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Abstract

The aim of this paper is to continue the study of sg-compact spaces, a topologi-
cal notion much stronger than hereditary compactness. We investigate the relations
between sg-compact and C2-spaces and the interrelations to hereditarily sg-closed sets.

1 Introduction

In 1995, sg-compact spaces were introduced independently by Caldas [2] and by Devi, Bal-

achandran and Maki [4]. A topological space (X, τ) is called sg-compact [2] if every cover of

X by sg-open sets has a finite subcover. In [4], the term SGO-compact is used.

Recall that a subset A of a topological space (X, τ) is called sg-open [1] if every semi-

closed subset of A is included in the semi-interior of A. A set A is called semi-open if

A ⊆ IntA and semi-closed if IntA ⊆ A. The semi-interior of A, denoted by sInt(A), is the

union of all semi-open subsets of A while the semi-closure of A, denoted by sCl(A), is the

intersection of all semi-closed supersets of A. It is well known that sInt(A) = A ∩ IntA and

sCl(A) = A ∪ IntA .
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Every topological space (X, τ) has a unique decomposition into two sets X1 and X2,

where X1 = {x ∈ X: {x} is nowhere dense} and X2 = {x ∈ X: {x} is locally dense}. This

decomposition follows from a result of Janković and Reilly [13, Lemma 2]. Recall that a set

A is said to be locally dense [3] (= preopen) if A ⊆ IntA.

It is a fact that a subset A of X is sg-closed (= its complement is sg-open) if and only if

X1 ∩ sCl(A) ⊆ A [6], or equivalently if and only if X1 ∩ IntA ⊆ A. By taking complements

one easily observes that A is sg-open if and only if A∩X1 ⊆ sInt(A). Hence every subset of

X2 is sg-open.

2 Sg-compact spaces

Let A be a sg-closed subset of a topological space (X, τ). If every subset of A is also sg-

closed in (X, τ), then A will be called hereditarily sg-closed (= hsg-closed). Observe that

every nowhere dense subset is hsg-closed but not vice versa.

Proposition 2.1 For a subset A of a topological space (X, τ) the following conditions are

equivalent:

(1) A is hsg-closed.

(2) X1 ∩ IntA = ∅.

Proof. (1) ⇒ (2) Suppose that there exits x ∈ X1∩IntA. Let Vx be an open set such that

Vx ⊆ A and let B = A\{x}. Since B is sg-closed, i.e. X1∩ sCl(B) ⊆ B, we have x 6∈ sCl(B),

hence x 6∈ IntB, and thus x ∈ X \B. If H = Vx ∩ (X \ B), then H is nonempty and open

with H ⊆ A and H ∩ B = ∅ and so H ∩ A = {x}. Hence ∅ 6= H = H ∩ A ⊆ H ∩ A ⊆ {x},
i.e. Int{x} 6= ∅. Thus x ∈ X2, a contradiction.

(2) ⇒ (1) Let B ⊆ A. Then IntB ⊆ IntA and X1 ∩ IntB = ∅, i.e. B is sg-closed. 2

We will call a topological space (X, τ) a C2-space [9] (resp. C3-space) if every nowhere

dense (resp. hsg-closed) set is finite. Clearly every C3-space is a C2-space. Also, a topological
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space (X, τ) is indiscrete if and only if every subset of X is hsg-closed (since in that case

X1 = ∅).
Following Hodel [14], we say that a cellular family in a topological space (X, τ) is a

collection of nonempty, pairwise disjoint open sets. The following result reveals an interesting

property of C2-spaces.

Lemma 2.2 Let (X, τ) be a C2-space. Then every infinite cellular family has an infinite

subfamily whose union is contained in X2.

Proof. Let {Ui: i ∈ N} be a cellular family. Suppose that for infinitely many i ∈ N

we have Ui ∩ X1 6= ∅. Without loss of generality we may assume that Ui ∩ X1 6= ∅ for

each i ∈ N. Now pick xi ∈ Ui ∩ X1 for each i ∈ N and partition N into infinitely many

disjoint infinite sets, N = ∪k∈NNk. Let Ak = {xi: i ∈ Nk}. Since Ak ∩ (∪i6∈Nk
Ui) = ∅ and

Ak ⊆ ∪i∈Nk
Ui for each k, it is easily checked that {IntAk: k ∈ N} is a disjoint family of open

sets. Since X is a C2-space, Ak cannot be nowhere dense and so, for each k, there exists

pk ∈ IntAk and the pk’s are pairwise distinct. Also, since X is C2, ∪i∈NUi = ∪i∈N(Ui) ∪ F ,

where F is finite. Since pk ∈ ∪i∈NUi for each k, there exists k0 such that pk ∈ ∪i∈NUi

for k ≥ k0, and since IntAk ∩ (∪i6∈Nk
Ui) = ∅, we have pk ∈ ∪i∈Nk

Ui for k ≥ k0. Now,

for each k ≥ k0 pick ik ∈ Nk such that pk ∈ Uik , and so pk ∈ W = Uik ∩ IntAk. Thus

∅ 6= W ⊆ Uik ∩ Ak ⊆ Uik ∩ Ak = {xik}. Hence {xik} is locally dense, a contradiction. This

shows that only for finitely many i ∈ N we have Ui ∩X1 6= ∅. Thus the claim is proved. 2

The α-topology [16] on a topological space (X, τ) is the collection of all sets of the form

U \ N , where U ∈ τ and N is nowhere dense in (X, τ). Recall that topological spaces

whose α-topologies are hereditarily compact have been shown to be semi-compact [11]. The

original definition of semi-compactness is in terms of semi-open sets and is due to Dorsett

[8]. By definition a topological space (X, τ) is called semi-compact [8] if every cover of X by

semi-open sets has a finite subcover.

Remark 2.3 (i) The 1-point-compactification of an infinite discrete space is a C2-space

having an infinite cellular family.
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(ii) [9] A topological space (X, τ) is semi-compact if and only if X is a C2-space and every

cellular family is finite.

(iii) [12] Every subspace of a semi-compact space is semi-compact (as a subspace).

Lemma 2.4 (i) Every C3-space (X, τ) is semi-compact.

(ii) Every sg-compact space is semi-compact.

Proof. (i) All C3-spaces are C2-spaces. Thus in the notion of Remark 2.3 (ii) above we

need to show that every cellular family in X is finite. Suppose that there exists an infinite

cellular family {Ui: i ∈ N}. For each i ∈ N pick xi ∈ Ui and, as before, partition N = ∪kNk

and set Ak = {xi: i ∈ Nk}. Since X is a C2-space, {IntAk: k ∈ N} is a cellular family. By

Lemma 2.2, there is a k ∈ N such that IntAk ⊆ X2. Since Ak is not hsg-closed, we must have

X1 ∩ IntAk 6= ∅, a contradiction. So, every cellular family in X is finite and consequently

(X, τ) is semi-compact.

(ii) is obvious since every semi-open set is sg-open. 2

Remark 2.5 (i) It is known that sg-open sets are β-open, i.e. they are open in some regular

closed subspace [5]. Note that β-compact spaces, i.e. the spaces in which every cover by

β-open sets has a finite subcover are finite [10]. However, one can easily find an example of

an infinite sg-compact space – the real line with the cofinite topology is such a space.

(ii) In semi-TD-spaces the concepts of sg-compactness and semi-compactness coincide.

Recall that a topological space (X, τ) is called a semi-TD-space [13] if each singleton is either

open or nowhere dense, i.e. if every sg-closed set is semi-closed.

Theorem 2.6 For a topological space (X, τ) the following conditions are equivalent:

(1) X is sg-compact.

(2) X is a C3-space.

Proof. (1) ⇒ (2) Suppose that there exists an infinite hsg-closed set A and set B = X \A.

Observe that for each x ∈ A, the set B ∪ {x} is sg-open in X. Thus {B ∪ {x}: x ∈ A} is a

sg-open cover of X with no finite subcover. Thus (X, τ) is C3.
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(2) ⇒ (1) Let X = ∪i∈IAi, where each Ai is sg-open. Let Si = sInt(Ai) for each i ∈ I

and let S = ∪i∈ISi. Then S is a semi-open subset of X and each Si is a semi-open subset

of (S, τ |S). Since X is a C3-space, (X, τ) is semi-compact and hence (S, τ |S) is a semi-

compact subspace of X (by Remark 2.3 (iii)). So we may say that S = Si1 ∪ . . . ∪ Sik .

Since Ai is sg-open, we have X1 ∩ Ai ⊆ Si for each index i and so X1 = X1 ∩ (∪Ai) ⊆
X1 ∩ S ⊆ Si1 ∪ . . . ∪ Sik = S. Hence X \ S is semi-closed and X \ S ⊆ X2. Since

Int(X \ S) ⊆ X \ S ⊆ X2, we conclude that X \ S is hsg-closed and thus finite. This shows

that X = Si1 ∪ . . . ∪ Sik ∪ (X \ S) = Ai1 ∪ . . . ∪ Aik ∪ F , where F is finite, i.e. (X, τ) is

sg-compact. 2

Remark 2.7 (i) If X1 = X, then (X, τ) is sg-compact if and only if (X, τ) is semi-compact.

Observe that in this case sg-closedness and semi-closedness coincide.

