
ON GENERALIZED CLOSED SETS

Jiling Caoa, Maximilian Gansterb and Ivan Reillya

Abstract

In this paper we study generalized closed sets in the sense of N. Levine.
We will consider the question of when some classes of generalized
closed sets coincide. Also, some lower separation axioms weaker than
T1 are investigated. We will provide characterizations of extremally
disconnected spaces and sg-submaximal spaces by using various kinds
of generalized closed sets.

1 Introduction

Closed sets are fundamental objects in a topological space. For example, one
can define the topology on a set by using either the axioms for the closed
sets or the Kuratowski closure axioms. In 1970, N. Levine [16] initiated the
study of so-called generalized closed sets. By definition, a subset S of a
topological space X is called generalized closed if clA ⊆ U whenever A ⊆ U
and U is open. This notion has been studied extensively in recent years by
many topologists because generalized closed sets are not only natural gen-
eralizations of closed sets. More importantly, they also suggest several new
properties of topological spaces. Most of these new properties are separa-
tion axioms weaker than T1, some of which have been found to be useful in
computer science and digital topology. For example, the well-known digital
line is T3/4 but not T1. Other new properties are defined by variations of
the property of submaximality. Furthermore, the study of generalized closed
sets also provides new characterizations of some known classes of spaces, for
example, the class of extremally disconnected spaces.
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For the sake of convenience, we begin with some basic concepts, although
most of these concepts can be found from the references of this paper. A
subset S of a topological space X is called α-open [resp. semi-open, preopen,
semi-preopen] if S ⊆ int(cl(int S)) [resp. S ⊆ cl(int S), S ⊆ int(cl S), S ⊆
cl(int(cl S))]. Moreover, S is said to be α-closed [resp. semi-closed, preclosed,
semi-preclosed ] if X\S is α-open [resp. semi-open, preopen, semi-preopen] or,
equivalently, if cl(int(cl S)) ⊆ S [resp. int(cl S) ⊆ S, cl(int S) ⊆ S, int(cl(int
S)) ⊆ S]. The α-closure [resp. semi-closure, preclosure, semi-preclosure] of
S ⊆ X is the smallest α-closed [resp. semi-closed, preclosed, semi-preclosed]
set containing S. It is well-known that α-cl S = S

⋃
cl(int(cl S)) and scl

S = S
⋃

int(cl S), pcl S = S
⋃

cl(int S) and spcl S = S
⋃

int(cl(int S)).
The α-interior of S ⊆ X is the largest α-open set contained in S, and we
have α-int S = S

⋂
int(cl(int S)). It is worth mentioning that the collection

α(X) of all α-open subsets of X is a topology on X [21] which is finer than
the original one, and that a subset S of X is α-open if and only if S is
semi-open and preopen [23].

Definition 1. Let X be a topological space. A subset A of X is called
(1) generalized closed (briefly, g-closed) [16] if cl A ⊆ U , whenever A ⊆ U

and U is open;
(2) semi-generalized closed (briefly, sg-closed) [2], if scl A ⊆ U whenever

A ⊆ U and U is semi-open;
(3) generalized semiclosed (briefly, gs-closed) [1] if scl A ⊆ U whenever

A ⊆ U and U is open;
(4) generalized α-closed (briefly, gα-closed) [18], if α-cl A ⊆ U whenever

A ⊆ U and U is α-open, or equivalently, if A is g-closed with respect to
α(X);

(5) α-generalized closed (briefly, αg-closed) [19] if α-cl A ⊆ U whenever
A ⊆ U and U is open;

(6) generalized semi-preclosed (briefly, gsp-closed) [6] if spcl A ⊆ U when-
ever A ⊆ U and U is open;

(7) regular generalized closed (briefly, r-g-closed) [22] if cl A ⊆ U whenever
A ⊆ U and U is regular open.

In addition to Definition 1 above, a subset A of X is g-open [16] [sg-
open [2]] if X \ A is g-closed [sg-closed]. Other classes of generalized open
sets can be defined in a similar manner. Recall that a space X is said to
be submaximal if every dense subset of X is open. As variations of sub-
maximality, we obtain the notions of α-submaximality, g-submaximality and
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sg-submaximality. A space X is α-submaximal [resp. g-submaximal , sg-
submaximal ] if every dense subset is α-open (resp. g-open, sg-open). α-
submaximal spaces have been studied by Ganster in [12]. Obviously, every
submaximal space is g-submaximal, and it has been pointed out in [4] ,
Corollary 3.4., that if (X, α(X)) is g-submaximal, then (X,α(X)) is also
sg-submaximal. Note that any indiscrete space with at least two points is
g-submaximal but not submaximal, and an sg-submaximal space which is
not g-submaximal was given in [4].

