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Abstract

A nonempty topological space is resolvable if it contains complementary dense sub-
sets. The aim of this paper is to study resolvability modulo an ideal and to prove that
the density topology is resolvable.

1 Introduction

In 1943, Hewitt introduced the concept of a resolvable space. By definition, a nonempty

topological space (X, τ) is called resolvable [26] if X is the disjoint union of two dense

(or equivalently codense) subsets. In the opposite case X is called irresolvable. Every space

(X, τ) has its unique Hewitt representation, i.e. X = F ∪G, where F is closed and resolvable,

G is hereditarily irresolvable and F ∩G = ∅ [26].

Hewitt [26] proved that every locally compact dense-in-itself Hausdorff space is resolv-

able and that every metrizable dense-in-itself space is resolvable. In particular, the Cantor

subspace of [0, 1] is resolvable. In 1987, Ganster [16] showed that a connected space (X, τ)

is resolvable if and only if the topology on X having the preopen sets of (X, τ) as a subbase

is the discrete one. In 1988, P. Sharma and S. Sharma [45] improved Hewitt’s result by

proving that every Hausdorff k-space without isolated points is resolvable. In 1993, Comfort

and Feng [7] proved that every homogeneous space with a nonempty resolvable subspace

is resolvable. Also, all homogeneous spaces containing convergent sequences are resolvable
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[47]. It is well-known that a space (X, τ) is resolvable if and only if X is a finite union of

codense sets [4, 27]. Also, any resolvable space is dense-in-itself and resolvability is preserved

by (semi-)open subspaces. For an example of a connected, Hausdorff, irresolvable space see

[1, 39]. Resolvability of topological groups was recently studied by Comfort and van Mill [9]

and by Comfort, Masaveu and Zhou [10]. An extensive survey on resolvability was recently

made by Comfort and Garćıa-Ferreira [8].

A nonempty collection I of subsets on a topological space (X, τ) is called a topological

ideal on (X, τ) if it satisfies the following two conditions:

(1) If A ∈ I and B ⊆ A, then B ∈ I (heredity).

(2) If A ∈ I and B ∈ I, then A ∪B ∈ I (finite additivity).

A σ-ideal on a topological space (X, τ) is a topological ideal which also satisfies the

following condition:

(3) If {Ai: i = 1, 2, 3, . . .} ⊆ I, then ∪{Ai: i = 1, 2, 3, . . .} ∈ I (countable additivity).

The following collections form important ideals in a topological space (X, τ): the ideal of

all finite subsets F , the ideal of all countable subsets C, the ideal of all closed and discrete

sets CD, the ideal of all nowhere dense sets N , the ideal of all meager sets M, the ideal of

all scattered sets S (here X must be TD [12]) and the ideal of all Lebesgue null sets L.

By (X, τ, I) we will denote a topological space (X, τ) and an ideal I on X with no

separation properties assumed on X. For a space (X, τ, I) and a subset A ⊆ X, A∗(I) =

{x ∈ X : U ∩ A 6∈ I for every U ∈ τ(x)} is called the local function of A with respect to I
and τ [34]. We simply write A∗ instead of A∗(I) in case there is no chance for confusion.

Note that Cl∗(A) = A ∪ A∗ defines a Kuratowski closure operator for a topology τ ∗(I)

(also denoted by τ ∗ when there is no chance for confusion), finer than τ .

The topology τ of a space (X, τ, I) is compatible with the ideal I [38], denoted τ ∼ I,

if the following condition holds for every subset A of X: if for every x ∈ A there exists a

U ∈ τ(x) such that U ∩ A ∈ I, then A ∈ I. An ideal I in a topological space (X, τ, I) is

called local relative to the topology [42] or has the strong localization property if any subset

of X which is locally in I is in I (a set A is locally in I [42] if A ∩ A∗(I) = ∅). For

example, the σ-ideal of meager (= first category) sets is always local whereas every topology
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is compatible with the ideal of meager subsets – this result is known as the Banach category

theorem. Clearly an ideal I on a space (X, τ, I) is local if and only if it is compatible with

the topology τ .

Given a space (X, τ, I) and A ⊆ X, A is called I-open [29] if A ⊆ Int(A∗). A space

(X, τ, I) is called I-Hausdorff [11] if for each two distinct points x 6= y, there exist I-open

sets U and V containing x and y respectively, such that U ∩ V = ∅.
For more results on topological ideals, besides the ones from the references given above,

the reader may refer (for example) to [20, 21, 23, 30].

