Unified operation approach of generalized closed sets via topological ideals^{*}

Julian DONTCHEV, Maximilian GANSTER and Takashi NOIRI

November 3, 1997

Abstract

The aim of this paper is to unify the concepts of topological ideals, operation functions (= expansions) and generalized closed sets.

1 Introduction

The following three different topological concepts were a major point of research in recent years:

- Topological ideals [4, 9, 10, 11, 12, 14, 15, 16, 32, 33].
- Operation function (= expansion) [17, 26, 27, 28, 29, 30, 35, 36, 37].
- Generalized closed sets [1, 2, 3, 5, 6, 8, 21, 22, 23, 24, 25, 34, 37].

An *ideal* \mathcal{I} on a topological space (X, τ) is a non-void collection of subsets of X satisfying the following two properties: (1) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ (heredity), and (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$ (finite additivity). The following collections of sets form important ideals on a space (X, τ) : \mathcal{F} — the ideal of finite subsets of X, \mathcal{C} — the ideal of countable subsets of X, \mathcal{CD} — the ideal of closed discrete sets in (X, τ) , \mathcal{N} — the ideal of nowhere dense sets in (X, τ) , \mathcal{M} — the ideal of meager sets in (X, τ) , \mathcal{B} — the ideal of all

^{*1991} Math. Subject Classification — Primary: 54H05, 54C08, 54D10, Secondary: 54C10, 54D99.

Key words and phrases — topological ideal, generalized closed sets, operation function, expansion.

Research supported partially by the Ella and Georg Ehrnrooth Foundation at Merita Bank, Finland and by the Japan - Scandinavia Sasakawa Foundation.

bounded sets in (X, τ) , S — the ideal of scattered sets in (X, τ) (here X must be T_0), \mathcal{K} — the ideal of relatively compact sets in (X, τ) .

For a topological space (X, τ, \mathcal{I}) and a subset $A \subseteq X$, we denote by $A^*(\mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, written simply as A^* in case there is no chance for confusion. In [19], A^* is called the *local function* of A with respect to \mathcal{I} and τ . Recall that $A \subseteq (X, \tau, \mathcal{I})$ is called τ^* -closed [15] if $A^* \subseteq A$. It is well-known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology $\tau^*(\mathcal{I})$, finer than τ .

An operation γ [17, 26] on the topology τ on a given topological space (X, τ) is a function from the topology itself into the power set $\mathcal{P}(X)$ of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The following operators are examples of the operation γ : the closure operator γ_{cl} defined by $\gamma(U) = \operatorname{Cl}(U)$, the identity operator γ_{id} defined by $\gamma(U) = U$, the interior-closure operator γ_{ic} defined by $\gamma(U) = \operatorname{Int}(\operatorname{Cl}(U))$. In [35], the γ -operation is called an *expansion*. Another example of the operation γ is the γ_f -operator defined by $(U)^{\gamma_f} = (\operatorname{Fr} U)^c = X \setminus \operatorname{Fr} U$ [35]. Two operators γ_1 and γ_2 are called *mutually dual* [35] if $U^{\gamma_1} \cap U^{\gamma_2} = U$ for each $U \in \tau$. For example the identity operator is mutually dual to any other operator, while the γ_f -operator is mutually dual to the closure operator [35].

The following definition contains the concepts of **generalized closed sets** used throughout this paper. In Theorem 2.2 of Section 2, it is proved that α^{**} g-closedness is same as $g\alpha^{**}$ -closedness.

Definition 1 A subset A of a space (X, τ) is called:

(1) a generalized closed set (briefly g-closed) [20] if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is open,

(2) a α -generalized closed set (briefly αg -closed) [22] if $\alpha \operatorname{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open,

(3) a α^{**} -generalized closed set (briefly $\alpha^{**}g$ -closed) [22] if $\alpha \operatorname{Cl}(A) \subseteq \operatorname{Int}\operatorname{Cl}U$ whenever $A \subseteq U$ and U is open,

(4) a regular generalized closed set (briefly r-g-closed) [31] if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is regular open,

(5) a generalized α^{**} -closed set (briefly $g\alpha^{**}$ -closed) [23] if $\alpha \operatorname{Cl}(A) \subseteq \operatorname{Int}\operatorname{Cl}U$ whenever $A \subseteq U$ and U is α -open.