In [7], Dontchev summarized the fundamental relationships between var-
ious types of generalized closed sets in the following diagram. It was noted
in [7] that, in general, none of the implications in that diagram is reversible.
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Concerning possible converses of some implications in the above diagram,
Dontchev [7] posed two questions asking for the class of spaces in which every
semi-preclosed subset is sg-closed, and for the class of spaces in which every
preclosed subset is gα-closed. These two questions have been considered
and answered by Cao, Ganster and Reilly in [3]. Other possible converses of
implications were investigated in [4]. This lead to some new characterizations
of Tgs-spaces, extremally disconnected spaces and sg-submaximal spaces.

The main purpose of this paper is to summarise recent work in this di-
rection, and also to present some new results. Throughout this paper, no
separation axioms are assumed unless stated explicitly.
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2 Dontchev’s questions

In a recent paper [7], Dontchev posed the following two open questions con-
cerning generalized closed sets:

Question 2.1. [7] Characterize the spaces in which
1) Every semi-preclosed set is sg-closed.
2) Every preclosed set is gα-closed.

In order to answer these questions we need some preparation. Let S
be a subset of a space X. A resolution of S is a pair 〈E1, E2〉 of disjoint
dense subsets of S. The subset S is said to be resolvable if it possesses a
resolution, otherwise S is called irresolvable. In addition, S is called strongly
irresolvable, if every open subspace of S is irresolvable. Observe that if
〈E1, E2〉 is a resolution of S then E1 and E2 are codense in X, i.e. have empty
interior.We also note that every submaximal space is hereditarily irresolvable.

Lemma 2.2. [14, 12] Every space X has a unique decomposition X = F
⋃

G,
where F is closed and resolvable and G is open and hereditarily irresolvable.

In this paper, the representation X = F
⋃

G, where F and G are as in
Lemma 2.2, will be called the Hewitt decomposition of X.

Lemma 2.3. [15] Let X be a space. Then every singleton of X is either
nowhere dense or preopen.

For a space X, we now define X1 = {x ∈ X : {x} is nowhere dense },
and X2 = {x ∈ X : {x} is preopen }. Then X = X1

⋃
X2 is a decomposition

of X, which will be called the Janković-Reilly decomposition. Recall that a
space X is said to be locally indiscrete if every open subset is closed. We are
now ready to state the following theorem which was proved in [3] answering
Question 2.1.

Theorem 2.4. [3] For a space X with Hewitt decomposition X = F
⋃

G the
following are equivalent:

(1) every semi-preclosed subset of X is sg-closed,
(2) X1

⋂
scl A ⊆ spcl A for each A ⊆ X,

(3) X1 ⊆ int(cl G) ,
(4) X ≈ Y ⊕Z, where Y is locally indiscrete and Z is strongly irresolvable,
(5) every preclosed subset of X is gα-closed,
(6) X is g-submaximal with respect to α(X).
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3 Lower separation axioms

A space X is called T1/2 [16] if every g-closed subset of X is closed. Dunham
[11] proved that a space X is T1/2 if and only if singletons of X are either
open or closed. For further results concerning this class of spaces we refer
the reader to [8] and [11].

Theorem 3.1. [5] Every submaximal space is T1/2.

It is obvious that in any topological space X, every sg-closed subset of X
is gs-closed. In [20], the class of Tgs-spaces was introduced where a space X
is called Tgs if every gs-closed subset of X is sg-closed. The following result
exhibits the relationship between Tgs-spaces and T1/2-spaces.

Theorem 3.2. [4, 8] For a space X, the following statements are equivalent:
(1) X is a Tgs-space,
(2) every nowhere dense subset of X is a union of closed subsets of X

(i.e. X is T ∗
1 [13]),

(3) every generalized semi-preclosed subset of X is semi-preclosed (i.e. X
is semi-pre-T1/2 [6]),

(4) every singleton of X is either preopen or closed.

Corollary 3.3. Every T1/2-space is Tgs.