2 I-dense sets and I-resolvable spaces

Definition 1 A subset A of a topological space (X, τ, I) is called I-dense if every point of

X is in the local function of A with respect to I and τ , i.e. if A∗(I) = X.

Clearly every I-dense set is τ ∗-dense and hence dense. Further, X need not always be

I-dense.

Example 2.1 A τ ∗-dense set need not always be I-dense. Let X = {a, b, c, }, τ = {∅, {a},
{a, b}, X} and I = {∅, {a}}. Set A = {a, b}. It is easily seen that A is τ ∗-dense and that

A∗(I) = {b, c}.

An ideal I is codense if each of its members is codense. Note that an ideal I is codense

if and only if τ ∩ I = {∅}.

Theorem 2.2 For a nonempty topological space (X, τ, I), the following conditions are equiv-

alent:

(1) Every nonempty open set is I-dense, i.e. X is I-hyperconnected.

(2) (X, τ) is hyperconnected and I is codense.

Proof. (1) ⇒ (2) Clearly every I-hyperconnected space is hyperconnected. Let U be

open, nonempty and a member of the ideal. By (1), U∗(I) = X. On the other hand, since

U ∈ I, U∗(I) = ∅. Hence X = ∅. By contradiction, I is codense.
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(2) ⇒ (1) Let ∅ 6= U ∈ τ . Let x ∈ X. Due to the hyperconnectedness of (X, τ), every

open neighborhood V of x meets U . Moreover, U ∩ V is an open non-ideal set, since I is

codense. Thus x ∈ U∗(I). This shows that U is I-dense. 2

Definition 2 A nonempty topological space (X, τ, I) is called I-resolvable if X has two

disjoint I-dense subsets.

Remark 2.3 Note that it is equivalent to stipulate that the resolving I-dense sets be disjoint

modulo I, i.e. their intersection is an element of the ideal.

However, every resolvable space is N -resolvable and generally, if I and J are ideals

with I contained in J , X is J -resolvable implies that X is I-resolvable. Thus we have the

following result:

Theorem 2.4 For a nonempty topological space (X, τ, I), the following conditions are equiv-

alent:

(1) (X, τ) is resolvable.

(2) (X, τ) is N -resolvable.

(3) (X, τ) is {∅}-resolvable. 2

In Section 4, the concept of a completely codense ideal is introduced. For now we just

note that completely codense ideals are precisely those whose members are nowhere dense.

As a consequence we have that resolvability implies I-resolvability granted I is completely

codense.

The maximum ideal P(X) is an obstruction to I-resolvability, i.e. every nonempty topo-

logical space is P(X)-irresolvable; moreover every space is P(X)−-irresolvable, where P(X)−

is the ideal formed by excluding a given singleton from the maximal ideal. Below it is also

noted that X is I-irresolvable if I contains any nonempty open set.

Questions. Do any other proper ideals also prevent resolvability? Can the strength of

classical resolvability be measured by the ‘size’ of the obstructing ideals?

For a cardinal κ, a space (X, τ) is κ-resolvable if there is a family of κ-many pairwise

disjoint dense subsets of (X, τ). According to this terminology “resolvable” coincides with
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2-resolvable. Ceder [5] has shown that a Hausdorff space (X, τ) is ∆(X)-resolvable provided

that ℵ0 ≤ ω(X) ≤ ∆(X), where ω(X) denotes the weight of (X, τ) and ∆(X) the dispersion

character [26] of (X, τ), i.e. ∆(X) = min{|U |: U 6= ∅ is open in (X, τ)}.
Whenever (X, τ) is ∆(X)-resolvable with ℵ0 ≤ ∆(X), one can not always find disjoint

dense subsets {Dα: α < ∆(X)} such that for each α and each nonempty open set U we have

|U ∩Dα| = ∆(X) as a topological sum of 22ℵ0 copies of the reals shows. However, the claim

is true if (X, τ) is the Real line and this follows from the following argument: We know that

the dispersion character of the reals is c, and we have c.c = c. So pick c.c disjoint dense

sets E(i, j), i, j < c. Build c (disjoint) dense sets D(i) by setting D(i) to be the union of the

E(i, j) (with index j). Hence every nonempty open set intersects each D(i) in c points. Now,

by the result of Ceder it is obvious that the usual space of reals is resolvable with respect to

the ideal of sets of cardinality less than ∆. Moreover, since |U ∩Dα| has cardinality equal

to the dispersion character of the usual reals and since this dispersion character equals 2ℵ0 ,

under the negation of the continuum hypothesis, ℵ1 < the dispersion character and so, the

space of reals would be I-resolvable where I is the ideal of subsets of cardinality at most ℵ1

or the ideal of sets of cardinality strictly less than ℵ2.