2 Basic properties of (\mathcal{I}, γ) -generalized closed sets

Definition 2 A subset A of a topological space (X, τ) is called (\mathcal{I}, γ) -generalized closed if $A^* \subseteq U^{\gamma}$ whenever $A \subseteq U$ and U is open in (X, τ) .

We denote the family of all (\mathcal{I}, γ) -generalized closed subsets of a space $(X, \tau, \mathcal{I}, \gamma)$ by IG(X) and simply write \mathcal{I} -generalized closed (= \mathcal{I} -g-closed) in case when γ is the identity operator.

Theorem 2.1 Every g-closed set is (\mathcal{I}, γ) -generalized closed but not vice versa. \Box

Theorem 2.2 Let (X, τ) be a topological space and let $A \subseteq X$. Then:

(1) A is $\{\emptyset\}$ -g-closed if and only if A is g-closed.

- (2) A is \mathcal{N} -g-closed if and only if A is α g-closed.
- (3) A is $(\mathcal{N}, \gamma_{ic})$ -g-closed if and only if A is α^{**} g-closed.
- (4) A is $(\{\emptyset\}, \gamma_{ic})$ -g-closed if and only if A is r-g-closed.
- (5) A is $(\mathcal{N}, \gamma_{ic})$ -g-closed if and only if A is $g\alpha^{**}$ -closed.

PROOF. Follow from the facts: $A^*(\{\emptyset\}) = \operatorname{Cl}(A)$ and $A^*(\mathcal{N}) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(A)))$ and $A \cup A^*(\mathcal{N}) = \alpha \operatorname{Cl}(A)$ [15, Example 2.10]. \Box

In the notion of Theorem 2.2, majority of the theorems below generalize well-known results related to the classes of generalized closed sets given in Definition 1.

Theorem 2.3 If A is \mathcal{I} -g-closed and open, then A is τ^* -closed. \Box

Lemma 2.4 [13, Theorem II3] Let $(A_i)_{i \in I}$ be a locally finite family of sets in (X, τ, \mathcal{I}) . Then $\bigcup_{i \in I} A_i^*(\mathcal{I}) = (\bigcup_{i \in I} A_i)^*(\mathcal{I})$. \Box

Theorem 2.5 Let $(X, \tau, \mathcal{I}, \gamma)$ be a topological space.

- (i) If $(A_i)_{i \in I}$ is a locally finite family of sets and each $A_i \in IG(X)$, then $\bigcup_{i \in I} A_i \in IG(X)$.
- (ii) Countable union of (\mathcal{I}, γ) -generalized closed sets need not be (\mathcal{I}, γ) -generalized closed.
- (iii) Finite intersection of (\mathcal{I}, γ) -generalized closed sets need not be (\mathcal{I}, γ) -generalized closed.

PROOF. (i) Let $\bigcup_{i \in I} A_i \subseteq U$, where $U \in \tau$. Since $A_i \in IG(X)$ for each $i \in I$, then $A_i^* \subseteq U^{\gamma}$. Hence $\bigcup_{i \in I} A_i^* \subseteq U^{\gamma}$. By Lemma 2.4, $(\bigcup_{i \in I} A_i)^* \subseteq U^{\gamma}$. Hence $\bigcup_{i \in I} A_i \in IG(X)$.

(ii) In the real line with the usual topology $\{\frac{1}{n}\}$ is \mathcal{F} -g-closed for each $n \in \omega$, where ω denotes the set of all positive integers. But the set $A = \bigcup_{n \in \omega} \{\frac{1}{n}\}$ is not \mathcal{F} -g-closed. Note that (0,2) is an open superset of A but the zero point is in the local function of A with respect to the usual topology and \mathcal{F} .

(iii) Let $X = \{a, b, c, d, e\}, \tau = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}, X\}, \mathcal{I} = \{\emptyset\} \text{ and } \gamma = \gamma_{ic}.$ Set $A = \{a, c, d\}$ and $B = \{b, c, e\}.$ Clearly $A, B \in IG(X)$ but $A \cap B = \{c\} \notin IG(X).$ \Box

Lemma 2.6 If A and B are subsets of (X, τ, \mathcal{I}) , then $(A \cap B)^*(\mathcal{I}) \subseteq A^*(\mathcal{I}) \cap B^*(\mathcal{I})$. \Box

A subset S of a space (X, τ, \mathcal{I}) is a topological space with an ideal $\mathcal{I}_S = \{I \in \mathcal{I} : I \subseteq S\} = \{I \cap S : I \in \mathcal{I}\}$ on S [4].