A space X is called semi-T1 [17] if each singleton is semi-closed, it is
called semi-T1/2 [2] if every singleton is either semi-closed or semi-open. Let
s(X) be the semi-regularization of a space X. The closure of a subset A
of X with respect to s(X) will be denoted by δ-cl A. A subset A of X is
called δ-generalized closed if δ-cl A ⊆ U when A ⊆ U and U is open in X.
Moreover, X is called a T3/4-space [8] if every δ-generalized closed subset of
X is closed in s(X). The well-known digital line, also called the Khalimsky
line, is a T3/4-space which fails to be T1.

Theorem 3.4. For any space X,
(1) [8] T3/4 = Tgs + semi-T1.
(2) [20] T1/2 = Tgs + semi-T1/2.

The results above clarify some connections between the Tgs property and
other lower separation axioms. Note, however, that not every Tgs-space is
T0. For example, a three point space X = {a, b, c} in which the only proper
open subset is {a, b}, is a Tgs-space, but not a T0-space. To obtain more
characterizations of Tgs-spaces, we need the following lemma.
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Lemma 3.5. A subset A of a space X is gα-closed if and only if
X1

⋂
α-cl A ⊆ A.

Proof. Suppose that A is gα-closed, and let x ∈ X1

⋂
α-cl A. If x 6∈ A, then

X \ {x} is an α-open set containing A and so α-cl A ⊆ X \ {x} , which is
impossible.

Conversely, suppose that X1

⋂
α-cl A ⊆ A. Let U be an α-open set

containing A, and let x ∈ α-cl A. If x ∈ X1, then x ∈ A ⊆ U . Now let
x ∈ X2 and assume that x 6∈ U . Then X \U is an α-closed set containing x,
and thus, α-cl({x}) = {x}⋃

cl(int(cl({x}))) ⊆ X \ U . Since {x} is preopen,
we have int(cl({x})) ⋂

A 6= ∅. Pick a point y ∈ int(cl({x})) ⋂
A. Then

y ∈ A
⋂

(X \ U) ⊆ U
⋂

(X \ U) , which is a contradiction.

Theorem 3.6. A space X is Tgs if and only if every αg-closed subset of X
is gα-closed.

Proof. Suppose that X is Tgs. Let A be αg-closed and let x ∈ X1

⋂
α-cl A.

Then {x} is closed by Theorem 3.2. Assume that x 6∈ A, i.e. A ⊆ X \ {x}.
Since A is αg-closed and X \ {x} is open we have x ∈ α-clA ⊆ X \ {x} ,
which is a contradiction. Therefore, X1

⋂
α-cl A ⊆ A. By Lemma 3.5, A is

gα-closed.

Conversely, assume that every αg-closed subset of X is gα-closed. Let
x ∈ X1 and suppose that {x} is not closed. Then X \ {x} is dense and
αg-closed, thus gα-closed. It follows from Lemma 3.5 that

X1

⋂
α-cl(X \ {x}) = X1

⋂
X = X1 ⊆ X \ {x}.

So we obtain x ∈ X \ {x}, a contradiction. By Theorem 3.2 , X is Tgs.

Remark 3.7. A space whose αg-closed subsets are gα-closed may be called
a Tαg-space. Theorem 3.6 shows, however, that the class of Tαg-spaces is
precisely the class of Tgs-spaces.

Proposition 3.8. A space X is Tgs and extremally disconnected if and only
if every gs-closed subset of X is preclosed.

Proof. Suppose that X is Tgs and extremally disconnected. Let A be a gs-
closed subset. Then A is sg-closed. By Theorem 2.3 (3) of [4], A is preclosed.

Now assume that every gs-closed subset is preclosed. Let x ∈ X and
suppose that {x} is not closed. Then X \ {x} is not open, hence it is gs-
closed. By assumption, X \ {x} is preclosed, and so {x} is preopen. By
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Theorem 3.2, X is a Tgs-space. Moreover, since every sg-closed subset is
preclosed, again by Theorem 2.3(3) of [4], X is extremally disconnected.

By Theorem 3.6, in a Tgs-space, every g-closed subset is gα-closed. This
suggests a natural question: Characterize those spaces whose gα-closed sub-
sets are g-closed. Clearly, if X is nodec, i.e. every nowhere dense subset of
X is closed [10], then every gα-closed subset of X is g-closed since in that
case α(X) coincides with the given topology on X. Also observe that X is
nodec if and only if every nowhere dense subset is discrete as a subspace.

Theorem 3.9. For a space X the following are equivalent:
(1) Every gα-closed set is g-closed,
(2) every nowhere dense subset is locally indiscrete as a subspace,
(3) every nowhere dense subset is g-closed,
(4) every α-closed set is g-closed.