Questions. Is there a space which is ℵ0-resolvable but not ∆-resolvable? What if the

space satisfies strong separation axioms? What about the analogues of these two questions

for resolvability modulo an ideal?

More generally, can resolvability modulo an ideal shed some light on spaces which are

exactly α-resolvable for some cardinal α? What if the space is at least α-resolvable? At

most α-resolvable for some α < ∆(X)?

Codense ideals are called τ -boundary ideals in [37] where the following is noted.

Theorem 2.5 An ideal of subsets of a space X is codense if and only if X = X∗.

Proof. Sufficiency: If U is a nonempty open subset and X = X∗, then U = U ∩X is not

an element of the ideal I. So, I is codense. Necessity: If I is codense, then X \X∗ must be

empty, since otherwise it would contain a nonempty open set U , whose intersection with X

belongs to I. 2

Evidently, if I is not codense, no subset of X is I-dense, not even X itself.
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Theorem 2.6 If (X, τ, I) is I-resolvable, then I is codense.

Proof. Let A be a subset of (X, τ, I) such that A forms an I-resolution with its com-

plement. From [28, Theorem 2.3 (a)], it follows that X is I-dense. Thus by Theorem 2.5,

τ ∩ I = {∅}. 2

Corollary 2.7 If (X, τ) is M-resolvable, then X is a Baire space. 2

For the converse, note that a Baire space need not be even resolvable. However, the

production of spaces which are both Baire and irresolvable (and have some reasonable sep-

aration properties) seems to demand additional set theoretic assumptions beyond ZFC (see

[33]).

Example 2.8 Let X be the usual real numbers. Let I be the power set of the set Q of

rationals and let J be the power set of the set P of irrationals. Then, X is both I-resolvable

and J -resolvable. But, X is not (I ∨ J )-resolvable, since (I ∨ J ) is the power set of X.

Question. If X is I-resolvable, then is X (I ∨ N )-resolvable? It is known that I ∨ N
is codense if I is codense.

A yes answer would tell us to restrict our attention to codense ideals containing N .

Given a topological space (X, τ), the collection of all regular open sets forms a base

for a topology τs, coarser than τ , called the semi-regularization. The topology τ is called

s-equivalent [40] to a topology σ on X if τ and σ have same semi-regularizations.

Theorem 2.9 If (X, τ, I) is I-resolvable, then τ and τ ∗ are s-equivalent. 2

Theorem 2.10 If (X, τ, I) is I-resolvable and the scattered sets of (X, τ ∗) are in I, then

τ ∼ I and (X, τ, I) is I-Hausdorff.

Proof. The compatibility between τ and I as well as the fact that singletons are members

of the ideal follows from [28, Theorem 5.4]. Let next A and B be disjoint I-dense subsets

of X such that X = A ∪B. Note that both A and B are I-open. Let x, y ∈ X. In order to
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show that (X, τ, I) is I-Hausdorff, we need to consider only the case when both x and y are

(for example) in A. It is easily observed (see [28, Theorem 2.3 (h)]) that U = A \ {y} and

V = B ∪ {y} are disjoint I-open sets containing x and y respectively. 2

A point x of a space (X, τ, I) is called inexhaustibly approached by a set A if x ∈ A∗(I).

Clearly the set of all inexhaustibly approached points by a set A is precisely the local function

of A. In [3], Blumberg introduced the definition for I = M.

Theorem 2.11 If (X, τ) is M-resolvable (resp. N -resolvable) and no point of X is inex-

haustibly approached by itself, then X is M-Hausdorff (resp. N -Hausdorff).

Proof. From the Banach Category Theorem and [28, Theorem 4.11] it follows that both

M and N are local ideals. Thus from [28, Theorem 4.5], we have that each point of X is in

M (resp. in N ), since none of them is inexhaustibly approached by itself. Now proceeding

as in the proof of Theorem 2.10, we can easily conclude that X is M-Hausdorff (resp. N -

Hausdorff). 2

3 The resolvability of the density topology

Definition 3 [24, 46] A measurable set E ⊆ R has density d at x ∈ R if

lim
h→0

m(E ∩ [x− h, x + h])

2h

exists and is equal to d. Set φ(E) = {x ∈ R: d(x,E) = 1}. Let A ∼ B mean that the

symmetric difference of A and B has measure zero, i.e. A4B is a nullset.

The open sets of the density topology τd are those measurable sets E that satisfy E ⊆
φ(E). Clearly the density topology τd is finer than the usual topology on the real line.