Lemma 2.7 Let (X, τ, \mathcal{I}) be a topological space and $A \subseteq S \subseteq X$. Then, $A^*(\mathcal{I}_S, \tau | S) = A^*(\mathcal{I}, \tau) \cap S$ holds.

Proof. First we prove the following implication: $A^*(\mathcal{I}_S, \tau | S) \subseteq A^*(\mathcal{I}, \tau) \cap S$.

Let $x \notin A^*(\mathcal{I}, \tau) \cap S$. We consider the following two cases:

Case 1. $x \notin S$: Since $A^*(\mathcal{I}_S, \tau | S) \subseteq S$, then $x \notin A^*(\mathcal{I}_S, \tau | S)$.

Case 2. $x \in S$. In this case $x \notin A^*(\mathcal{I}, \tau)$. There exists a set $V \in \tau$ such that $x \in V$ and $V \cap A \in \mathcal{I}$. Since $x \in S$, we have a set $S \cap V \in \tau | S$ such that $x \in S \cap V$ and $(S \cap V) \cap A \in \mathcal{I}$ and hence $(S \cap V) \cap A \in \mathcal{I}_S$. Consequently, $x \notin A^*(\mathcal{I}_S, \tau | S)$.

Both cases show the implication.

Secondly, we prove the converse implication: $A^*(\mathcal{I}, \tau) \cap S \subseteq A^*(\mathcal{I}_S, \tau|S)$. Let $x \notin A^*(\mathcal{I}_S, \tau|S)$. Then, for some open subset $U \cap S$ of $(S, \tau|S)$ containing x, we have $(U \cap S) \cap A \in \mathcal{I}_S$. Since $A \subseteq S$, then $U \cap A \in \mathcal{I}_S \subseteq \mathcal{I}$, i.e., $U \cap A \in \mathcal{I}$ for some $V \in \tau$ containing x. This shows that $x \notin A^*(\mathcal{I}, \tau)$. \Box

Theorem 2.8 Let (X, τ, \mathcal{I}) be a topological space and $A \subseteq S \subseteq X$. If A is \mathcal{I}_S -g-closed in $(S, \tau | S, \mathcal{I}_S)$ and S is \mathcal{I} -g-closed in X, then A is \mathcal{I} -g-closed in X.

Proof. Let $A \subseteq U$ and $U \in \tau$. By assumption and Lemma 2.7, $A^*(\mathcal{I}, \tau) \cap S \subseteq U \cap S$. Then we have $S \subseteq U \cup (X \setminus A^*(\mathcal{I}, \tau))$. Since $X \setminus A^*(\mathcal{I}, \tau) \in \tau$, then $A^*(\mathcal{I}, \tau) \subseteq S^*(\mathcal{I}, \tau) \subseteq U \cup (X \setminus A^*(\mathcal{I}, \tau))$. Therefore, we have that $A^*(\mathcal{I}, \tau) \subseteq U$ and hence A is \mathcal{I} -g-closed in X. \Box

Corollary 2.9 Let (X, τ, \mathcal{I}) be a topological space and A and F subsets of X. If A is \mathcal{I} -gclosed and F is closed in (X, τ) , then $A \cap F$ is \mathcal{I} -g-closed.

Proof. Since $A \cap F$ is closed in $(A, \tau | A)$, then $A \cap F$ is \mathcal{I}_A -g-closed in $(A, \tau | A, \mathcal{I}_A)$. By Theorem 2.8, $A \cap F$ is \mathcal{I} -g-closed. \Box

Example 2.10 Corollary 2.9 is not necessarily true if γ is an arbitrary operator. Let (X, τ) be the real line and consider any ideal such that $\tau^*(\mathcal{I}) = \tau^{\alpha}$. Observe that we have this equality in case when $\mathcal{I} = \mathcal{N}$. Define the following γ operation: for any open set U, let $\gamma(U) = X$ if the open interval (0, 1) is contained in U, otherwise let $\gamma(U) = U$. If A = (0, 1), then A is clearly (\mathcal{I}, γ) -generalized closed. Now, consider the closed set $B = [\frac{1}{2}, 1]$. Then the intersection of A and B is $[\frac{1}{2}, 1)$, which is contained in the open set $V = (\frac{1}{4}, 1)$. Obviously, the local function of $[\frac{1}{2}, 1)$ with respect to \mathcal{N} is $[\frac{1}{2}, 1]$ and is not contained in $\gamma(V) = V$.