Proof. (1) → (2) : Let N ⊆ X be nowhere dense, let U be open and let
N1 = U

⋂
N . We have to show that N1 is closed in N . Since N1 is nowhere

dense it is α-closed, hence gα-closed and so g-closed. Since N1 ⊆ U , we have
clN1 ⊆ U and hence clN1

⋂
N = N1 , i.e. N1 is closed in N .

(2) → (3) : Let N ⊆ U where N is nowhere dense and U is open. Let
x ∈ clN . Then cl{x} ⊆ clN . Since clN is nowhere dense, by (2) we have
that cl{x} is also open in clN , i.e. there exists an open set W such that
cl{x} = W

⋂
clN . Suppose that x /∈ U . Then cl{x} ⊆ X \ U and so

W
⋂

N ⊆ W
⋂

clN
⋂

U = ∅, a contradiction. Therefore clN ⊆ U .
(3) → (4) : Let F ⊆ X be α-closed. Then F = A

⋃
N where A is closed

and N is nowhere dense. If F ⊆ U where U is open then, by our assumption,
clN ⊆ U and so clF ⊆ U , i.e. F is g-closed.

(4) → (1) : Let A be gα-closed with A ⊆ U where U is open. By
assumption α-clA = A

⋃
cl(int(clA)) ⊆ U . It is easily checked that N = A \

cl(int(clA)) is nowhere dense, hence α-closed and so g-closed by assumption.
Since N ⊆ U we have clA

⋂
(X \ cl(int(clA)) ⊆ clN ⊆ U . It follows readily

that clA\ α-clA ⊆ U and so clA ⊆ U , i.e. A is g-closed.

In our next example we will show that there exist spaces whose nowhere
dense subsets are g-closed but which are not nodec.

Example 3.10. Let X be the real line and let X1 = {x ∈ X : x > 0} and
X2 = {x ∈ X : x < 0} . We now define a topology on X in the following
way. Let {0} be open. If x ∈ X1 , a basic (minimal) open neighbourhood
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of x is X1

⋃{0}. If x ∈ X2 , a basic (minimal) open neighbourhood of x is
X2

⋃{0}. Clearly, if x ∈ X1 then {x} is nowhere dense but not closed, so X
fails to be nodec. Now let N ⊆ U where N is nowhere dense and U is open.
Then 0 /∈ N . Let N1 = N

⋂
X1 and N2 = N

⋂
X2. If x ∈ N1 then x ∈ U

and so X1 ⊆ U . Hence clN1 ⊆ X1 ⊆ U . In the same manner, clN2 ⊆ U and
so clN ⊆ U , i.e. N is g-closed.

4 More Characterizations

We now return to the diagram in Section 1 to consider other possible con-
verses of some of the implications in that diagram. The following result about
the class of extremally disconnected spaces was proved in [4].

Theorem 4.1. [4] For a space X, the following statements are equivalent:
(1) (X, τ) is extremally disconnected,
(2) scl(A

⋃
B) = sclA

⋃
sclB for all A,B ⊆ X,

(3) the union of two semi-closed subsets of X is semi-closed,
(4) the union of two sg-closed subsets of X is sg-closed,
(5) every semi-preclosed subset of X is preclosed,
(6) every sg-closed subset of X is preclosed,
(7) every semi-closed subset of X is preclosed,
(8) every semi-closed subset of X is α-closed,
(9) every semi-closed subset of X is gα-closed.

Next we present one more characterization of extremal disconnectedness
using generalized closed subsets.

Theorem 4.2. A space X is extremally disconnected if and only if every
gs-closed subset of X is αg-closed.

Proof. Suppose that X is extremally disconnected. Let A be gs-closed and
let U be an open set containing A. Then sclA ⊆ U , i.e. int(clA) ⊆ U . Since
int(clA) is closed, we have α-clA = A

⋃
cl(int(clA)) ⊆ A

⋃
int(clA) ⊆ U .

Hence A is αg-closed.

To prove the converse, let every gs-closed subset of X be αg-closed. Let
A ⊆ X be regular open. Then A is gs-closed and so αg-closed. It follows that
clA = cl(int(clA)) = α-clA ⊆ A. Therefore A is closed and X is extremally
disconnected.
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We now consider the property of sg-submaximality. First we give some
elementary characterizations of sg-submaximal spaces. Since the proof of the
following result is straightforward, we will omit it.

Theorem 4.3. For a space X, the following are equivalent:
(1) X is sg-submaximal,
(2) every subset of X is an intersection of a closed subset and an sg-open

subset of X,
(3) every subset of X is a union of an open subset and an sg-closed subset

of X,
(4) every codense subset A of X is sg-closed,
(5) clA \ A is sg-closed for every subset A of X.

A more advanced result about sg-submaximality was obtained in [4].

Theorem 4.4. [4] For a space X with Hewitt decomposition X = F
⋃

G,
the following are equivalent:

(1) X1 ⊆ clG,
(2) every preclosed subset of X is sg-closed,
(3) X is sg-submaximal,
(4) X is sg-submaximal with respect to α(X).

We shall now improve the equivalence of (2) and (3) in Theorem 4.4
thereby providing a new characterization of sg-submaximal spaces.

Theorem 4.5. A space X is sg-submaximal if and only if every preclosed
subset of X is gs-closed.

Proof. The necessity is trivial by Theorem 4.4 (2). For the sufficiency, sup-
pose that every preclosed subset is gs-closed. Let X = F

⋃
G be the Hewitt

decomposition of X, and let 〈E1, E2〉 be a resolution of intF .

We first claim that every open set V ⊆ int F is regular open. In fact,
V

⋂
E1 is codense and contained in V . Since codense sets are preclosed, by

assumption, they are gs-closed. Thus int(cl(V
⋂

E1)) ⊆ V . On the other
hand, E1 is dense in intF , hence we have int(cl(V

⋂
E1)) = int(clV ). It

follows that V = int(clV ).

Now let x ∈ intF and let V = intF
⋂

(X \ cl({x})). Suppose that {x} is
nowhere dense. Then X \cl{x} is dense and int(clV ) = int(cl(intF )) = intF .
By our claim, intF = V . Hence intF ⊆ X \ {x}, a contradiction. Therefore
{x} has to be preopen. We have thus proved that intF ⊆ X2, i.e. X1 ⊆ clG.
By Theorem 4.4, X is sg-submaximal.
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Remark 4.6. One may define a space X to be gs-submaximal if each dense
subset of X is gs-open. Similar to the proof of Theorem 4.4, one checks easily
that a space X is gs-submaximal if and only if each preclosed subset of X
is gs-closed. In the light of Theorem 4.5, the notion of gs-submaximality
coincides with that of sg-submaximality.

Acknowledgement
The authors wish to thank Dr. Julian Dontchev for providing the latex

version of the diagram in Section 1.

References

[1] S. Arya and T. Nour, Characterizations of s-normal spaces, Indian J.
Pure Appl. Math., 21 (1990), 717-719.

[2] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topol-
ogy, Indian J. Math., 29 (1987), 375-382.

[3] J. Cao, M. Ganster and I. L. Reilly, On sg-closed sets and gα-closed
sets, Mem. Fac. Sci. Kochi Univ. Ser A, Math., to appear.

[4] J. Cao, M. Ganster and I. L. Reilly, Submaximality, extremal discon-
nectedness and generalized closed sets, Houston J. Math., to appear.

[5] J. Dontchev, On submaximal spaces, Tamkang Math. J., 26 (1995), 243-
250.

[6] J. Dontchev, On generating semi-preopen sets, Mem. Fac. Sci. Kochi
Univ. Ser. A., Math., 16 (1995), 35-48.

[7] J. Dontchev, On some separation axioms associated with the α-topology,
Mem. Fac. Sci. Kochi Univ. Ser A, Math., 18 (1997), 31–35.

[8] J. Dontchev and M. Ganster, On δ-generalized closed sets and T3/4-
spaces, Mem. Fac. Sci. Kochi Univ. Ser A, Math., 17 (1996), 15–31.

[9] J. Dontchev and H. Maki, On sg-closed sets and semi-λ-closed sets,
Questions Answers Gen. Topology, 15 (1997), 259-266.

[10] E. van Douwen, Applications of maximal topologies, Topology Appl., 51
(1993), 125-240.

[11] W. Dunham, T1/2-spaces, Kyungpook Math. J., 17 (1977), 161-169.

10



[12] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J.,
27 (1987), 135-143.

[13] M. Ganster, I. Reilly and M. Vamanamurthy, Remarks on locally closed
sets, Math. Panon., 3 (1992), 107-113.

[14] E. Hewitt, A problem of set-theoretic topology, Duke J. Math., 10
(1943), 309-333.
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