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Abstract

The aim of this paper is to unify the concepts of topological ideals, operation
functions (= expansions) and generalized closed sets.

1 Introduction

The following three different topological concepts were a major point of research in recent
years:

e Topological ideals [4, 9, 10, 11, 12, 14, 15, 16, 32, 33].

e Operation function (= expansion) [17, 26, 27, 28, 29, 30, 35, 36, 37].

e Generalized closed sets [1, 2, 3, 5, 6, 8, 21, 22, 23, 24, 25, 34, 37].

An ideal Z on a topological space (X, 7) is a non-void collection of subsets of X satisfying
the following two properties: (1) A € Z and B C A implies B € Z (heredity), and (2) A€ T
and B € Z implies AU B € Z (finite additivity). The following collections of sets form
important ideals on a space (X, 7): F — the ideal of finite subsets of X, C — the ideal of
countable subsets of X, CD — the ideal of closed discrete sets in (X, 7), NV — the ideal of
nowhere dense sets in (X, 7), M — the ideal of meager sets in (X, 7), B — the ideal of all

*1991 Math. Subject Classification — Primary: 54H05, 54C08, 54D10, Secondary: 54C10, 54D99.
Key words and phrases — topological ideal, generalized closed sets, operation function, expansion.
Research supported partially by the Ella and Georg Ehrnrooth Foundation at Merita Bank, Finland and by
the Japan - Scandinavia Sasakawa Foundation.



bounded sets in (X, 7), S — the ideal of scattered sets in (X, 7) (here X must be 1), K —
the ideal of relatively compact sets in (X, 7).

For a topological space (X, 7,Z) and a subset A C X, we denote by A*(Z) = {x € X :
UNA ¢T for every U € 7(x)}, written simply as A* in case there is no chance for confusion.
In [19], A* is called the local function of A with respect to Z and 7. Recall that A C (X, 7,7)
is called 7*-closed [15] if A* C A. It is well-known that C1*(A) = AUA* defines a Kuratowski
closure operator for a topology 7*(Z), finer than 7.

An operation ~y [17, 26] on the topology 7 on a given topological space (X, 7) is a function
from the topology itself into the power set P(X) of X such that V' C V7 for each V € T,
where V7 denotes the value of v at V. The following operators are examples of the operation
v: the closure operator ~, defined by v(U) = CI(U), the identity operator ;4 defined by
v(U) = U, the interior-closure operator ;. defined by v(U) = Int(Cl(U)). In [35], the
v-operation is called an ezpansion. Another example of the operation 7 is the ~s-operator
defined by (U)"f = (FrU)¢ = X \ FrU [35]. Two operators 7, and v, are called mutually dual
[35] if UM NU™ = U for each U € 7. For example the identity operator is mutually dual to
any other operator, while the ~y¢-operator is mutually dual to the closure operator [35].

The following definition contains the concepts of generalized closed sets used through-
out this paper. In Theorem 2.2 of Section 2, it is proved that a**g-closedness is same as

ga**-closedness.

Definition 1 A subset A of a space (X, 7) is called:

(1) a generalized closed set (briefly g-closed) [20] if A C U whenever A C U and U is
open,

(2) a a-generalized closed set (briefly ag-closed) [22] if aCl(A) C U whenever A C U and
U is open,

(3) a a™-generalized closed set (briefly a** g-closed) [22] if aCl(A) C IntClU whenever
A CU and U is open,

(4) a reqular generalized closed set (briefly r-g-closed) [31] if A C U whenever A C U and
U is regular open,

(5) a generalized o**-closed set (briefly ga**-closed) [23] if aCl(A) C IntClU whenever
A CU and U is a-open.



2 Basic properties of (Z,~)-generalized closed sets

Definition 2 A subset A of a topological space (X, 1) is called (Z,~)-generalized closed if
A* C U" whenever A C U and U is open in (X, 7).

We denote the family of all (Z,~)-generalized closed subsets of a space (X, 7,Z,7) by
IG(X) and simply write Z-generalized closed (= Z-g-closed) in case when = is the identity

operator.
Theorem 2.1 Every g-closed set is (Z,7)-generalized closed but not vice versa. O

Theorem 2.2 Let (X, 7) be a topological space and let A C X. Then:
(1) A is {0}-g-closed if and only if A is g-closed.