Theorem 2.11 Let $A \subseteq S \subseteq (X, \tau, \mathcal{I}, \gamma)$. If $A \in IG(X)$ and $S \in \tau$, then $A \in IG(S)$.

PROOF. Let U be an open subset of $(S, \tau | S)$ such that $A \subseteq U$. Since $S \in \tau$, then $U \in \tau$. Then $A^*(\mathcal{I}) \subseteq U^{\gamma}$, since $A \in IG(X)$. Using Lemma 2.7, we have $A^*(\mathcal{I}_S, \tau | S) \subseteq U^{\gamma | S}$, where $U^{\gamma | S}$ means the image of the operation $\gamma | S : \tau | S \to \mathcal{P}(S)$, defined by $(\gamma | S)(U) = \gamma(U) \cap S$ for each $U \in \tau | S$. Hence $A \in IG(S)$. \Box

Theorem 2.12 Let A be a subset of $(X, \tau, \mathcal{I}, \gamma_{id})$. Then, A is \mathcal{I} -g-closed if and only if $A^* \setminus A$ does not contain a non-empty closed subset.

PROOF. (Necessity) Assume that F is a closed subset of $A^* \setminus A$. Note that clearly $A \subseteq X \setminus F$, where A is \mathcal{I} -g-closed and $X \setminus F \in \tau$. Thus $A^* \subseteq X \setminus F$, i.e. $F \subseteq X \setminus A^*$. Since due to our assumption $F \subseteq A^*$, $F \subseteq (X \setminus A^*) \cap A^* = \emptyset$.

(Sufficiency) Let U be an open subset containing A. Since A^* is closed [15, Theorem 2.3 (c)] and $A^* \cap (X \setminus U) \subseteq A^* \setminus A$ holds, then $A^* \cap (X \setminus U)$ is a closed set contained in $A^* \setminus A$. By assumption, $A^* \cap (X \setminus U) = \emptyset$ and hence $A^* \subseteq U$. \Box **Theorem 2.13** Let $A \subseteq (X, \tau, \mathcal{I})$ and γ_1 and γ_2 be two operations.

(i) If A is both (\mathcal{I}, γ_1) -g-closed and (\mathcal{I}, γ_2) -g-closed, then A is $(\mathcal{I}, \gamma_1 \wedge \gamma_2)$ -g-closed, where $\gamma_1 \wedge \gamma_2$ is an operation defined by $(\gamma_1 \wedge \gamma_2)(U) = \gamma_1(U) \cap \gamma_2(U)$ for each $U \in \tau$.

(ii) Under the assumption of (i), if moreover the operators γ_1 and γ_2 are mutually dual, then A is \mathcal{I} -g-closed.

(iii) Every set $A \subseteq (X, \tau, \mathcal{I})$ is $(\mathcal{I}, \gamma_{cl})$ -g-closed. \Box

Corollary 2.14 For a set $A \subseteq (X, \tau, \mathcal{I})$, the following conditions are equivalent:

- (1) A is (\mathcal{I}, γ_f) -g-closed.
- (2) A is \mathcal{I} -g-closed.

PROOF. (1) \Rightarrow (2) By Theorem 2.13 (iii), A is $(\mathcal{I}, \gamma_{cl})$ -g-closed. Since γ_f and γ_{cl} are mutually dual due to [35, Proposition 2], then in the notion of Theorem 2.13, A is \mathcal{I} -g-closed.

 $(2) \Rightarrow (1)$ is obvious. \Box

3 γ - $T_{\mathcal{I}}$ -spaces and the digital plane

Definition 3 A space $(X, \tau, \mathcal{I}, \gamma)$ is called an γ - $T_{\mathcal{I}}$ -space if every (\mathcal{I}, γ) -generalized closed subset of X is τ^* -closed. We use the simpler notation $T_{\mathcal{I}}$ -space, in case γ is the identity operator.

Theorem 3.1 Let $(X, \tau, \mathcal{I}, \gamma)$ be a space and let $A \subseteq X$. Then:

- (1) X is a $T_{\{\emptyset\}}$ -space if and only if X is a $T_{\frac{1}{2}}$ -space.
- (2) X is a $T_{\mathcal{N}}$ -space if and only if X is a $T_{\frac{1}{2}}$ -space.
- (3) X is a γ_{ic} -T_N-space if and only if X is discrete.
- (4) X is a γ_{ic} - $T_{\{\emptyset\}}$ -space if and only if X is discrete.

PROOF. (1) follows from Theorem 2.2. (2) follows from Theorem 3.9 from [22] and Theorem 2.2, while (3) follows from Theorem 5.3 from [22] and Theorem 2.2. For (4), note that a space is discrete if and only if every r-g-closed set is closed. \Box

Remark 3.2 Note that when \mathcal{I} is the maximal ideal $\mathcal{P}(X)$, then every space $(X, \tau, \mathcal{I}, \gamma)$ is a γ - $T_{\mathcal{I}}$ -space.

Next we consider the case when γ is the identity operator.

Theorem 3.3 For a space (X, τ, \mathcal{I}) , the following conditions are equivalent:

- (1) X is a $T_{\mathcal{I}}$ -space.
- (2) Each singleton of (X, τ) is either closed or $\tau^*(\mathcal{I})$ -open.

PROOF. (1) \Rightarrow (2) Let $x \in X$. If $\{x\}$ is not closed, then $A = X \setminus \{x\} \notin \tau$ and then A is trivially \mathcal{I} -g-closed. By (1), A is τ^* -closed. Hence $\{x\}$ is τ^* -open.

 $(2) \Rightarrow (1)$ Let A be \mathcal{I} -g-closed and let $x \in \mathrm{Cl}^*(A)$. We have the following two cases:

Case 1. $\{x\}$ is closed. By Theorem 2.12, $A^* \setminus A$ does not contain a non-empty closed subset. This shows that $x \in A$.

Case 2. $\{x\}$ is τ^* -open. Then $\{x\} \cap A \neq \emptyset$. Hence $x \in A$.

Thus in both cases x is in A and so $A = Cl^*(A)$, i.e. A is τ^* -closed, which shows that X is a $T_{\mathcal{I}}$ -space. \Box

Corollary 3.4 Every $T_{\frac{1}{2}}$ -space is a $T_{\mathcal{I}}$ -space. \Box

Let (\mathbf{Z}, κ) be the digital line (= Khalimsky line) [18]. The topology κ has $\{\{2n - 1, 2n, 2n+1\}: n \in \mathbf{Z}\}$ as a subbase. Every singleton is open or closed in (\mathbf{Z}, κ) . In fact, every singleton $\{2n\}, n \in \mathbf{Z}$ is closed and every singleton $\{2m+1\}, m \in \mathbf{Z}$ is open. The space (\mathbf{Z}, κ) is a typical example of a $T_{\frac{1}{2}}$ -space [18] and moreover, it is an example of a $T_{\frac{3}{4}}$ -space [5]. Let (\mathbf{Z}^2, κ^2) be the digital plane, i.e., the topological product of two digital lines. We define a set $O(\mathbf{Z}^2) = \{(2n+1, 2m+1) \in \mathbf{Z}^2: n, m \in \mathbf{Z}\}$. Let $\mathcal{I}(O(\mathbf{Z}^2))$ be the ideal of all subsets of $O(\mathbf{Z}^2)$, cf. [15, Example 2.9].

We will show that the digital plane (\mathbf{Z}^2, κ^2) is a $T_{\mathcal{I}'}$ -space, where $\mathcal{I}' = \mathcal{I}(O(\mathbf{Z}^2))$.

Theorem 3.5 (i) The space $(\mathbf{Z}^2, \kappa^2, \mathcal{I}')$ is a $T_{\mathcal{I}'}$ -space, where $\mathcal{I}' = \mathcal{I}(O(\mathbf{Z}^2))$, and (\mathbf{Z}^2, κ^2) is a not $T_{\frac{1}{2}}$.

(ii) The induced space $(\mathbf{Z}^2, (\kappa^2)^*)$ from (\mathbf{Z}^2, κ^2) is a $T_{\frac{1}{2}}$ -space.