The following theorem gives a positive answer to the question from [13].

Theorem 3.1 The density topology is resolvable.
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Proof. According to item 12 of Chapter 8 from [17] (also [19, page 70]), there exists

a set D such that for every measurable set A, m∗(D ∩ A) = sup{m(B)|B ⊆ D ∩ A and

B is measurable} = 0 and m∗(D ∩ A) = inf{m(B)|D ∩ A ⊆ B and B is measurable} =

m(A). Neither D nor its complement are measurable. If U is any nonempty element of

the density topology, U is measurable with m(U) > 0. This shows that U contains points

in the complement of D for otherwise, m∗(D ∩ U) ≥ m(U) > 0. Also, U ∩ D 6= ∅, since

m∗(D ∩ U) = m(U) > 0 whereas, m∗(∅) = 0. Clearly, D and its complement form a

resolution for the set of reals with the density topology. 2

Moreover, every dense set D which forms a resolution with its complement contains no

set of positive measure. For sets of positive measure are precisely the τd-somewhere dense

sets which have the τd-property of Baire [43]. In particular, if m(E) > 0, there exists

U ∈ τd, the density topology, such that U 4 E is τd-nowhere dense (i.e. U ∼ E). Evidently,

V = U \Clτd
(U \E) ∈ τd and since m(V ) = m(U) = m(E) > 0, V 6= 0. Hence, E ⊆ D ⇒ D

is not codense. This implies also that such a D cannot have a defined density at any point.

For if D had a positive density at some point x, D would contain a subset E = [x−h, x+h]∩D

of positive measure. On the other hand, if D had density 0 at some point x, then D′, the

complement of D, would have a positive density at x resulting in the conclusion that D′ is

not codense.

Corollary 3.2 The density topology τd is M-resolvable.

Proof. Theorem 2.4 and Theorem 3.1 imply that the density topology is N -resolvable.

Since in the density topology M = N [46], then τd is M-resolvable. 2

Question. Is the density topology ℵ0-resolvable? If so, is it ∆(X)-resolvable?

Let D be a dense subset of a topological space (X, τ). Then it is easily checked that

N ⊆ D is nowhere dense in D if and only if N is nowhere dense in (X, τ). Therefore we

have:

Theorem 3.3 A space (X, τ) is M-resolvable if and only if (X, τ) has two disjoint dense

Baire subspaces. 2
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As a consequence of the theorem above we have that every M-resolvable space is a Baire

space (Corollary 2.7).

Let X be the usual space of reals, and B denote a Bernstein set in X, i.e. both B and

X \B intersect every uncountable closed subset. It is known that a Bernstein set is a Baire

subspace (and clearly also dense). Since the complement of a Bernstein set is also a Bernstein

set we have by Theorem 3.3 that:

Theorem 3.4 The usual space of reals is M-resolvable. 2

Remark 3.5 That a Bernstein set is a Baire subspace follows from the fact that each un-

countable Gδ-set in X = R contains an uncountable, closed, nowhere dense subset.

Theorem 3.6 For a space (X, τ, I), the following conditions are equivalent:

(1) (X, τ) is I-resolvable.

(2) (X, τ ∗) is resolvable.

Proof. (1) ⇒ (2) Let A and B be the sets that form the ideal resolution of X. Note that

Cl∗(A) = A ∪ A∗ = A ∪X = X. Hence A and B are τ ∗-dense. Thus (X, τ ∗) is resolvable.

(2) ⇒ (1) Assume now that X = A∪B, A∩B = ∅ and both A and B are τ ∗-dense. Let

x ∈ X. If x 6∈ A∗, then for some τ -open set U containing x, we have V = U ∩ A ∈ I. Note

that V is nonempty and moreover U 6⊆ A, since otherwise B fails to be τ ∗-dense. Clearly

∅ 6= W = U \ V ∈ τ ∗ and W ∩ A = ∅. Our construction of a τ ∗-open nonempty set which

is disjoint from A contradicts with the initial assumption. Thus x ∈ A∗ and hence A is

I-dense. A similar argument shows that B is I-dense. Thus (X, τ) is I-resolvable. 2

Recall that A ⊆ (X, τ, I) is called ?-dense-in-itself [25] iff A ⊆ A∗.

Corollary 3.7 If X is I-resolvable then there exist disjoint I-dense sets A and B each

?-dense-in-itself, i.e., X has an I-resolution of sets which are each ?-dense-in-itself. 2

The resolvability of the density topology can be used to prove that the reals are resolvable

relative to the σ-ideal of countable sets.
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Lemma 3.8 If τ and τ ∗ are any topologies with τ contained in τ ∗, then (X, τ ∗) is resolvable

implies that (X, τ) is resolvable.

