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Abstract

The aim of this paper is to unify the concepts of topological ideals, operation
functions (= expansions) and generalized closed sets.

1 Introduction

The following three different topological concepts were a major point of research in recent

years:

• Topological ideals [4, 9, 10, 11, 12, 14, 15, 16, 32, 33].

• Operation function (= expansion) [17, 26, 27, 28, 29, 30, 35, 36, 37].

• Generalized closed sets [1, 2, 3, 5, 6, 8, 21, 22, 23, 24, 25, 34, 37].

An ideal I on a topological space (X, τ) is a non-void collection of subsets of X satisfying

the following two properties: (1) A ∈ I and B ⊂ A implies B ∈ I (heredity), and (2) A ∈ I
and B ∈ I implies A ∪ B ∈ I (finite additivity). The following collections of sets form

important ideals on a space (X, τ): F — the ideal of finite subsets of X, C — the ideal of

countable subsets of X, CD — the ideal of closed discrete sets in (X, τ), N — the ideal of

nowhere dense sets in (X, τ), M — the ideal of meager sets in (X, τ), B — the ideal of all
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bounded sets in (X, τ), S — the ideal of scattered sets in (X, τ) (here X must be T0), K —

the ideal of relatively compact sets in (X, τ).

For a topological space (X, τ, I) and a subset A ⊆ X, we denote by A∗(I) = {x ∈ X :

U ∩A 6∈ I for every U ∈ τ(x)}, written simply as A∗ in case there is no chance for confusion.

In [19], A∗ is called the local function of A with respect to I and τ . Recall that A ⊆ (X, τ, I)

is called τ ∗-closed [15] if A∗ ⊆ A. It is well-known that Cl∗(A) = A∪A∗ defines a Kuratowski

closure operator for a topology τ ∗(I), finer than τ .

An operation γ [17, 26] on the topology τ on a given topological space (X, τ) is a function

from the topology itself into the power set P(X) of X such that V ⊆ V γ for each V ∈ τ ,

where V γ denotes the value of γ at V . The following operators are examples of the operation

γ: the closure operator γcl defined by γ(U) = Cl(U), the identity operator γid defined by

γ(U) = U , the interior-closure operator γic defined by γ(U) = Int(Cl(U)). In [35], the

γ-operation is called an expansion. Another example of the operation γ is the γf -operator

defined by (U)γf = (FrU)c = X \FrU [35]. Two operators γ1 and γ2 are called mutually dual

[35] if Uγ1 ∩ Uγ2 = U for each U ∈ τ . For example the identity operator is mutually dual to

any other operator, while the γf -operator is mutually dual to the closure operator [35].

The following definition contains the concepts of generalized closed sets used through-

out this paper. In Theorem 2.2 of Section 2, it is proved that α∗∗g-closedness is same as

gα∗∗-closedness.

Definition 1 A subset A of a space (X, τ) is called:

(1) a generalized closed set (briefly g-closed) [20] if A ⊆ U whenever A ⊆ U and U is

open,

(2) a α-generalized closed set (briefly αg-closed) [22] if αCl(A) ⊆ U whenever A ⊆ U and

U is open,

(3) a α∗∗-generalized closed set (briefly α∗∗g-closed) [22] if αCl(A) ⊆ IntClU whenever

A ⊆ U and U is open,

(4) a regular generalized closed set (briefly r-g-closed) [31] if A ⊆ U whenever A ⊆ U and

U is regular open,

(5) a generalized α∗∗-closed set (briefly gα∗∗-closed) [23] if αCl(A) ⊆ IntClU whenever

A ⊆ U and U is α-open.
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2 Basic properties of (I, γ)-generalized closed sets

Definition 2 A subset A of a topological space (X, τ) is called (I, γ)-generalized closed if

A∗ ⊆ Uγ whenever A ⊆ U and U is open in (X, τ).

We denote the family of all (I, γ)-generalized closed subsets of a space (X, τ, I, γ) by

IG(X) and simply write I-generalized closed (= I-g-closed) in case when γ is the identity

operator.

Theorem 2.1 Every g-closed set is (I, γ)-generalized closed but not vice versa. 2

Theorem 2.2 Let (X, τ) be a topological space and let A ⊆ X. Then:

(1) A is {∅}-g-closed if and only if A is g-closed.

(2) A is N -g-closed if and only if A is αg-closed.

(3) A is (N , γic)-g-closed if and only if A is α∗∗g-closed.

(4) A is ({∅}, γic)-g-closed if and only if A is r-g-closed.

(5) A is (N , γic)-g-closed if and only if A is gα∗∗-closed.