2) A is N-g-closed if and only if A is ag-closed.

) A is (N, 7ic)-g-closed if and only if A is a**g-closed.

) A is ({0}, vie)-g-closed if and only if A is r-g-closed.

5) A is (N, 7i.)-g-closed if and only if A is ga**-closed.

PROOF. Follow from the facts: A*({#}) = CI(A) and A*(N) = Cl(Int(CI(A)) and
AU A*(N) = aCl(A) [15, Example 2.10]. O
In the notion of Theorem 2.2, majority of the theorems below generalize well-known

results related to the classes of generalized closed sets given in Definition 1.
Theorem 2.3 If A is T-g-closed and open, then A is T7*-closed. O

Lemma 2.4 [13, Theorem I13] Let (A;)icr be a locally finite family of sets in (X, 7,Z). Then
Uier A7 (Z) = (Uier4i)*(Z2). D

Theorem 2.5 Let (X, 7,Z,7) be a topological space.
(i) If (Ay)ier is a locally finite family of sets and each A; € IG(X), then UjerA; € IG(X).
(ii) Countable union of (Z,~)-generalized closed sets need not be (Z,~y)-generalized closed.

(iii) Finite intersection of (Z,)-generalized closed sets need not be (Z,)-generalized closed.



PROOF. (i) Let UjefA; C U, where U € 7. Since A; € IG(X) for each ¢ € I, then
Ar CU". Hence Uje Af C U7, By Lemma 2.4, (U;erA;)* C UV, Hence Ui A; € IG(X).

(ii) In the real line with the usual topology {2} is F-g-closed for each n € w, where w
denotes the set of all positive integers. But the set A = Unew{%} is not F-g-closed. Note
that (0,2) is an open superset of A but the zero point is in the local function of A with
respect to the usual topology and F.

(iii) Let X = {a,b,c,d,e}, 7 = {0,{a,b},{c},{a,b,c}, X}, T = {0} and v = 7. Set
A ={a,c,d} and B = {b,c,e}. Clearly A,B € IG(X) but ANB ={c} ¢ IG(X). O

Lemma 2.6 If A and B are subsets of (X, 7,7), then (AN B)*(Z) C A(Z)NB*(Z). O

A subset S of a space (X, 7,7Z) is a topological space with an ideal Zg = {I € Z:1 C
S}={INnS:1€Z}onS 4.

Lemma 2.7 Let (X,7,Z) be a topological space and A C S C X. Then, A*(Zs,7|S) =
AY(Z,7)N S holds.

Proof. First we prove the following implication: A*(Zg, 7|S) C A*(Z,7)NS.

Let x ¢ A*(Z,7) NS. We consider the following two cases:

Case 1. © ¢ S: Since A*(Zg,7|S) C S, then © ¢ A*(Zg, 7]5).

Case 2. € S. In this case x &€ A*(Z, 7). There exists a set V' € 7 such that z € V and
VNAe€Z. Since x € S, we have aset SNV € 7|S such that z € SNV and (SNV)NAe€Z
and hence (SNV)N A € Zs. Consequently, z ¢ A*(Zg, 7|5).

Both cases show the implication.

Secondly, we prove the converse implication: A*(Z,7) NS C A*(Zs,7|S). Let = ¢
A*(Zs, 7|S). Then, for some open subset UNS of (S, 7|.S) containing x, we have (UNS)NA €
Zs. Since AC S, then UNA€Zg CZ ie, UNAE€ZTLfor someV € 7 containing x. This
shows that = ¢ A*(Z, 7). O

Theorem 2.8 Let (X,7,7) be a topological space and A C S C X. If A is Tg-g-closed in
(S,7|S,Zs) and S is T-g-closed in X, then A is I-g-closed in X.
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Proof. Let A C U and U € 7. By assumption and Lemma 2.7, A*(Z,7)NS CUNS.
Then we have S C U U (X \ A*(Z,7)). Since X \ A*(Z,7) € 7, then A*(Z,7) C S*(Z,7) C
UU (X \ A*(Z,7)). Therefore, we have that A*(Z,7) C U and hence A is Z-g-closed in X.
O

Corollary 2.9 Let (X, 7,7) be a topological space and A and F subsets of X. If A is T-g-
closed and F is closed in (X, 1), then AN F is I-g-closed.

