ON sg-CLOSED SETS AND ga-CLOSED SETS

Jiling Caoa, Maximilian Ganstera,b and Ivan Reillya

Abstract

In a recent paper, J. Dontchev posed the question of characterizing
(i) the class of spaces in which every semi-preclosed set is sg-closed,
and
(ii) the class of spaces in which every preclosed set is ga-closed.
In this note, we will show that these classes of spaces coincide and
that they consist of precisely those spaces which are the topological
sum of a locally indiscrete space and a strongly irresolvable space.

1 Introduction and preliminaries

Recently there has been considerable interest in the study of various forms of
generalized closed sets and their relationships to other classes of sets such as
α-open sets, semi-open sets and preopen sets. In a recent paper, Dontchev [2]
showed that every sg-closed set is semi-preclosed, and that every ga-closed
set is preclosed. He then posed the problem of characterizing (i) the class
of spaces in which every semi-preclosed set is sg-closed, and (ii) the class
of spaces in which every preclosed set is ga-closed. In this note, we will address
this problem by showing that these classes of spaces coincide.

A subset S of a topological space (X, τ) is called α-open ($semi$-$open$,
preopen, semi-preopen) if $S \subseteq \text{int} (\text{cl} (\text{int} S))$ ($S \subseteq \text{cl} (\text{int} S)$, $S \subseteq \text{int} (\text{cl} S)$,
$S \subseteq \text{cl} (\text{int} (\text{cl} S)))$. Moreover, S is said to be α-closed ($semiclosed$, preclosed,
semi-preclosed) if $X - S$ is α-open (semi-open, preopen, semi-preopen) or,
equivalently, if $\text{cl} (\text{int} (\text{cl} S)) \subseteq S$ ($\text{int} (\text{cl} S) \subseteq S$, $\text{cl} (\text{int} S) \subseteq S$, $\text{int} (\text{cl} (\text{int} S)) \subseteq$

0The second author wishes to acknowledge the hospitality of the University of Auckland
during his stay as an Honorary Research Fellow in the Department of Mathematics.
Key Words and Phrases: Preclosed, semi-preclosed, sg-closed, ga-closed, submaximal.
The α-closure (semi-closure, preclosure, semi-preclosure) of $S \subseteq X$ is the smallest α-closed (semi-closed, preclosed, semi-preclosed) set containing S. It is well known that $\alpha\text{-cl}S = S \cup \text{cl}(\text{int}(\text{cl}S))$ and $\text{scl}S = S \cup \text{int}(\text{cl}S)$, $\text{!!pcl}S = S \cup \text{cl}(\text{int}S)$ and $\text{spcl}S = S \cup \text{int}(\text{cl}(\text{int}S))$. The α-interior of $S \subseteq X$ is the largest α-open set contained in S, and we have $\alpha\text{-int}S = S \cap \text{int}(\text{cl}(\text{int}S))$.

It is worth mentioning that the collection of all α-open subsets of (X, τ) is a topology τ^α on X which is finer than τ, and that a subset S is α-open if and only if it is semi-open and preopen [10]. Moreover, (X, τ) and (X, τ^α) share the same class of dense subsets.

Definition 1. A subset A of (X, τ) is called

1. generalized closed (briefly, g-closed) [7] if $\text{cl}A \subseteq U$, whenever $A \subseteq U$ and U is open;
2. g-open [7], if $X - A$ is g-closed;
3. sg-closed [1], if $\text{scl}A \subseteq U$ whenever $A \subseteq U$ and U is semi-open;
4. sg-open [1], if $X - A$ is sg-closed;
5. α-closed [8], if $\alpha\text{-cl}A \subseteq U$ whenever $A \subseteq U$ and U is α-open, or equivalently, if A is g-closed in (X, τ^α).
6. α-open [8], if $X - A$ is α-closed.

Lemma 1.1. [7] The union of two g-closed subsets is g-closed. The intersection of a closed subset and a g-closed subset is g-closed.

Recall that a space (X, τ) is said to be locally indiscrete if every open subset is closed. The following observation and its corollary are easily proved.

Lemma 1.2. Let A be a clopen locally indiscrete subspace of (X, τ). Let $W \subseteq A$ be α-open in (X, τ). Then W is clopen in (X, τ).

Corollary 1.3. Let A be a clopen locally indiscrete subspace of (X, τ). Then every subset of A is α-closed and α-open in (X, τ).