Theorem 3.9 Let C be the σ-ideal of countable subsets of the reals X with usual topology

τ . Let L be the σ-ideal of Lebesgue null sets and let τd be the density topology on X. Then

(X, τ) is L-resolvable and is therefore also C-resolvable.

Proof. Since C is contained in L and null sets are closed in τd, the result follows from the

inclusion of τ ∗(C) ⊆ τ ∗(L) and the inclusion of τ ∗(L) ⊆ τd. 2

The topology τ ∗(L) above was studied in 1971 by Scheinberg [44]. In that paper he also

considers a ‘maximal’ extension of the density topology which he calls U .

Question. Is (X, U) resolvable?

4 Maximal I-resolvability

A topological space (X, τ, I) is called maximal I-resolvable if (X, τ, I) is I-resolvable and

(X, σ, I) is not I-resolvable for every topology σ which is strictly finer than τ . Note that

{∅}-resolvable spaces are called maximal resolvable. However, often in the literature the term

maximally resolvable space is often used to refer to a space X which is ∆(X)-resolvable.

A subset S of a space (X, τ, I) is a topological space with an ideal IS = {I ∈ I: I ⊆
S} = {I ∩ S: I ∈ I} on S [11].

Theorem 4.1 Nonempty τ ∗-open subspaces of I-resolvable spaces are I-resolvable.

Proof. First note that it is an easy exercise to show that for each U ∈ τ ∗, τ ∗|U =

(τ |U)∗. The result now follows instantly from Theorem 3.6, since resolvability is open hered-

itary. That is, if (X, τ) is I-resolvable and U is τ ∗-open, then (X, τ ∗) is resolvable so that

(U, τ ∗|U) = (U, (τ |U)∗) is resolvable and thus, (U, τ |U) is I-resolvable. 2

Corollary 4.2 I-resolvability is open hereditary. 2

Theorem 4.3 Simple expansions of I-resolvable topologies over I-resolvable subspaces are

I-resolvable.
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Proof. Let (X, τ, I) be I-resolvable and S ⊆ X be I-resolvable (as a subspace). Let

(D, D′) be the I-resolution of (S, τS, IS). We consider the following two cases:

Case 1. S is τ ∗-dense in (X, τ, I), i.e. S ∪ S∗ = X. We prove first that D is I-dense in

(X, τ, I). Let x ∈ X. Assume that for some U ∈ τ with x ∈ U we have U ∩D ∈ I. We have

the following two subcases:

Subcase 1. x ∈ S. Then V = U ∩S ∈ τS is an open neighborhood of x in (S, τS, IS) such

that V ∩D = U ∩ S ∩D ∈ I due to the heredity of I. This contradicts the fact that D is

I-dense in (S, τS, IS). So D is I-dense in (X, τ, I).

Subcase 2. x 6∈ S. Since X = S ∪ S∗, then x ∈ S∗. In order to prove that x ∈ D∗(I),

we assume the contrary, i.e. there exists U ∈ τ with x ∈ U such that U ∩D ∈ I. Note that

U ∩ S 6= ∅ (otherwise x 6∈ S∗). Pick y ∈ U ∩ S ∈ τS. Since U ∩D ∈ I, then by heredity of

I, U ∩ S ∩D ∈ I. Hence D is not I-dense in (S, τS, IS). By contradiction x ∈ D∗(I), i.e.

D is I-dense in (X, τ, I).

We have thus shown that D∗(I) = X. By a similar argument D′∗(I) = X.

Now let x ∈ X and let U ∪ (V ∩ S) be an open neighborhood of x in (X, τ(S), I), where

τ(S) is the simple expansion of τ over S. If (U ∪ (V ∩ S)) ∩D ∈ I, then by heredity of I,

(V ∩S)∩D is a member of I so that V is empty. Of course, (V ∩S)∩D cannot be a member

of I if V is nonempty since then V must contain an element of S. Hence, x belongs to U ∩D

which also cannot be a member of I since D∗(I) = X. This contradiction shows that D is

τ(S)∗-dense. With a similar argument for D′ we conclude that (X, τ(S), I) is I-resolvable.

Case 2. S is not τ ∗-dense in (X, τ, I). Then S ′ = X \ Cl∗(S) is τ ∗-open and nonempty.

By Theorem 4.1, S ′ is I-resolvable (more precisely said IS-resolvable). Let (E, E ′) be the I-

resolution of S ′. By similar arguments to the ones of Case 1, we can prove that (D∪E,D∪E ′)

is I-resolution of (X, τ, I). Furthermore, using the same technique as at the end of Case 1,

we see that (X, τ(S), I) is I-resolvable. 2

By IR(X) we denote the collection of all I-resolvable subspaces of a given space (X, τ, I).

Theorem 4.4 For a topological space (X, τ, I), the following conditions are equivalent:

(1) (X, τ, I) is maximally I-resolvable.

(2) τ \ {∅} = IR(X).
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Proof. (1)⇒ (2) Open nonempty subspaces of I-resolvable spaces are I-resolvable (Corol-

lary 4.2). Let next S ∈ IR(X). By Theorem 4.3 above τ(S) is an I-resolvable topology on

X finer than τ . By (1), S ∈ τ(S) = τ .

(2) ⇒ (1) Since X ∈ τ , then by (2), X is I-resolvable. Assume that X is not maximally

I-resolvable and let σ be I-resolvable topology strictly finer than τ . Let U ∈ σ \ τ . Clearly

U is I-resolvable in (X, σ, I) and hence in (X, τ, I). By (2), U ∈ τ . By contradiction (1) is

proved. 2

Corollary 4.5 [6] (i) Simple expansions of resolvable topologies over resolvable subspaces

are resolvable.

(ii) A space is maximal resolvable if and only if the collections of all open nonempty and

all resolvable subspaces coincide.

Proof. Set I = {∅} in Theorem 4.3 and Theorem 4.4. 2

According to El’kin [14] a topological space (X, τ) is globally disconnected if every set

which can be placed between an open set and its closure is open, i.e. if every semi-open

set is open. Note that the density topology is not globally disconnected, it is not even

extremally disconnected. Hence there exists a semi-open set S in the density topology τd

such that S 6∈ τd. Clearly S is resolvable as a subspace and so in the notion of the above

given characterization of maximal resolvability we have the following result:

Corollary 4.6 The density topology is not maximal resolvable. 2

Our next result follows from the remarks about semi-open subspaces of resolvable spaces

and the reason explaining why the density topology is not maximal resolvable and of course,

the theorem on simple expansions of resolvable spaces by a resolvable subspace.

Theorem 4.7 If a topological space (X, τ) is maximal resolvable, then (X, τ) is globally

disconnected. 2
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Questions. Which globally disconnected spaces (if any) are resolvable? Is a resolv-

able globally disconnected space maximally resolvable? Is there a method for constructing

maximal resolvable spaces?

Recall that the ideal defined on the topological sum X =
∑

α∈Ω Xα of the family of spaces

(Xα, τα, Iα)α∈Ω is I =
∨

α∈Ω Iα = {∪α∈ΩIα: Iα ∈ Iα} [11].

Theorem 4.8 Let (Xα, τα, Iα)α∈Ω be a family of topological spaces. For the topological sum

X =
∑

α∈Ω Xα the following conditions are equivalent:

(1) X is a I-resolvable.

(2) Each Xα is Iα-resolvable.

Proof. (1) ⇒ (2) follows from Theorem 4.1.

(2) ⇒ (1) Let (Aα, Bα) be the Iα-resolution of each Xα. Set A = ∪α∈ΩAα and B =

∪α∈ΩBα. We claim that A and B form the I-resolution of X. In order to show first that

A is I-dense in X, choose a point x ∈ X. If x is not in the local function of A, then there

exists an open set U of X containing x such that U ∩ A ∈ I. Let α be the index for which

x ∈ Xα. Due to the heredity of I, W = (U ∩ Xα) ∩ (A ∩ Xα) ∈ I. Note that W ∈ Iα.

Moreover, U ∩ Xα is a τα-open neighborhood of x meeting Aα in an element of Iα, which

shows that (Xα, τα, Iα) is not Iα-resolvable. By contradiction A is a I-dense. In a similar

way, one shows that B is I-dense. Hence X is a I-resolvable. 2

Given an ideal I and a resolvable topological space (X, τ), we have the natural question:

When is X I-resolvable? Recall that a set A is called locally dense or preopen if A ⊆ IntA.

It is shown in [16] that A is preopen if A = U ∩ D, where U is open and D is dense. The

collection of all preopen subsets of a space (X, τ) will be denoted (as usual) by PO(X). We

call an ideal I on a space (X, τ, I) a completely codense if PO(X) ∩ I = {∅}. Note that if

(R, τ) is the real line with the usual topology, then C is codense but not completely codense.

Theorem 4.9 If (X, τ, I) is a partition space, then I is completely codense if and only if I
is the minimal ideal. 2
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Theorem 4.10 For a topological space (X, τ, I), the following conditions are equivalent:

(1) I is a completely codense.

(2) Every τ -dense set is I-dense.

Proof. (1) ⇒ (2) Let D ⊆ X be dense in (X, τ). Let x ∈ X and let U be an open

neighborhood of x. Clearly A = U ∩D 6= ∅ and A ∈ PO(X). Hence, by (1), A 6∈ I. Thus

x ∈ D∗. So, D is I-dense.

(2) ⇒ (1) Let A ∈ PO(X) such that A 6= ∅ and A ∈ I. Then A = U ∩ D, where

U ∈ τ and D is τ -dense. Let x ∈ A. Now, U is an open neighborhood of x such that

U ∩ D ∈ I. Thus x 6∈ D∗, hence D∗ 6= X. So, D is a τ -dense set that fails to be I-dense.

By contradiction PO(X) ∩ I = {∅}. 2

Corollary 4.11 If I is completely codense, then (X, τ) is resolvable if and only if (X, τ, I)

is I-resolvable. 2

Remark 4.12 The requirement that the ideal is a completely codense is necessary. One

can easily find a resolvable space (X, τ, I), where I is codense but (X, τ, I) fails to be

I-resolvable.

Theorem 4.13 An ideal I is completely codense on (X, τ) if and only if I ⊆ N , i.e. if each

member of I is nowhere dense.

Proof. Let A ∈ I. Then A ∩ IntA ∈ PO(X) and so A ∩ IntA = ∅. Hence IntA = ∅, i.e.

A ∈ N . Conversely, let A ∈ PO(X) and A ∈ I. Since A ⊆ IntA and IntA = ∅, we have

A = ∅. Hence I is completely codense. 2

Theorem 4.14 A topological space X is maximal resolvable if and only if X is maximal

I-resolvable for each completely codense ideal I. 2

Proof. One direction of the theorem is easy. If (X, τ) is maximally I-resolvable and

J -resolvable where I is contained in J , then (X, τ) is maximally J -resolvable. Thus, if I
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is contained in N and (X, τ) is maximally resolvable, then certainly, (X, τ) is N -resolvable

and hence I-resolvable so that (X, τ) is maximally I-resolvable.

For the converse, suppose that (X, τ) is maximally I-resolvable with I contained in N .

Then by the above, (X, τ) is maximally N -resolvable. Since each open set in τ ∗(N ) = τα is

an N -resolvable subspace (we are being a little sloppy here but the nowhere dense subsets

of such a subspace are simply intersections of global nowhere dense sets with the subspace),

evidently, τ ∗(N (τ)) = τ . In particular, each member of I is closed in (X, τ). This fact could

have been argued directly by noting that (X, τ) is resolvable if and only if (X, τ ∗(N (τ)))

is resolvable and using the fact that N (τ ∗(N (τ))) = N (τ) so that if (X, τ) is resolvable,

then (X, τ ∗(N (τ))) is N (τ)-resolvable. Since τ is contained in τ ∗(N (τ)), we must have

equality if (X, τ) is maximally N (τ)-resolvable. Since all that is needed is that τ ∗(I) be

contained in (and hence equal to) τ , Theorem 3.6 could be invoked. In any case, to arrive

at a contradiction, let σ be a proper expansion of τ such that (X, σ) is resolvable and let

(E ∪ F ) be a resolution for (X, σ). Since (X, σ) is not I-resolvable ((X, τ) is maximally

I-resolvable), there exists a σ-open set U such that either (U ∩E) or (U ∩F ) is a nonempty

member of I. Without loss of generality, assume that (U ∩E) is a nonempty member of I.

Thus, V = X \ (U ∩ E) is τ -open, since members of I are τ -closed. So, W = (V ∩ U) is

a nonempty σ-open set and (W ∩ E) is empty. W is nonempty since U \ E = (U ∩ F ) is

nonempty and is a subset of V . But, (W ∩E) is empty contradicts (E∪F ) being a resolution

for (X, σ). Evidently, (X, τ) is maximally resolvable. 2

Recall that a topological space (X, τ) is called submaximal if every dense subset of X

is open. Recently, submaximal spaces were studied in [2, 13]. Note that every submaximal

space is strongly irresolvable but not vice versa, where a topological space (X, τ) is strongly

irresolvable [15] if no nonempty open set is resolvable.

Theorem 4.15 An ideal I on a submaximal space (X, τ) is codense if and only if it is

completely codense. 2
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5 Bounded resolvability

A subset A of a topological space (X, τ) is called bounded [35] (resp. L-bounded, parabounded

[22]) if it is contained in some finite union of members (resp. countable union of members,

locally finite open refinement) of every open cover of the whole space X. The set A ⊆ (X, τ)

will be called discretely finite (= df-set) if for every point x ∈ A, there exists U ∈ τ containing

x such that U ∩A is finite. Clearly every discrete and every finite set is a df-set but not vice

versa.

Example 5.1 We give an example of a df-set that is neither discrete nor finite. The digital

line or the so called Khalimsky line [31, 32] is the set of all integers Z, equipped with the

topology K, generated by GK = {{2n − 1, 2n, 2n + 1}: n ∈ Z}. Let A be union of all even

and all prime integers. Note that A is an infinite, non-discrete, df-set.

We denote the ideals of all bounded, L-bounded and parabounded subsets of a space

(X, τ) by B, LB and PB, respectively. The ideal of all closed df-sets will be denoted by

CDF .

Theorem 5.2 Every df-set is parabounded.

Proof. Let A ∈ (X, τ) be discretely finite. Let U = (Ui)i∈I be an open cover of X. For

each x ∈ A choose an Ui ∈ U containing x and an open U 3 x such that U ∩ A ∈ F . Set

Ux = Ui ∩ U . Note that (Ux)x∈A is an open cover of A refining U and locally finite in X.

Hence A is parabounded. 2

Corollary 5.3 For any space (X, τ), CDF ⊆ PB. 2

Remark 5.4 A parabounded set need not be discretely finite. Any infinite set with the

point excluded topology is clearly parabounded but not a df-set.

Lambrinos, Reilly and Vamanamurthy [36] define a space (X, τ) to be bounded-finite if

every bounded subset of X is finite. Reilly and Vamanamurthy [41] called a topological

space (X, τ) a cic-space if every countably infinite set is closed.
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Theorem 5.5 (i) [18] Let (X, τ) be a T1-space. Then X is bounded-finite if and only if

τ = τ ∗(B).

(ii) Let (X, τ) be a T1 cic-space. Then X is L-bounded-countable, i.e. every L-bounded

subset of X is countable if and only if τ = τ ∗(LB).

(iii) Let (X, τ) be a space, where df-sets are closed. Then every para-bounded subset of

X is a df-set if and only if τ = τ ∗(PB).

Proof. (i) This is proved in [18].

(ii) Assume first that X is L-bounded-countable and let U ∈ τ ∗(LB). Note that the family

β = {U \A: U ∈ τ and A ∈ LB} is a basis for the topology τ ∗(LB). Since LB ⊆ C, then each

member of LB is closed, because X is T1 and cic. Thus τ ∗(LB) ⊆ τ . Hence τ = τ ∗(LB).

Next, let A be L-bounded in X. Note that for each x ∈ A, the set (X \ A) ∪ {x} ∈ τ ∗(LB)

and hence is open in (X, τ). Thus A is discrete subset of (X, τ) and clearly countable, since

A is L-bounded. This shows that X is L-bounded-countable.

(iii) The proof is very similar to the one of (ii), hence we omit it. 2

Corollary 5.6 (i) A T1 bounded-finite space (X, τ) is resolvable if and only if it is B-

resolvable.

(ii) A T1 L-bounded-countable cic-space (X, τ) is resolvable if and only if it is LB-

resolvable.

(iii) A space (X, τ) in which parabounded sets are closed is resolvable if and only if it is

PB-resolvable.

Proof. Follows from Theorem 3.6 and Theorem 5.5. 2

A space (X, τ) is called B-closed if every bounded subset of X is closed and locally bounded

[35] (resp. locally L-bounded, locally parabounded) if every point of X has a bounded (resp.

L-bounded, parabounded) neighborhood. The proofs of the following two theorems are left

to the reader.

Theorem 5.7 (i) A B-closed space (X, τ) is resolvable if and only if it is B-resolvable.

(ii) Every locally bounded space is B-irresolvable. 2
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Theorem 5.8 Let (X, τ) be locally bounded (resp. locally L-bounded, locally parabounded)

and let τ ∼ B (resp. τ ∼ LB, τ ∼ PB). Then τ ⊆ B (resp. τ ⊆ LB, τ ⊆ PB) and hence X

is compact (resp. Lindelöf, paracompact). 2
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[42] D.A. Rose and D. Janković, On functions having the property of Baire, Real Anal.
Exchange, 19 (2) (1993/94), 589–597.
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