Proof. Since AN F' is closed in (A, 7|A), then AN F' is Z4-g-closed in (A,7|A,Z4). By
Theorem 2.8, AN F is Z-g-closed. O

Example 2.10 Corollary 2.9 is not necessarily true if v is an arbitrary operator. Let (X, 7)
be the real line and consider any ideal such that 7%(Z) = 7. Observe that we have this
equality in case when Z = N. Define the following v operation: for any open set U, let
v(U) = X if the open interval (0, 1) is contained in U, otherwise let v(U) = U. If A = (0, 1),

then A is clearly (Z,y)-generalized closed. Now, consider the closed set B = [%, 1]. Then the
3
the local function of [§,1) with respect to N is [1,1] and is not contained in y(V) = V.

intersection of A and B is [3,1), which is contained in the open set V = (3,1). Obviously,

Theorem 2.11 Let AC S C (X,7,Z,v). [f A€ IG(X) and S € 7, then A € IG(S).

PROOF. Let U be an open subset of (S, 7|S) such that A C U. Since S € 7, then U € 7.
Then A*(Z) C U”, since A € IG(X). Using Lemma 2.7, we have A*(Zs, 7|S) C U5, where
U"'% means the image of the operation 7|S:7|S — P(S), defined by (v|S)(U) = ~(U) N S
for each U € 7|S. Hence A € IG(S). O

Theorem 2.12 Let A be a subset of (X, 7,Z,via). Then, A is T-g-closed if and only if A*\ A

does not contain a non-empty closed subset.

PROOF. (Necessity) Assume that F' is a closed subset of A* \ A. Note that clearly
A C X\ F, where A is Z-g-closed and X \ F € 7. Thus A* C X \ F, i.e. F C X\ A*. Since
due to our assumption ' C A* FF C (X \ A*)n A* =0.

(Sufficiency) Let U be an open subset containing A. Since A* is closed [15, Theorem 2.3
(c)] and A*N (X \U) C A*\ A holds, then A* N (X \ U) is a closed set contained in A*\ A.
By assumption, A*N (X \ U) = 0 and hence A* CU. O
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Theorem 2.13 Let A C (X, 7,7) and v, and 73 be two operations.

(i) If A is both (Z,~1)-g-closed and (Z,~2)-g-closed, then A is (Z,v1 A 72)-g-closed, where
7 A2 is an operation defined by (1 Ay2)(U) = v1(U) Ny (U) for each U € T.

(ii) Under the assumption of (i), if moreover the operators v; and 7y, are mutually dual,
then A is T-g-closed.

(iii) Every set A C (X, 7,Z) is (Z,7q)-g-closed. O

Corollary 2.14 For a set A C (X, 7,7), the following conditions are equivalent:
(1) A is (Z,v¢)-g-closed.
(2) A is I-g-closed.

PRrROOF. (1) = (2) By Theorem 2.13 (iii), A is (Z,vq)-g-closed. Since 7 and ~, are
mutually dual due to [35, Proposition 2], then in the notion of Theorem 2.13, A is Z-g-
closed.

(2) = (1) is obvious. O

3 ~-T7r-spaces and the digital plane

Definition 3 A space (X, 7,Z,7) is called an v-Tz-space if every (Z,~)-generalized closed
subset of X is 7*-closed. We use the simpler notation T7-space, in case v is the identity

operator.

Theorem 3.1 Let (X, 7,Z,7) be a space and let A C X. Then:
(1) X is a Typy-space if and only if X is a T -space.
(2) X is a Tyr-space if and only if X is a T -space.
(3) X is a ~vie-Thr-space if and only if X is discrete.
(4) X is a vie-Tpy-space if and only if X is discrete.

Proor. (1) follows from Theorem 2.2. (2) follows from Theorem 3.9 from [22] and
Theorem 2.2, while (3) follows from Theorem 5.3 from [22] and Theorem 2.2. For (4), note

that a space is discrete if and only if every r-g-closed set is closed. O



Remark 3.2 Note that when Z is the maximal ideal P(X), then every space (X, 7,Z,7) is

a y-Tr-space.
Next we consider the case when v is the identity operator.

