TD. 2

Local scatteredness is a superfluous concept. It can be easily proved that if every point

of a given topological space X has a scattered neighborhood, then X itself is scattered. We

can prove the same for α-scattered spaces. (A set is α-scattered if it is α-scattered as a

subspace.)
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Theorem 2.29 If every point of a space X has an α-scattered neighborhood, then X is

α-scattered.

Proof. Assume that X is not α-scattered. Then the Cantor-Bendixson derivative D(X)

has a nonempty subset U which is open in X. Let x ∈ U . By assumption, there exists

an α-scattered set V and an open set W such that x ∈ W ⊆ V . Since by Theorem 2.18,

α-scatteredness is open hereditary, then W is α-scattered and so is A = U ∩W . Since A is

nonempty and open, then A has an isolated point p. Clearly p must be open in X. Since

p 6∈ I(X), by contradiction X is α-scattered. 2

¿From the above given proof it is clear that if every point of the Cantor-Bendixson

derivative of a topological space X has an α-scattered neighborhood, then X itself is α-

scattered.

Example 2.30 The union of even two α-scattered sets need not be α-scattered. Let X =

{a, b, c, d}, where the non-trivial open sets are {a, b} and {c, d}. Clearly {a, d} and {b, c} are

α-scattered but their union is X fails to be α-scattered.

A topological space (X, τ) is called sporadic if the Cantor-Bendixson derivative of X

is meager. Clearly every α-scattered space is sporadic and the space of all rationals (as

a subspace of the real line) provides an example of a sporadic space which fails to be α-

scattered.

Recall that a topological space (X, τ) is called d-Lindelöf [10] if every cover of X by dense

subsets has a countable subcover.

Theorem 2.31 Every d-Lindelöf, semi-T 1
2
-space is sporadic.

Proof. By Proposition 2.4 from [10], the Cantor-Bendixson derivative of X is countable.

Since X is a semi-T 1
2
-space, then for every x ∈ D(X) we have {x} is semi-closed. Hence, it

is easily observed that each singleton of D(X) is nowhere dense. Thus D(X) is meager and

consequently X is sporadic. 2

None of the assumptions in the theorem above can be dropped, since one can easily find a

d-Lindelöf or a semi-T 1
2
-space that is not sporadic. Moreover, sporadic cannot be replaced by
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α-scattered as the space of the rationals provides an example of a d-Lindelöf, semi-T 1
2
-space

which is not α-scattered.

Recall that a topological space (X, τ) is called pseudo-Lindelöf [3] if every uncountable

subset of X has a limit point in X.

Corollary 2.32 Every pseudo-Lindelöf submaximal space is sporadic and Lindelöf.

Proof. Every pseudo-Lindelöf submaximal space is d-Lindelöf [3, Theorem 5.6]. Since X

is submaximal, then X is semi-T 1
2
. By Theorem 2.31, X is sporadic. By [3, Theorem 5.7],

X is Lindelöf. 2

Recall that a topological space (X, τ) is called ω-scattered [12] if every nonempty subset

A ⊆ X has a point x and an open neighborhood U of x in X such that |U ∩ A| ≤ ℵ0.

Theorem 2.33 Every d-Lindelöf space is ω-scattered.

Proof. Let A be a nonempty subset of X. If I = A ∩ I(X) 6= ∅, then every point of

I satisfies the condition in the definition of ω-scatteredness. If A is placed in the Cantor-

Bendixson derivative of X, then A is at most countable since X is d-Lindelöf. So clearly any

neighborhood (in X) of a point of A meets A in a countable amount. Thus X is ω-scattered.

2

It shown in [12] that every ω-scattered, compact, Hausdorff space is α-scattered.

Question 1. When is an ω-scattered space α-scattered? Can the assumption ‘compact,

Hausdorff’ be reduced?

Question 2. When is a sporadic space α-scattered? When do the two concepts coincide?

Recall that a topological space (X, τ) is called C-scattered [29] if every closed subspace

of X has a point with a compact neighborhood.

Question 3. How are α-scattered and C-scattered spaces related?

Recall that a topological space (X, τ) is called a Luzin space [19] if X satisfies the following

four conditions: (1) X is Hausdorff; (2) X is uncountable; (3) |I(X)| ≤ ℵ0 and (4) |N | ≤ ℵ0

for each N ∈ N . It is easily observed that sporadic Luzin spaces do not exist and that if a

space X is Luzin, then X is not d-Lindelöf.
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Recently there has been a significant interest in the study of rim-scattered space [8, 13,

14, 20]. Recall that a topological space (X, τ) is called rim-scattered if X has a basis of open

sets with scattered boundaries. It is easy to find examples showing that rim-scattered and

α-scattered spaces are independent concepts. It is also easy to see that a space is scattered

iff it is α-scattered and N-scattered, i.e. every open set has scattered boundary [7, 23]. The

following example will show that N-scatteredness is a property placed properly between

scatteredness and rim-scatteredness.