(ii) Every infinite set endowed with the cofinite topology is (hereditarily) sg-compact.

It is known that an arbitrary intersection of sg-closed sets is also an sg-closed set [6]. The

following result provides an answer to the question about the additivity of sg-closed sets.

Proposition 2.8 (i) If A is sg-closed and B is closed, then A ∪B is also sg-closed.

(ii) The intersection of a sg-open and an open set is always sg-open.

(iii) The union of a sg-closed and a semi-closed set need not be sg-closed, in particular,

even finite union of sg-closed sets need not be sg-closed.

Proof. (i) Let A∪B ⊆ U , where U is semi-open. Since A is sg-closed, we have sCl(A∪B) =

(A ∪B) ∪ Int(A ∪B) ⊆ U ∪ Int(A ∪B) ⊆ U ∪ (IntA ∪B) ⊆ U ∪ (U ∪B) = U .

(ii) follows from (i).

(iii) Let X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, X}. Note that the two sets A = {a} and

B = {b} are semi-closed but their union {a, b} is not sg-closed. 2

Theorem 3 from [1] states that if B ⊆ A ⊆ (X, τ) and A is open and sg-closed, then B is

sg-closed in the subspace A if and only if B is sg-closed in X. Since a subset is regular open

if and only if it is α-open and sg-closed [7], by using Proposition 2.8, we obtain the following

result:
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Proposition 2.9 Let R be a regular open subset of a topological space (X, τ). If A ⊆ R and

A is sg-open in (R, τ |R), then A is sg-open in X. 2

Proof. Since B = R \ A is sg-closed in (R, τ |R), B is sg-closed in X by [1, Theorem 3].

Thus X \ B is sg-open in X and by Proposition 2.8 (ii), R ∩ (X \ B) = A is sg-open in X.

2

Recall that a subset A of a topological space (X, τ) is called δ-open [18] if A is a union

of regular open sets. The collection of all δ-open subsets of a topological space (X, τ) forms

the so called semi-regularization topology.

Corollary 2.10 If A ⊆ B ⊆ (X, τ) such that B is δ-open in X and A is sg-open in B, then

A is sg-open in X.

Proof. Let B = ∪i∈IBi, where each Bi is regular open in (X, τ). Clearly, each Bi is

regular open also in (B, τ |B). By Proposition 2.8 (ii), A∩Bi is sg-open in (B, τ |B) for each

i ∈ I. In the notion of Proposition 2.9, B \ (A ∩ Bi) is sg-closed in (X, τ) for each i ∈ I.

Hence X \ (B \ (A∩Bi)) = (A∩Bi)∪ (X \B) is sg-open in (X, τ). Again by Proposition 2.8

(ii), B ∩ ((A∩Bi)∪ (X \B)) = A∩Bi is sg-open in (X, τ). Since any union of sg-open sets

is always sg-open, we have A = ∪i∈I(A ∩Bi) is sg-open in (X, τ). 2

Proposition 2.11 Every δ-open subset of a sg-compact space (X, τ) is sg-compact, in par-

ticular, sg-compactness is hereditary with respect to regular open sets.

Proof. Let A ⊆ X be δ-open. If {Ui: i ∈ I} is a sg-open cover of (S, τ |S), then by

Corollary 2.10, each Ui is sg-open in X. Then, {Ui: i ∈ I} along with X \A forms a sg-open

cover of X. Since X is sg-compact, there exists a finite F ⊆ I such that {Ui: i ∈ F} covers

A. 2

Example 2.12 Let A be an infinite set with p 6∈ A. Let X = A ∪ {p} and τ = {∅, A, X}.
(i) Clearly, X1 = {p}, X2 = A and for each infinite B ⊆ X, we have B = X. Hence

X1 ∩ IntB 6= ∅, so B is not hsg-closed. Thus (X, τ) is a C3-space, so sg-compact. But the
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open subspace A is an infinite indiscrete space which is not sg-compact. This shows that

(1) hereditary sg-compactness is a strictly stronger concept than sg-compactness and (2) in

Proposition 2.11 ’δ-open’ cannot be replaced with ’open’.

(ii) Observe that X×X contains an infinite nowhere dense subset, namely X×X \A×A.

This shows that even the finite product of two sg-compact spaces need not be sg-compact,

not even a C2-space.

(iii) [15] If the nonempty product of two spaces is sg-compact Tgs-space (see [15]), then

each factor space is sg-compact.

Recall that a function f : (X, τ) → (Y, σ) is called pre-sg-continuous [17] if f−1(F ) is

sg-closed in X for every semi-closed subset F ⊆ Y .

Proposition 2.13 (i) The property ’sg-compact’ is topological.

(ii) Pre-sg-continuous images of sg-compact spaces are semi-compact. 2
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