Proof. We will check condition (2) in Theorem 3.3. That is, we will prove that every singleton $\{x, y\}$ is closed or $(\kappa^2)^*$ -open. For a subset $A \subseteq \mathbb{Z}^2$, in the proof below, we denote $A^*(\mathcal{I}(O(\mathbb{Z}^2)), \kappa^2)$ by A^* .

We consider the following four cases:

Case 1. (x, y) = (2n + 1, 2m): In this case, we claim that the singleton $\{(x, y)\}$ is $(\kappa^2)^*$ open. There exists an open neighborhood $\{2n + 1\} \times \{2m - 1, 2m, 2m + 1\}$ of (x, y), say U, such that $U \cap (\mathbf{Z}^2 \setminus \{(x, y)\}) = \{(2n + 1, 2m + 1), (2n + 1, 2m - 1)\} \in \mathcal{I}(O(\mathbf{Z}^2))$. Then, $(x, y) \notin (\mathbf{Z}^2 \setminus \{(x, y)\})^*$ and so $(\mathbf{Z}^2 \setminus \{(x, y)\})^* \subseteq (\mathbf{Z}^2 \setminus \{(x, y)\})$. That is, the singleton $\{(x, y)\}$ is $(\kappa^2)^*$ -open in (\mathbf{Z}^2, κ^2) .

Case 2. (x, y) = (2n, 2m + 1): In this case, we claim that the singleton $\{(x, y)\}$ is $(\kappa^2)^*$ open. There exists an open neighborhood $\{2n - 1, 2n, 2n + 1\} \times \{2m + 1\}$ of (x, y), say U,
such that $U \cap (\mathbf{Z}^2 \setminus \{(x, y)\}) = \{(2n - 1, 2m + 1), (2n + 1, 2m + 1)\} \in \mathcal{I}(O(\mathbf{Z}^2))$. Then, $(x, y) \notin (\mathbf{Z}^2 \setminus \{(x, y)\})^*$ and so $(\mathbf{Z}^2 \setminus \{(x, y)\})^* \subseteq (\mathbf{Z}^2 \setminus \{(x, y)\})$. That is, the singleton $\{(x, y)\}$ is $(\kappa^2)^*$ -open in (\mathbf{Z}^2, κ^2) .

Case 3. (x,y) = (2n,2m): The singleton $\{(x,y)\}$ is closed and so it is $(\kappa^2)^*$ -closed in (\mathbb{Z}^2, κ^2) .

Case 4. (x, y) = (2n + 1, 2m + 1): Since $\{2n + 1, 2m + 1\}$ is open, it is $(\kappa^2)^*$ -open in (\mathbb{Z}^2, κ^2) .

Therefore, every singleton is closed or $(\kappa^2)^*$ -open. By Theorem 3.3, $(\mathbf{Z}^2, \kappa^2, \mathcal{I}')$ is a $T_{\mathcal{I}'}$ -space, where $\mathcal{I}' = \mathcal{I}(O(\mathbf{Z}^2))$. Clearly, (\mathbf{Z}^2, κ^2) is a not $T_{\frac{1}{2}}$.

(ii) By (i), every singleton is open or closed in $(\mathbf{Z}^2, (\kappa^2)^*)$, Therefore, it is $T_{\frac{1}{2}}$. \Box

Question. As shown above $T_{\mathcal{N}}$ -spaces are precisely the $T_{\frac{1}{2}}$ -spaces. Do the classes of $T_{\mathcal{M}}$ -, $T_{\mathcal{F}}$ -, $T_{\mathcal{C}}$ - or $T_{\mathcal{B}}$ -spaces coincide with some already known classes of topological spaces (of course weaker than $T_{\frac{1}{2}}$)?

Acknowledgement. We, the authors thank the referee for his help in improving the quality of this paper.

References

 K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 12 (1991), 5–13.