Example 2.34 (1) Recall that a measurable set E ⊆ R has density d at x ∈ R if

lim
h→0

m(E ∩ [x− h, x + h])

2h

exists and is equal to d. Set φ(E) = {x ∈ R: d(x,E) = 1}. The open sets of the density

topology τd are those measurable sets E that satisfy E ⊆ φ(E). Note that every open set of

the density topology has nowhere dense and hence closed and discrete boundary [28]. Thus

the density topology is N-scattered. But the density topology is not even α-scattered; in

fact it is crowded.

(2) Let R be the real line with the following topology: τ = {A ⊆ R: A∩{0, 1} = ∅}∪{B ⊆
R: {0, 1} ⊆ B and R \ B is finite}. Set B = {{x}: x 6= 0 and x 6= 1} ∪ {B ⊆ R: {0, 1} ⊆ B

and R \B is finite}. Clearly B is a basis for τ consisting of clopen sets (so the space is zero-

dimensional, i.e. its Menger-Urysohn dimension is at most 0). Hence (R, τ) is rim-scattered.

But the set A = R \ {0, 1} is open and has non-scattered boundary. Thus (R, τ) is not N-

scattered. However this is an α-scattered space, which is not scattered. Hence α-scattered,

rim-scattered spaces need not always be scattered.

The following results shows the connection between α-scattered and zero-dimensional

spaces. An Alexandroff space (or also called principal space) is a space where arbitrary

intersection of open sets is open.

Theorem 2.35 An α-scattered, Alexandroff space (X, τ) is zero-dimensional if and only if

X is discrete.
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Proof. Assume that X is nonempty. Since X is zero-dimensional, then every point of

I(X) is also closed in X. Note that I(X) 6= ∅, since X is α-scattered. Since X is Alexandroff,

then the Cantor-Bendixson derivative D(X) is clopen and D(X) 6= X. Since I(X) is dense

in X, then D(X) = ∅, i.e. X is discrete. 2

Recently Arhangel’skĭı and Collins [3, Theorem 1.6] proved that a topological space (X, τ)

is an I-space if and only if X is an α-space and α-scattered. Recall that a space (X, τ) is

called an I-space [3] if the Cantor-Bendixson derivative of X is closed and discrete. Next

we will improve the above mentioned result of Arhangel’skĭı and Collins but in order to do

that we define a topological space X to be an αi-space if every α-open subspace of X which

satisfies the separation axiom Ti is open in X. In [3, Theorem 1.6] the term nodec was used

instead of α-space but it is known that a space is nodec if and only if it is an α-space [6].

Recall that a topological space (X, τ) is called a T 1
2
-space if every non-closed singleton is

isolated.

Theorem 2.36 For a topological space (X, τ) the following conditions are equivalent:

(1) X is an I-space.

(2) X is α-scattered and an α 1
2
-space.

Proof. (1) ⇒ (2) follows from [3, Theorem 1.6].

(2)⇒ (1) For each point x of the Cantor-Bendixson derivative D(X), let Ax = I(X)∪{x}.
Note first that Ai is α-open in X. Moreover it is easily observed that Ax is a T 1

2
-space. Since

X is an α 1
2
-space, then each Ax is open in X. Hence each x ∈ D(X) is open in D(X) and

thus X is an I-space. 2

The following corollary improves Corollary 1.8 from [3] and Theorem 3 from [23].

Corollary 2.37 In the class of α-scattered spaces the notions of an I-space, of a nodec space,

of a submaximal space and of a α 1
2
-space are pairwise equivalent. 2

Example 2.38 (1) Note that α 1
2
-space is a concept strictly weaker than the one of an

α-space. Consider for instance X = {a, b, c, d} with τ = {∅, {a, b}, X}.
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(2) In [3], Arhangel’skĭı and Collins introduced the notion of a discretely flavoured space.

By definition a topological space (X, τ) is called discretely flavoured [3] if every infinite closed

crowded subspace contains a discrete non-closed set. Every scattered space is discretely

flavoured [3, Proposition 3.3 (a)]. Here is an example of an α-scattered space that fails to be

discretely flavoured: Let X be the real line with the following topology: τ = {∅, X, {0}} ∪
{A ⊆ X: 0 ∈ A and X \ A is finite}. Having the zero-point as a generic point, this space

is obviously α-scattered. But note that X \ {0} is infinite, closed and crowded subspace

inheriting the cofinite topology whose only discrete sets are the closed ones.