Let S be a subset of (X, τ). A resolution of S is a pair $< E_1, E_2 >$ of disjoint dense subsets of S. Furthermore, S is said to be resolvable if it possesses a resolution, otherwise S is called irresolvable. In addition, S is called strongly irresolvable, if every open subspace of S is irresolvable. Observe that if $< E_1, E_2 >$ is a resolution of S then E_1 and E_2 are codense in (X, τ), i.e. have empty interior.

Lemma 1.4. [5, 4] Every space (X, τ) has a unique decomposition $X = F \cup G$, where F is closed and resolvable and G is open and hereditarily irresolvable.
Recall that a space \((X, \tau)\) is said to be submaximal \((g\text{-submaximal})\) if every dense subset is open \((g\text{-open})\). Every submaximal space is \(g\text{-submaximal}\), while an indiscrete space is \(g\text{-submaximal} \) but not submaximal. Note also that every submaximal space is hereditarily irresolvable, and that every dense subspace of \(\text{cl}G\) is strongly irresolvable, where \(G\) is defined in Lemma 1.4.

Lemma 1.5. Let \(B\) be an open, strongly irresolvable subspace of \((X, \tau)\), and let \(D \subseteq B\) be dense in \(B\). Then \(D \in \tau^\alpha\).

Proof. By Theorem 2 in [4], \(\text{int}D\) is dense in \(B\), hence \(B \subseteq \text{cl} (\text{int}D)\) and so \(B \subseteq \text{int} (\text{cl} (\text{int}D))\). Consequently,

\[D = D \cap B \subseteq D \cap \text{int} (\text{cl} (\text{int}D)) = \alpha \text{-int} D, \]

i.e. \(D\) is \(\alpha\)-open in \((X, \tau)\). \(\Box\)

Jankovic and Reilly [6] pointed out that every singleton \(\{x\}\) of a space \((X, \tau)\) is either nowhere dense or preopen. This gives us another decomposition \(X = X_1 \cup X_2\) of \((X, \tau)\), where \(X_1 = \{x \in X : \{x\}\ \text{is nowhere dense}\}\) and \(X_2 = \{x \in X : \{x\}\ \text{is preopen}\}\). The usefulness of this decomposition is illustrated by the following result.

Lemma 1.6. [3] A subset \(A\) of \((X, \tau)\) is \(sg\text{-closed}\) if and only if \(X_1 \cap \text{scl} A \subseteq A\).

2 Dontchev’s questions

We will consider the following two properties of topological spaces:

(P1) Every semi-preclosed set is \(sg\text{-closed}\);
(P2) Every preclosed set is \(g\alpha\text{-closed}\).

We are now able to solve the problem of Dontchev posed in [2], i.e. to characterize the class of spaces satisfying (P1), respectively (P2), in an unexpected way. Note that we will use the decompositions \(X = F \cup G\) and \(X = X_1 \cup X_2\) mentioned in Section 1.

Theorem 2.1. For a space \((X, \tau)\) the following are equivalent:

1. \((X, \tau)\) satisfies (P1),
2. \(X_1 \cap \text{scl} A \subseteq \text{spcl} A\) for each \(A \subseteq X\),
3. \(X_1 \subseteq \text{int}(\text{cl}G)\),
(4) \((X, \tau)\) is the topological sum of a locally indiscrete space and a strongly irresolvable space,

(5) \((X, \tau)\) satisfies \(\text{(P2)}\),

(6) \((X, \tau^\alpha)\) is \(g\)-submaximal.

Proof. (1) \(\Rightarrow\) (2). Let \(x \in X_1 \cap \text{scl}A\) and suppose that \(x \notin \text{spcl}A = B\). Then the semi-preclosed set \(B\) is contained in the semi-open set \(X - \{x\}\), and therefore \(\text{scl}B \subseteq X - \{x\}\). Since \(A \subseteq B\) we have \(\text{scl}A \subseteq \text{scl}B\), hence \(x \notin \text{scl}A\), a contradiction.

