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Abstract

In this paper, we continue the study of generalized closed sets in a
topological space. In particular, we study the question when some
classes of generalized closed sets coincide. A new class of spaces, the
class of sg-submaximal spaces, is also introduced. Characterizations
of extremally disconnected spaces and sg-submaximal spaces are es-
tablished via various kinds of generalized closed sets.

1 Introduction

During the last few years the study of generalized closed sets has found
considerable interest among general topologists. One reason is these objects
are natural generalizations of closed sets. More importantly, generalized
closed sets suggest some new separation axioms which have been found to be
very useful in the study of certain objects of digital topology, for example,
the digital line (see e.g. [8]). In [5], Dontchev summarized in a diagram the
fundamental relationships between the various types of generalized closed
sets. Concerning this diagram, he also posed two questions which have been
answered by Cao, Ganster and Reilly in [4]. In the present paper, we take
another look at Dontchev’s diagram. In doing so, we are able to characterize
extremally disconnected spaces via generalized closed sets. Moreover, we
introduce the notion of sg-submaximal spaces and investigate this class of

0The second author wishes to acknowledge the hospitality of the University of Auckland
during his stay as an Honorary Research Fellow in the Department of Mathematics.

1991 Mathematics subject classification: 54A05, 54F65, 54G05.
Key Words and Phrases: Preclosed, sg-closed, gα-closed, sg-submaximal, extremally

disconnected.

1



spaces in terms of the Hewitt decomposition of a topological space. This
enables us to provide an example of an sg-submaximal space which! ! is not
g-submaximal.

A subset S of a topological space (X, τ) is called α-open [resp. semi-open,
preopen, semi-preopen] if S ⊆ int(cl(intS)) [resp. S ⊆ cl(intS), S ⊆ int(clS),
S ⊆ cl(int(clS))]. Moreover, S is said to be α-closed [resp. semi-closed,
preclosed, semi-preclosed ] if X \ S is α-open [resp. semi-open, preopen,
semi-preopen] or, equivalently, if cl(int(clS)) ⊆ S [resp. int(clS) ⊆ S,
cl(intS) ⊆ S, int(cl(intS)) ⊆ S]. The α-closure [resp. semi-closure, pre-
closure, semi-preclosure] of S ⊆ X is the smallest α-closed [resp. semi-
closed, preclosed, semi-preclosed] set containing S. It is well-known that
α-clS = S

⋃
cl(int(clS)) and! ! sclS = S

⋃
int(clS), pclS = S

⋃
cl(intS) and

spclS = S
⋃

int(cl(intS)). The α-interior of S ⊆ X is the largest α-open
set contained in S, and we have α-intS = S

⋂
int(cl(intS)). It is worth men-

tioning that the collection of all α-open subsets of (X, τ) is a topology τα on
X [15] which is finer than τ , and that a subset S is α-open if and only if it
is semi-open and preopen [16]. Moreover, (X, τ) and (X, τα) share the same
class of dense subsets.

Definition 1. A subset A of (X, τ) is called
(1) generalized closed (briefly, g-closed) [12] if clA ⊆ U , whenever A ⊆ U

and U is open;
(2) g-open [12], if X \ A is g-closed;
(3) sg-closed [3], if sclA ⊆ U whenever A ⊆ U and U is semi-open;
(4) sg-open [3], if X \ A is sg-closed;
(5) gα-closed [13], if α-clA ⊆ U whenever A ⊆ U and U is α-open, or

equivalently, if A is g-closed in (X, τα);
(6) gs-closed [2] if sclA ⊆ U whenever A ⊆ U and U is open.

In [5], a diagram has been provided in order to illustrate the relationships
between these classes of generalized closed sets. Let S be a subset of (X, τ).
A resolution of S is a pair < E1, E2 > of disjoint dense subsets of S. Fur-
thermore, S is said to be resolvable if it possesses a resolution, otherwise S
is called irresolvable. In addition, S is called strongly irresolvable, if every
open subspace of S is irresolvable. Observe that if < E1, E2 > is a resolution
of S then E1 and E2 are codense in (X, τ), i.e. have empty interior.

Lemma 1.1. [10, 9] Every space (X, τ) has a unique decomposition X =
F

⋃
G, where F is closed and resolvable and G is open and hereditarily irre-

solvable.
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Recall that a space (X, τ) is said to be submaximal [g-submaximal ] if
every dense subset is open [g-open]. Obviously, every submaximal space is g-
submaximal. Note that every submaximal space is hereditarily irresolvable,
and that every dense subspace of clG is strongly irresolvable, where G is
defined in Lemma 1.1. Any indiscrete space with at least two points is g-
submaximal but not submaximal.

In [11], Janković and Reilly pointed out that every singleton {x} of a
space (X, τ) is either nowhere dense or preopen. This provides another de-
composition X = X1

⋃
X2 of (X, τ), where X1 = {x ∈ X : {x} is nowhere

dense } and X2 = {x ∈ X : {x} is preopen }. The usefulness of this decom-
position is illustrated by the following result which will be used extensively
in the sequel.

Theorem 1.2. Let (X, τ) be a space, and A be a subset of X. Then
(1) [6] A is sg-closed if and only if X1

⋂
sclA ⊆ A.

(2) pclA ⊆ X1

⋃
A.

Proof. (1) has been proved in [6]. Now let x ∈ spclA and suppose that
x 6∈ X1. Then {x} is preopen and thus {x}⋂

A 6= ∅, i.e., x ∈ A. This proves
(2).

Throughout this paper, X = F
⋃

G and X = X1

⋃
X2 will always denote

the Hewitt decomposition of (X, τ) and the decomposition due to Jankovic
and Reilly, respectively.

It is clear that every sg-closed subset of a space (X, τ) is gs-closed. How-
ever the converse is not true in general. In [14], Maki at al called spaces whose
gs-closed sets are sg-closed Tgs-spaces. The following result characterizes the
class of Tgs-spaces.

Theorem 1.3. The following are equivalent for a space (X, τ):
(1) (X, τ) is a Tgs-space,
(2) every singleton {x} of X is either closed or preopen.

Proof. (1) ⇒ (2). Let x ∈ X1 and suppose that {x} is not closed. Then
X \ {x} is gs-closed, dense and semi-open. Hence X1

⋂
scl(X \ {x}) = X1 ⊆

X \ {x}, a contradiction.
(2) ⇒ (1). Let A be gs-closed and let x ∈ X1

⋂
sclA. Then {x} is closed.

If x 6∈ A, i.e. A ⊆ X \ {x}. Then sclA ⊆ X \ {x}, a contradiction.
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2 Some characterizations of extremally dis-

connected spaces

Recall that a space (X, τ) is extremally disconnected if the closure of ev-
ery open subset of X is open. We first note the following result which is
essentially due to Nj̊astad [15].

Lemma 2.1. The following are equivalent for a space (X, τ) :
(1) (X, τ) is extremally disconnected,
(2) scl(A

⋃
B) = sclA

⋃
sclB for all A,B ⊆ X.

(3) the union of two semi-closed sets is semi-closed.

As an immediate consequence we now have the following theorem.

Theorem 2.2. The following are equivalent for a space (X, τ) :
(1) (X, τ) is extremally disconnected,
(2) the union of two sg-closed sets is sg-closed.

Proof. (1) ⇒ (2). Let A and B be sg-closed. Then, by Theorem 1.2 and
Lemma 2.1,

X1

⋂
scl(A

⋃
B) = X1

⋂
(sclA

⋃
sclB)

= (X1

⋂
sclA)

⋃
(X1

⋂
sclB) ⊆ A

⋃
B.

Therefore A
⋃

B is sg-closed, by Theorem 1.2.
(2) ⇒ (1). Let U be open and suppose there exists x ∈ X with x ∈

clU \ int(clU). If S1 = U
⋃{x} and S2 = (X \ clU)

⋃{x}, then S1 and S2

are semi-open, hence sg-open. By assumption, S1

⋂
S2 = {x} is sg-open, i.e.

D = X \ {x} is sg-closed. Clearly x ∈ X1 and so D is dense, i.e. sclD = X.
Thus X1

⋂
sclD = X1 ⊆ X \ {x}, a contradiction.

Refering to the diagram in [5] we now consider possible converses of some
implications in that diagram thereby obtaining some more characterizations
of extremally disconnected spaces by using some classes of generalized closed
sets.

Theorem 2.3. For a space (X, τ) the following are equivalent:
(1) (X, τ) is extremally disconnected,
(2) every semi-preclosed subset of X is preclosed,
(3) every sg-closed subset of X is preclosed,
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(4) every semi-closed subset of X is preclosed,
(5) every semi-closed subset of X is α-closed,
(6) every semi-closed subset of X is gα-closed.

Proof. Both (3) ⇒ (4) and (5) ⇒ (6) are obvious.
(1) ⇒ (2). If S is semi-preclosed, then S = spclS = S

⋃
int(cl(intS)).

Since X is extremally disconnected, then cl(intS) = int(cl(intS)). Then
S = pclS, i.e. S is preclosed.

(2) ⇒ (3). From Theorem 2.4 of [5], every sg-closed subset of X is
semi-preclosed.

(4) ⇒ (5). This follows directly from the result in [16] that a subset is
α-closed if and only if it is both semi-closed and preclosed.

(6) ⇒ (1). It suffices to show that every regular open set S is closed.
To this end, let S be regular open. Then S is both semi-closed and α-open.
By (6), S is gα-closed which implies that α-clS ⊆ S. On the other hand
α-clS = S

⋃
cl(int(clS)). It follows that S = cl(int(clS)). Therefore, S is

closed, and (X, τ) is extremally disconnected.