Theorem 3.3 For a space (X, 7,T), the following conditions are equivalent:
(1) X is a Tz-space.
(2) Each singleton of (X, 1) is either closed or 7(Z)-open.

PROOF. (1) = (2) Let # € X. If {z} is not closed, then A = X \ {z} &€ 7 and then A is
trivially Z-g-closed. By (1), A is 7*-closed. Hence {z} is 7*-open.

(2) = (1) Let A be Z-g-closed and let x € C1*(A). We have the following two cases:

Case 1. {z} is closed. By Theorem 2.12, A*\ A does not contain a non-empty closed
subset. This shows that z € A.

Case 2. {x} is 7*-open. Then {x} N A # (). Hence x € A.

Thus in both cases = is in A and so A = CI"(A), i.e. A is 7*-closed, which shows that X

is a Tr-space. O
Corollary 3.4 FEvery T% -space is a Tr-space. O

Let (Z,rx) be the digital line (= Khalimsky line) [18]. The topology s has {{2n —
1,2n,2n+1}:n € Z} as a subbase. Every singleton is open or closed in (Z, ). In fact, every
singleton {2n}, n € Z is closed and every singleton {2m + 1}, m € Z is open. The space
(Z, k) is a typical example of a T%—space [18] and moreover, it is an example of a T s-space
[5]. Let (Z2, k?) be the digital plane, i.e., the topological product of two digital lines. We
define a set O(Z?) = {(2n+ 1,2m + 1) € Z*:n,m € Z}. Let Z(O(Z?)) be the ideal of all
subsets of O(Z?), cf. [15, Example 2.9].

We will show that the digital plane (Z?, x?) is a Tr-space, where 7' = Z(O(Z?)).

Theorem 3.5 (i) The space (Z*,k*,I') is a Tri-space, where T' = Z(O(Z?)), and (Z?, k*)
s a not T%.

(i) The induced space (Z*,(k?)*) from (Z? K?) is a T -space.
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Proof. We will check condition (2) in Theorem 3.3. That is, we will prove that every
singleton {z,y} is closed or (k?)*-open. For a subset A C Z?, in the proof below, we denote
A*(Z(O(Z?)),k?) by A*.

We consider the following four cases:

Case 1. (x,y) = (2n + 1,2m): In this case, we claim that the singleton {(x,y)} is (k?)*-
open. There exists an open neighborhood {2n + 1} x {2m — 1,2m,2m + 1} of (x,y), say
U, such that U N (Z?\ {(x,9)}) = {2n + 1,2m + 1), (2n + 1,2m — 1)} € Z(O(Z?)). Then,
(z,y) € (Z*\ {(z,y)})* and so (Z*\ {(z,y)})* C (Z*\ {(z,y)}). That is, the singleton
{(z,y)} is (k*)*-open in (Z?, K?).

Case 2. (z,y) = (2n,2m + 1): In this case, we claim that the singleton {(z,y)} is (xk?)*-
open. There exists an open neighborhood {2n — 1,2n,2n + 1} x {2m + 1} of (z,y), say U,
such that U N (Z*\ {(z,y)}) = {2n —1,2m + 1), (2n + 1,2m + 1)} € Z(O(Z?)). Then,
(r,y) € (Z>\ {(z,y)})* and so (Z*\ {(z,y)})* C (Z*\ {(z,y)}). That is, the singleton
{(z,y)} is (k*)*-open in (Z?, ?).

Case 3. (z,y) = (2n,2m): The singleton {(z,y)} is closed and so it is (k?)*-closed in
(Z2, k).

Case 4. (z,y) = (2n+ 1,2m + 1): Since {2n + 1,2m + 1)} is open, it is (k*)*-open in
(Z2, k).

Therefore, every singleton is closed or (k?)*-open. By Theorem 3.3, (Z% k% 7') is a
Tr-space, where I’ = Z(O(Z?)). Clearly, (2, 1?) is a not T1.

(ii) By (i), every singleton is open or closed in (Z? (x*)*), Therefore, it is T1. O

Question. As shown above T)r-spaces are precisely the T 1-Spaces. Do the classes of
Tr-, T'r-, Te- or T-spaces coincide with some already known classes of topological spaces
(of course weaker than 7' 1 )?

Acknowledgement. We, the authors thank the referee for his help in improving the
quality of this paper.
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