(2) \(\Rightarrow\) (3). Let \(< E_1, E_2 >\) be a resolution of \(F\), and let \(D_1 = E_1 \cup G\) and \(D_2 = E_2 \cup G\). Then \(D_1\) and \(D_2\) are dense, \(\text{scl}D_1 = \text{scl}D_2 = X\) and \(\text{int}D_1 = \text{int}D_2 = G\). Since

\[
\text{spcl}D_i = D_i \cup \text{int}(\text{cl}G) = E_i \cup \text{int}(\text{cl}G) \quad \text{for} \quad i = 1, 2,
\]

by assumption we have

\[
X_1 \subseteq (E_1 \cup \text{int}(\text{cl}G)) \cap (E_2 \cup \text{int}(\text{cl}G)) = \text{int}(\text{cl}G).
\]

(3) \(\Rightarrow\) (4). Let \(A = X - \text{int}(\text{cl}G) = \text{cl}(\text{int}F)\), and \(B = \text{int}(\text{cl}G)\). Then \(B\) is strongly irresolvable and, by assumption, \(A \subseteq X_2\). If \(C \subseteq A\) is closed in \(A\), then \(C\) is closed in \(X\) and preopen. Thus \(C\) is open in \(X\) and hence in \(A\). Therefore \(A\) is a clopen locally indiscrete subspace.

(4) \(\Rightarrow\) (5). Let \(X = A \cup B\), where \(A\) and \(B\) are disjoint and clopen, \(A\) is locally indiscrete and \(B\) is strongly irresolvable. Let \(C \subseteq X\) be preclosed. As a consequence of Proposition 1 in [4], \(C = H \cup E\), where \(H\) is \(\tau\)-closed, hence \(\tau^\alpha\)-closed, and \(E\) is codense in \((X, \tau)\), hence codense in \((X, \tau^\alpha)\). Since \((X - E) \cap B\) is dense in \(B\), by Lemma 1.5 we have \((X - E) \cap B \in \tau^\alpha\). Moreover, \((X - E) \cap A\) is \(g\)-open in \((X, \tau^\alpha)\) by Corollary 1.3. Therefore, by Lemma 1.1, \(X - E\) is \(g\)-open in \((X, \tau^\alpha)\) and \(C = H \cup E\) is \(g\)-closed in \((X, \tau^\alpha)\).

(5) \(\Rightarrow\) (6). Let \(D \subseteq X\) be \(\tau^\alpha\)-dense. Then \(X - D\) is preclosed in \((X, \tau)\) and so \(g\)-closed in \((X, \tau^\alpha)\), i.e. \(D\) is \(g\)-open in \((X, \tau^\alpha)\).

(6) \(\Rightarrow\) (3). Let \(x \in X_1\) and suppose that \(x \notin \text{int}(\text{cl}G)\), i.e. \(x \in \text{cl}(\text{int}F)\). Let \(< E_1, E_2 >\) be a resolution of \(\text{cl}(\text{int}F)\), and without loss of generality let \(x \in E_1\). Since \(E_2\) is codense, it is \(g\)-closed in \((X, \tau^\alpha)\) and contained in the \(\alpha\)-open set \(X - \{x\}\). Hence
\[\alpha \text{-cl} E_2 = E_2 \bigcup \text{cl}(\text{int}(\text{cl} E_2)) = \text{cl}(\text{int} F) \subseteq X - \{x\}, \]
a contradiction.

(3) \Rightarrow (2). Let \(x \in X_1 \cap \text{scl} A \) and suppose that
\[x \not\in \text{spcl} = A \bigcup \text{int}(\text{cl}(A)). \]
Pick an open neighbourhood \(V \) of \(x \) with \(V \subseteq \text{cl} G \) and \(V \subseteq \text{cl} A \). Since
\[x \in X - \text{int}(\text{cl}(\text{int} A)) = \text{cl}(\text{int}(X - A)), \]
we conclude that \(H = V \cap \text{int}(\text{cl}(X - A)) \) is nonempty and open. Now it is easily checked that \(< H \cap A, H \cap (X - A) >\) is a resolution of \(H \), and therefore \(H \subseteq \text{int} F \), i.e. \(H \cap \text{cl} G = \emptyset \), a contradiction to \(H \subseteq V \subseteq \text{cl} G \).

(2) \Rightarrow (1). Let \(A \) be semi-preclosed, i.e. \(A = \text{spcl} A \). By assumption, we have \(X_1 \cap \text{scl} A \subseteq A \). Hence \(A \) is \(\text{sg}- \)closed by Lemma 1.6.

\[\square \]

References

a) Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1, New Zealand

b) Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria