A REMARK ON β-LOCALLY CLOSED SETS

Julian DONTCHEV and Maximilian GANSTER

Abstract

The aim of this note is to show that every subset of a given topological space is the intersection of a preopen and a preclosed set, therefore β-locally closed, and that every topological space is β-submaximal.

1 Introduction

In a recent paper, Gnanambal and Balachandran [1] introduced the classes of β-locally closed sets, β-submaximal spaces and β-LC-continuous functions. The purpose of our note is to show that every subset of any topological space is the intersection of a preopen set and a preclosed set, hence β-locally closed, and therefore every function $f: (X, \tau) \rightarrow (Y, \sigma)$ is β-LC-continuous. We have felt the need to point out explicitly this observation since over the years several papers have investigated concepts like ”pre-locally closed sets” or ”β-locally closed sets” which do not have any nontrivial meaning. In addition, we will show that every space is β-submaximal and we will point out that most results of [1] are either trivial or false.

Let A be a subset of a topological space (X, τ). Following Kronheimer [2], we call the interior of the closure of A, denoted by A^+, the consolidation of A. Sets included in their consolidation are called preopen or locally dense. Complements of preopen sets are called preclosed and the preclosure of a set A, denoted by $\text{pcl}(A)$, is the intersection of all preclosed supersets of A. Since union of preopen sets is also preopen, the preclosure of every set is in fact a preclosed set. If A is included in the closure of its consolidation, then A is called β-open or semi-preopen. Complements of β-open sets are called β-closed. The β-closure of A, denoted by $\text{cl}_\beta(A)$ is the intersection of all β-closed supersets of A. In [1], Gnanambal and
Balachandran called a set A β-locally closed if A is intersection of a β-open and a β-closed set. They defined a set A to be β-dense [1] if $\text{cl}_\beta(A) = X$ and called a space X β-submaximal [1] if every β-dense subset is β-open. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called β-LC-continuous [1] if the preimage of every open subset of Y is β-locally closed in X.

The following implications hold and none of them is reversible:

$$\text{dense} \Rightarrow \text{preopen} \Rightarrow \text{\beta-open} \Rightarrow \text{\beta-locally closed}$$

2 Every set is β-locally closed

Proposition 2.1 Every subset A of a topological space (X, τ) is the intersection of a pre-open and a preclosed set, hence pre-locally closed.

Proof. Let $A \subseteq (X, \tau)$. Set $A_1 = A \cup (X \setminus \text{cl}(A))$. Since A_1 is dense in X, it is also preopen. Let A_2 be the preclosure of A, i.e., $A_2 = A \cup \text{cl}(\text{int}(A))$. Clearly, A_2 is a preclosed set. Note now that $A = A_1 \cap A_2$. □

Corollary 2.2 (i) Every set is β-locally closed and every function is β-LC-continuous.

(i) Every topological space is β-submaximal.

Proof. (i) Every preopen (resp. preclosed) set is β-open (resp. β-closed).

(ii) By [1, Corollary 3.24] a topological space is β-submaximal if and only if every set is β-locally closed.

Remark 2.3 (i) Corollary 2.2 makes [1] trivial.

(ii) Example 3.4 from [1] is wrong as the subset $A = \{\frac{1}{n} : n = 1, 2, \ldots\} \cup (2, 3) \cup (3, 4) \cup \{4\} \cup (5, 6) \cup \{x : x \text{ is irrational and } 7 \leq x < 8\}$ of the real line \mathbb{R} is indeed β-locally closed.

(iii) Proposition 3.6 from [1] is wrong as every proper nonempty subset of the real line \mathbb{R} with the indiscrete topology is β-open and preclosed but not semi-open.

(iv) Example 4.11 from [1] is wrong, since the space (X, τ), where $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a, b\}, \{c, d\}, X\}$ is not an $\alpha\beta$-space. Note that $\{a\}$ is β-open but not α-open (an α-open set is a set which is the difference of an open and a nowhere dense set).

(v) An $\alpha\beta$-space [1] is in fact a strongly irresolvable, extremally disconnected space.

(vi) An α-locally closed set ([1, Definition 2.1 (x)]) is nothing else but a simly-open set.
References