It has been shown in [4] that (X, τα) is g-submaximal if and only if every
preclosed subset is gα-closed. As a variation of that result we now obtain

Theorem 2.4. For a space (X, τ) the following are equivalent:
(1) every semi-preclosed set is gα-closed,
(2) (X, τα) is extremally disconnected and (X, τα) is g-submaximal,

Proof. (1) ⇒ (2). If every semi-preclosed set is gα-closed, then every semi-
closed set is gα-closed and hence by Theorem 2.3, (X, τ) is extremally discon-
nected, so is (X, τα). Let A ⊆ X be τα-dense. Then X \A is semi-preclosed
in (X, τ), and therefore gα-closed. Thus A is g-open in (X, τα).

(2) ⇒ (1). Let A be a semi-preclosed subset of (X, τ). Since (X, τ) is
extremally disconnected, then by Theorem 2.3, A is preclosed. It follows
from Theorem 2.2 in [4] that A is gα-closed.

3 sg-Submaximal spaces

Observe that we show in Theorem 2.2 that a space is extremally disconnected
if and only if the union of two sg-closed sets is sg-closed. In general, however,
the union of two sg-closed sets fails to be sg-closed [3]. On the other hand,
we do have
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Lemma 3.1. [7] The union of a closed subset and an sg-closed subset is
sg-closed.

Let us call a space (X, τ) sg-submaximal [α-submaximal] if every dense
subset is sg-open [α-open]. We note that, since (X, τ) and (X, τα) share
their classes of dense subsets, (X, τ) is α-submaximal if and only if (X, τα) is
submaximal. This property has been characterized by Ganster [9, Theorem
4]. In the following, we will characterize sg-submaximality in terms of gener-
alized closed sets. We start with a lemma about the Hewitt decomposition.

Lemma 3.2. Let E ⊆ X be a codense subset of a space (X, τ), i.e. intE = ∅.
Then int(clE)

⋂
clG = ∅.

Proof. Since X\E is dense in X, (X\E)
⋂

G is dense in G. By Theorem 2 in
[9], int(X \E)

⋂
G = (X \clE)

⋂
G is dense in G, i.e. G ⊆ cl((X \clE)

⋂
G).

Then,

int(clE)
⋂

G ⊆ cl((X \ clE)
⋂

G)
⋂

int(clE)
⊆ cl((X \ clE)

⋂
G

⋂
int(clE)) = ∅.

and so int(clE)
⋂

clG = ∅.
Theorem 3.3. For a space (X, τ) the following are equivalent:

(1) X1 ⊆ clG ,
(2) every preclosed subset is sg-closed,
(3) (X, τ) is sg-submaximal,
(4) (X, τα) is sg-submaximal,

Proof. (1) ⇒ (2). Let C ⊆ X be preclosed. By Proposition 1 in [9], C =
H

⋃
E, where H is closed and E is codense in (X, τ). We have that

X1

⋂
sclE = X1

⋂
(E

⋃
int(clE)) = (X1

⋂
E)

⋃
(X1

⋂
int(clE)).

By assumption and Lemma 3.2, X1

⋂
int(clE) = ∅. Hence, X1

⋂
sclE ⊆ E

which implies that E is sg-closed. By Lemma 3.1, C is sg-closed.
(2) ⇒ (3). Let D be a τ -dense subset of X. Then X \ D is preclosed

in (X, τ), and so is sg-closed. Therefore, D is sg-open and (X, τ) is sg-
submaximal.

(3) ⇔ (4) is obvious, since τ and τα share the classes of dense subsets
and the classes of sg-open subsets (see [1]).
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(4) ⇒ (1). Let x ∈ X1 and suppose that x 6∈ clG, i.e. x ∈ intF . Let
< E1, E2 > be a resolution of intF , and without loss of generality let x ∈ E1.
Since E2 is codense, it is sg-closed in (X, τα) and contained in the α-open set
X\{x}. Hence sclE2 = E2

⋃
int(clE2) = intF ⊆ X\{x}, a contradiction.

It was pointed out in Theorem 2.1 in [4] that (X, τα) is g-submaximal if
and only if X1 ⊆ int(clG). We therefore have

Corollary 3.4. If (X, τα) is g-submaximal, then (X, τα) is sg-submaximal.

Our final example shows that the converse of Corollary 3.4 is not true in
general.

Example 3.5. There is an sg-submaximal space which is not g-submaximal.
It is well-known that there exists a Hausdorff, dense-in-self, submaximal
topology σ on R, the set of reals. Let Y be an infinite set disjoint from R
and let X = R

⋃
Y . We now define a topology τ on X. If x ∈ R\{0}, a basic

neighbourhood of x is a σ-open set containing x but not 0. If x = 0, a basic
neighbourhood of x has the form U

⋃
Y , where U is a σ-open set containing

x. If y ∈ Y then y has Y as a minimal open neighbourhood. Now it is easily
checked that X1 = R, X2 = Y , F = Y

⋃{0} and G = R \ {0}. Moreover,
clG = R and int(clG) = G. Therefore, X1 ⊆ clG but X1 6⊆ int(clG), and so
(X, τα) is sg-submaximal but not g-submaximal.
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