- [2] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 14 (1993), 41–54.
- [3] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 16 (1995), 35–48.
- [4] J. Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, Vol. 767 (1995), 28–38.
- [5] J. Dontchev and M. Ganster, On δ -generalized closed sets and $T_{\frac{3}{4}}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., **17** (1996), 15–31.
- [6] J. Dontchev and H. Maki, On θ-generalized closed sets, Topology Atlas, Preprint #127, URL: http://www.unipissing.ca/topology/p/a/b/a/08.htm
- [7] J. Dontchev and D. Rose, An ideal approach to submaximality, Questions Answers Gen. Topology, 14 (1) (1996), 77–83.
- [8] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35 (1986), 19–28.
- [9] T.R. Hamlett and D. Janković, *Ideals in topological spaces and the set operator* ψ , Boll. Un. Mat. Ital., **7** 4-B (1990), 863–874.
- [10] T.R. Hamlett and David Rose, Local compactness with respect to an ideal, Kyungpook Math. J., 32 (1) (1992), 31–43.
- [11] T.R. Hamlett and David Rose, A note characterizing countable compactness with respect to an ideal, New Zealand J. Math., 22 (1993), 63–66.
- [12] T.R. Hamlett and David Rose, Remarks on some theorems of Banach, McShane, and Pettis, Rocky Mountain J. Math., 22 (4) (1992) 1329–1339.
- [13] T.R. Hamlett, David Rose and Dragan Jankovć, Paracompactness with respect to an ideal, Internat. J. Math. Math. Sci., 20 (3) (1997), 433–442.
- [14] E. Hayashi, Topologies defined by local properties, Math. Ann., **156** (1964), 205–215.
- [15] D. Janković and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [16] D. Janković and T.R. Hamlett, Compatible Extensions of Ideals, Boll. Un. Mat. Ital., 7 6-B (1992), 453–465.
- [17] S. Kasahara, Operation-compact spaces, Math. Japon., 24 (1979), 97–105.
- [18] E.D. Khalimsky, R. Kopperman and P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36 (1990), 1–17.
- [19] K. Kuratowski, Topologie I, Warszawa, 1933.

- [20] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89–96.
- [21] H. Maki, Generalized Λ-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, 1. Oct. 1986, 139–146.
- [22] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51–63.
- [23] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13–21.
- [24] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T¹/₂, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 17 (1996), 33–42.
- [25] T. Noiri, Generalized θ-closed sets of almost paracompact spaces, J. Inst. Math. Comput. Sci. Math. Ser., 9 (2) (1996), 157–161.
- [26] H. Ogata, Operations on topological spaces and associated topology, Math. Japon., 36 (1991), 175–184.
- [27] H. Ogata, Remarks on operation-compact spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 12 (1991), 23–31.
- [28] H. Ogata, Remarks on some operation-separation axioms, Bull. Fukuoka Univ. Ed. Part III, 40 (1991), 41–43.
- [29] H. Ogata and H. Maki, Bioperations on topological spaces, Math. Japon., 38 (1993), 981–985.
- [30] H. Ogata and T. Fukutake, On operation-compactness, operation-nearly compactness and operation-almost compactness, Bull. Fukuoka Univ. Ed. Part III, **40** (1991), 45–48.
- [31] N. Palaniappan and K.C. Rao, *Regular generalized closed sets*, Kyungpook Math. J., 33 (2) (1993), 211–219.
- [32] D.A. Rose and T.R. Hamlett, On the one-point *I*-compactification and local *I*compactness, Math. Slovaca, 42 (3) (1992), 359–369.
- [33] D.A. Rose and D. Janković, On functions having the property of Baire, Real Anal. Exchange, 19 (2) (1993/94), 589–597.
- [34] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi- $T_{1/2}$ spaces, Bull. Fukuoka Univ. Ed. Part III, **40** (1991), 33–40.
- [35] J. Tong, Expansion of open sets and decomposition of continuous mappings, Rend. Circ. Mat. Palermo (2), 43 (1994), 303–308.
- [36] J. Umehara and H. Maki, Operator approaches of weakly Hausdorff spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 11 (1990), 65–73.

- [37] J. Umehara, H. Maki and T. Noiri, Bioperations on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 13 (1992), 45–59.
- [38] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, New York, 1960.
- [39] R. Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci. Math. Sc., 20 (1945), 51–61.

Department of Mathematics University of Helsinki PL 4, Yliopistonkatu 15 00014 Helsinki Finland e-mail: dontchev@cc.helsinki.fi, dontchev@e-math.ams.org

> Department of Mathematics Graz University of Technology Steyrergasse 30 A-8010 Graz Austria e-mail: ganster@weyl.math.tu-graz.ac.at

Department of Mathematics Yatsushiro College of Technology 2627 Hirayama shinmachi Yatsushiro-shi Kumamoto-ken 866 Japan e-mail: noiri@polaris.yatsushiro-nct.ac.jp