Proof. Follow from the facts: A∗({∅}) = Cl(A) and A∗(N ) = Cl(Int(Cl(A)) and

A ∪ A∗(N ) = αCl(A) [15, Example 2.10]. 2

In the notion of Theorem 2.2, majority of the theorems below generalize well-known

results related to the classes of generalized closed sets given in Definition 1.

Theorem 2.3 If A is I-g-closed and open, then A is τ ∗-closed. 2

Lemma 2.4 [13, Theorem II3] Let (Ai)i∈I be a locally finite family of sets in (X, τ, I). Then

∪i∈IA
∗
i (I) = (∪i∈IAi)

∗(I). 2

Theorem 2.5 Let (X, τ, I, γ) be a topological space.

(i) If (Ai)i∈I is a locally finite family of sets and each Ai ∈ IG(X), then ∪i∈IAi ∈ IG(X).

(ii) Countable union of (I, γ)-generalized closed sets need not be (I, γ)-generalized closed.

(iii) Finite intersection of (I, γ)-generalized closed sets need not be (I, γ)-generalized closed.
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Proof. (i) Let ∪i∈IAi ⊆ U , where U ∈ τ . Since Ai ∈ IG(X) for each i ∈ I, then

A∗
i ⊆ Uγ. Hence ∪i∈IA

∗
i ⊆ Uγ. By Lemma 2.4, (∪i∈IAi)

∗ ⊆ Uγ. Hence ∪i∈IAi ∈ IG(X).

(ii) In the real line with the usual topology { 1
n
} is F -g-closed for each n ∈ ω, where ω

denotes the set of all positive integers. But the set A = ∪n∈ω{ 1
n
} is not F -g-closed. Note

that (0, 2) is an open superset of A but the zero point is in the local function of A with

respect to the usual topology and F .

(iii) Let X = {a, b, c, d, e}, τ = {∅, {a, b}, {c}, {a, b, c}, X}, I = {∅} and γ = γic. Set

A = {a, c, d} and B = {b, c, e}. Clearly A,B ∈ IG(X) but A ∩B = {c} 6∈ IG(X). 2

Lemma 2.6 If A and B are subsets of (X, τ, I), then (A ∩B)∗(I) ⊆ A∗(I) ∩B∗(I). 2

A subset S of a space (X, τ, I) is a topological space with an ideal IS = {I ∈ I: I ⊆
S} = {I ∩ S: I ∈ I} on S [4].

Lemma 2.7 Let (X, τ, I) be a topological space and A ⊆ S ⊆ X. Then, A∗(IS, τ |S) =

A∗(I, τ) ∩ S holds.

Proof. First we prove the following implication: A∗(IS, τ |S) ⊆ A∗(I, τ) ∩ S.

Let x 6∈ A∗(I, τ) ∩ S. We consider the following two cases:

Case 1. x 6∈ S: Since A∗(IS, τ |S) ⊆ S, then x 6∈ A∗(IS, τ |S).

Case 2. x ∈ S. In this case x 6∈ A∗(I, τ). There exists a set V ∈ τ such that x ∈ V and

V ∩A ∈ I. Since x ∈ S, we have a set S ∩V ∈ τ |S such that x ∈ S ∩V and (S ∩V )∩A ∈ I
and hence (S ∩ V ) ∩ A ∈ IS. Consequently, x 6∈ A∗(IS, τ |S).

Both cases show the implication.

Secondly, we prove the converse implication: A∗(I, τ) ∩ S ⊆ A∗(IS, τ |S). Let x 6∈
A∗(IS, τ |S). Then, for some open subset U∩S of (S, τ |S) containing x, we have (U∩S)∩A ∈
IS. Since A ⊆ S, then U ∩ A ∈ IS ⊆ I, i.e., U ∩ A ∈ I for some V ∈ τ containing x. This

shows that x 6∈ A∗(I, τ). 2

Theorem 2.8 Let (X, τ, I) be a topological space and A ⊆ S ⊆ X. If A is IS-g-closed in

(S, τ |S, IS) and S is I-g-closed in X, then A is I-g-closed in X.
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Proof. Let A ⊆ U and U ∈ τ . By assumption and Lemma 2.7, A∗(I, τ) ∩ S ⊆ U ∩ S.

Then we have S ⊆ U ∪ (X \ A∗(I, τ)). Since X \ A∗(I, τ) ∈ τ , then A∗(I, τ) ⊆ S∗(I, τ) ⊆
U ∪ (X \ A∗(I, τ)). Therefore, we have that A∗(I, τ) ⊆ U and hence A is I-g-closed in X.

2

Corollary 2.9 Let (X, τ, I) be a topological space and A and F subsets of X. If A is I-g-

closed and F is closed in (X, τ), then A ∩ F is I-g-closed.

Proof. Since A ∩ F is closed in (A, τ |A), then A ∩ F is IA-g-closed in (A, τ |A, IA). By

Theorem 2.8, A ∩ F is I-g-closed. 2

Example 2.10 Corollary 2.9 is not necessarily true if γ is an arbitrary operator. Let (X, τ)

be the real line and consider any ideal such that τ ∗(I) = τα. Observe that we have this

equality in case when I = N . Define the following γ operation: for any open set U , let

γ(U) = X if the open interval (0, 1) is contained in U , otherwise let γ(U) = U . If A = (0, 1),

then A is clearly (I, γ)-generalized closed. Now, consider the closed set B = [1
2
, 1]. Then the

intersection of A and B is [1
2
, 1), which is contained in the open set V = (1

4
, 1). Obviously,

the local function of [1
2
, 1) with respect to N is [1

2
, 1] and is not contained in γ(V ) = V .

Theorem 2.11 Let A ⊆ S ⊆ (X, τ, I, γ). If A ∈ IG(X) and S ∈ τ , then A ∈ IG(S).

Proof. Let U be an open subset of (S, τ |S) such that A ⊆ U . Since S ∈ τ , then U ∈ τ .

Then A∗(I) ⊆ Uγ, since A ∈ IG(X). Using Lemma 2.7, we have A∗(IS, τ |S) ⊆ Uγ|S, where

Uγ|S means the image of the operation γ|S: τ |S → P(S), defined by (γ|S)(U) = γ(U) ∩ S

for each U ∈ τ |S. Hence A ∈ IG(S). 2

Theorem 2.12 Let A be a subset of (X, τ, I, γid). Then, A is I-g-closed if and only if A∗\A
does not contain a non-empty closed subset.

Proof. (Necessity) Assume that F is a closed subset of A∗ \ A. Note that clearly

A ⊆ X \ F , where A is I-g-closed and X \ F ∈ τ . Thus A∗ ⊆ X \ F , i.e. F ⊆ X \A∗. Since

due to our assumption F ⊆ A∗, F ⊆ (X \ A∗) ∩ A∗ = ∅.
(Sufficiency) Let U be an open subset containing A. Since A∗ is closed [15, Theorem 2.3

(c)] and A∗ ∩ (X \U) ⊆ A∗ \A holds, then A∗ ∩ (X \U) is a closed set contained in A∗ \A.

By assumption, A∗ ∩ (X \ U) = ∅ and hence A∗ ⊆ U . 2
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Theorem 2.13 Let A ⊆ (X, τ, I) and γ1 and γ2 be two operations.

(i) If A is both (I, γ1)-g-closed and (I, γ2)-g-closed, then A is (I, γ1 ∧ γ2)-g-closed, where

γ1 ∧ γ2 is an operation defined by (γ1 ∧ γ2)(U) = γ1(U) ∩ γ2(U) for each U ∈ τ .

(ii) Under the assumption of (i), if moreover the operators γ1 and γ2 are mutually dual,

then A is I-g-closed.

(iii) Every set A ⊆ (X, τ, I) is (I, γcl)-g-closed. 2

Corollary 2.14 For a set A ⊆ (X, τ, I), the following conditions are equivalent:

(1) A is (I, γf )-g-closed.

(2) A is I-g-closed.

Proof. (1) ⇒ (2) By Theorem 2.13 (iii), A is (I, γcl)-g-closed. Since γf and γcl are

mutually dual due to [35, Proposition 2], then in the notion of Theorem 2.13, A is I-g-

closed.

(2) ⇒ (1) is obvious. 2

3 γ-TI-spaces and the digital plane

Definition 3 A space (X, τ, I, γ) is called an γ-TI-space if every (I, γ)-generalized closed

subset of X is τ ∗-closed. We use the simpler notation TI-space, in case γ is the identity

operator.

Theorem 3.1 Let (X, τ, I, γ) be a space and let A ⊆ X. Then:

(1) X is a T{∅}-space if and only if X is a T 1
2
-space.

(2) X is a TN -space if and only if X is a T 1
2
-space.

(3) X is a γic-TN -space if and only if X is discrete.

(4) X is a γic-T{∅}-space if and only if X is discrete.

Proof. (1) follows from Theorem 2.2. (2) follows from Theorem 3.9 from [22] and

Theorem 2.2, while (3) follows from Theorem 5.3 from [22] and Theorem 2.2. For (4), note

that a space is discrete if and only if every r-g-closed set is closed. 2
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Remark 3.2 Note that when I is the maximal ideal P(X), then every space (X, τ, I, γ) is

a γ-TI-space.

Next we consider the case when γ is the identity operator.

Theorem 3.3 For a space (X, τ, I), the following conditions are equivalent:

(1) X is a TI-space.

(2) Each singleton of (X, τ) is either closed or τ ∗(I)-open.

Proof. (1) ⇒ (2) Let x ∈ X. If {x} is not closed, then A = X \ {x} 6∈ τ and then A is

trivially I-g-closed. By (1), A is τ ∗-closed. Hence {x} is τ ∗-open.

(2) ⇒ (1) Let A be I-g-closed and let x ∈ Cl∗(A). We have the following two cases:

Case 1. {x} is closed. By Theorem 2.12, A∗ \ A does not contain a non-empty closed

subset. This shows that x ∈ A.

Case 2. {x} is τ ∗-open. Then {x} ∩ A 6= ∅. Hence x ∈ A.

Thus in both cases x is in A and so A = Cl∗(A), i.e. A is τ ∗-closed, which shows that X

is a TI-space. 2

Corollary 3.4 Every T 1
2
-space is a TI-space. 2

Let (Z, κ) be the digital line (= Khalimsky line) [18]. The topology κ has {{2n −
1, 2n, 2n+1}: n ∈ Z} as a subbase. Every singleton is open or closed in (Z, κ). In fact, every

singleton {2n}, n ∈ Z is closed and every singleton {2m + 1}, m ∈ Z is open. The space

(Z, κ) is a typical example of a T 1
2
-space [18] and moreover, it is an example of a T 3

4
-space

[5]. Let (Z2, κ2) be the digital plane, i.e., the topological product of two digital lines. We

define a set O(Z2) = {(2n + 1, 2m + 1) ∈ Z2: n,m ∈ Z}. Let I(O(Z2)) be the ideal of all

subsets of O(Z2), cf. [15, Example 2.9].

We will show that the digital plane (Z2, κ2) is a TI′-space, where I ′ = I(O(Z2)).

Theorem 3.5 (i) The space (Z2, κ2, I ′) is a TI′-space, where I ′ = I(O(Z2)), and (Z2, κ2)

is a not T 1
2
.

(ii) The induced space (Z2, (κ2)∗) from (Z2, κ2) is a T 1
2
-space.
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Proof. We will check condition (2) in Theorem 3.3. That is, we will prove that every

singleton {x, y} is closed or (κ2)∗-open. For a subset A ⊆ Z2, in the proof below, we denote

A∗(I(O(Z2)), κ2) by A∗.

We consider the following four cases:

Case 1. (x, y) = (2n + 1, 2m): In this case, we claim that the singleton {(x, y)} is (κ2)∗-

open. There exists an open neighborhood {2n + 1} × {2m − 1, 2m, 2m + 1} of (x, y), say

U , such that U ∩ (Z2 \ {(x, y)}) = {(2n + 1, 2m + 1), (2n + 1, 2m− 1)} ∈ I(O(Z2)). Then,

(x, y) 6∈ (Z2 \ {(x, y)})∗ and so (Z2 \ {(x, y)})∗ ⊆ (Z2 \ {(x, y)}). That is, the singleton

{(x, y)} is (κ2)∗-open in (Z2, κ2).

Case 2. (x, y) = (2n, 2m + 1): In this case, we claim that the singleton {(x, y)} is (κ2)∗-

open. There exists an open neighborhood {2n− 1, 2n, 2n + 1} × {2m + 1} of (x, y), say U ,

such that U ∩ (Z2 \ {(x, y)}) = {(2n − 1, 2m + 1), (2n + 1, 2m + 1)} ∈ I(O(Z2)). Then,

(x, y) 6∈ (Z2 \ {(x, y)})∗ and so (Z2 \ {(x, y)})∗ ⊆ (Z2 \ {(x, y)}). That is, the singleton

{(x, y)} is (κ2)∗-open in (Z2, κ2).

Case 3. (x, y) = (2n, 2m): The singleton {(x, y)} is closed and so it is (κ2)∗-closed in

(Z2, κ2).

Case 4. (x, y) = (2n + 1, 2m + 1): Since {2n + 1, 2m + 1)} is open, it is (κ2)∗-open in

(Z2, κ2).

Therefore, every singleton is closed or (κ2)∗-open. By Theorem 3.3, (Z2, κ2, I ′) is a

TI′-space, where I ′ = I(O(Z2)). Clearly, (Z2, κ2) is a not T 1
2
.

(ii) By (i), every singleton is open or closed in (Z2, (κ2)∗), Therefore, it is T 1
2
. 2

Question. As shown above TN -spaces are precisely the T 1
2
-spaces. Do the classes of

TM-, TF -, TC- or TB-spaces coincide with some already known classes of topological spaces

(of course weaker than T 1
2
)?
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