In the same paper [3], Arhangel’skĭı and Collins introduced the concept of a j-space, i.e.

of a space where every infinite closed crowded subspace contains an infinite subset which

is countably compact in X. They proved [3, Proposition 6.7] that a Hausdorff α-space is a

j-space if and only if it is scattered. We offer a slight improvement of their result.

Theorem 2.39 For a Hausdorff α-space (X, τ) the following conditions are equivalent:

(1) X is a j-space.

(2) X is α-scattered. 2

A classical result on nowhere dense sets is the fact that in crowded metric spaces discrete

sets have nowhere dense closures [1, 31]. We offer the following improvement of this result:

Theorem 2.40 In crowded T 1
2
-spaces, α-scattered sets have nowhere dense closures.

Proof. Let (X, τ) be crowded and T 1
2

(and hence T1).

Step 1. We show first that the closure of every discrete subset A of X is nowhere dense.

Let U be an nonempty open subset of A and let x ∈ U ∩ A. Since A is discrete, then there

exists V ∈ τ such that V ∩ A = {x}. Note that |U ∩ V | > 1, since X is crowded. Let

y ∈ U ∩ V with x 6= y. Since X is T1, then there exists an open set W containing y such

that x 6∈ W . Now U ∩V ∩W ⊆ A is nonempty, open and disjoint from A. By contradiction,

A is codense, i.e. the closure of A is nowhere dense in X.

Step 2. Let A be an α-scattered subset of X. Clearly I(A) is a discrete subset of X and

by Step 1, I(A) is nowhere dense. On the other hand, D(A) is nowhere dense in A, since

A is α-scattered. Thus D(A) is a nowhere dense subset of X and hence D(A) is nowhere

dense. Consequently A is nowhere dense being the finite union of nowhere dense sets. 2
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3 π-continuous and θ-continuous functions

In [23], a function f : (X, τ) → (Y, σ) is called π-continuous if τ is a π-base for the weak

topology f−1(σ) = {f−1(V ): V ∈ σ}. π-continuity can be characterized as follows:

Theorem 3.1 For a function f : X → Y , the following conditions are equivalent:

(1) f is π-continuous.

(2) If D is dense in X, then f(D) is dense in f(X). 2

Note that π-continuous surjections are usually called somewhat continuous.

Proposition 3.2 If X is α-scattered, then every function f : X → Y has the property of

Baire, i.e., inverse images of open sets have the property of Baire.

It is also clear that α-scattered spaces are Baire spaces since M(τ) = N (τ) is always

τ -codense. Recall that a set A is called almost open (classically) if A is contained in the

interior of A∗(M(τ)). ¿From [30, p. 298] (see also [11]), A∗(N (τ)) = ClIntClA. Thus, a

subset A of an α-scattered space is almost open if and only if A is contained in IntClA, i.e.,

A is nearly open (also called preopen). By an extension of M. Wilhelm’s Theorem: (see

[22, 25]) we have the following.

Proposition 3.3 If f : X → Y is nearly continuous (sometimes called precontinuous) and

X is α-scattered, then f is θ-continuous and also, (as a consequence of Theorem 6.11 of [11]

since N (τ) is τ -codense; or [25, Lemma 7]) f : Xα → Y is θ-continuous. 2

Conditions (ii) and (iii) of the corollary below give necessary conditions for a nearly

continuous function to have θ-closed and δ-closed graph, respectively. Note that δ-closed

graphs (resp. θ-closed graphs) were considered by Cammaroto and Noiri in [5, Section C:

δ-closed graphs] (resp. by Janković and Long in [15, Theorem 8]).

Corollary 3.4 (i) Let (X, τ) be α-scattered. If there exists an Urysohn space (Y, σ) and a

nearly continuous injective function f : (X, τ) → (Y, σ), then X is also Urysohn.
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(ii) If (X, τ) is α-scattered and (Y, σ) is Urysohn, then the graph of every nearly contin-

uous function f : (X, τ) → (Y, σ) is θ-closed.

(iii) If (X, τ) is α-scattered and (Y, σ) is Hausdorff, then the graph of every nearly contin-

uous function f : (X, τ) → (Y, σ) is δ-closed, i.e. the graph is closed in the semi-regularization

topology of X × Y .

(iv) If (X, τ) is an α-scattered, H-closed space, then every nearly continuous function

f : (X, τ) → (Y, σ) is almost closed given (Y, σ) is Hausdorff.

(v) If (X, τ) is α-scattered, then every nearly continuous function f : (X, τ) → (Y, σ) is

faintly α-continuous. 2
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