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Abstract

We extend a theorem of Hamlett and Janković by proving that if a topological
space (X, τ) is compact with respect to the countable extension of I, then the local
function A∗(I) of every subset A of X with respect to τ and I is a compact subspace
with respect to the extension Ĩ in A∗(I). We also give a generalized version of the
Banach Category theorem.

1 Introduction

In 1990, Hamlett and Janković [4] improved a theorem of Rančin from 1972 [9] by showing

that if a space is M-compact (that is every open cover has a finite subfamily covering the

space but a meager set), then X∗ (this is the local function of X with respect to the ideal

M) is QHC (= quasi-H-closed) as a subspace. A topological space (X, τ) is said to be quasi-

H-closed (= QHC) if for every open cover {Vα: α ∈ A} of X, there exists a finite subset A0

of A such that X = ∪{Cl(Vα): α ∈ A0}.
A nonempty family I of subsets on a topological space (X, τ) is called an ideal on X if

it satisfies the following two conditions:
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(1) If A ∈ I and B ⊆ A, then B ∈ I (heredity).

(2) If A ∈ I and B ∈ I, then A ∪B ∈ I (finite additivity).

A σ-ideal on a topological space (X, τ) is an ideal which satisfies:

(3) If {Ai: i = 1, 2, 3, . . .} ⊆ I, then
⋃{Ai: i = 1, 2, 3, . . .} ∈ I (countable additivity).

If X 6∈ I, then I is called a proper ideal. The collection of the complements of all elements

of a proper ideal is a filter, hence proper ideals are sometimes called dual filters.

The following collections form important ideals on a topological space (X, τ): the ideal

of all finite sets F , the ideal of all countable sets C, the ideal of all closed and discrete sets

CD, the ideal of all nowhere dense sets N , the ideal of all first category (= meager) sets M,

the ideal of all scattered sets S (here X must be T0) and the ideal of all Lebesgue null sets

L (here X stands for the real line).

By an ideal topological space, we mean a topological space (X, τ) with an ideal I on

X and we denote it by (X, τ, I). For a subset A ⊆ X, A∗(I) = {x ∈ X: for every U ∈
τ(x), U ∩ A 6∈ I} is called the local function of A with respect to I and τ [5, 6]. We simply

write A∗ instead of A∗(I) in case there is no chance for confusion.

Recall that a subset A of a space (X, τ, I) is called I-compact [4, 7, 9] if for each τ -open

cover (Ui)i∈I of A there exists a finite subcollection (U1, . . . , Un) such that A\(U1∪. . .∪Un) ∈
I. An ideal topological space (X, τ, I) is I-compact if X is an I-compact set. Clearly,

classical compactness coincides with compactness with respect to the minimal ideal {∅} (or

with respect to F if you prefer).

If I and J are ideals on (X, τ), then the extension of I via J [5], denoted by I ∗J is the

collection {A ⊆ X: A∗(I) ∈ J }. The extension of I over the ideal of nowhere dense sets N
is usually denoted by Ĩ [5]. Clearly, Ĩ = {A ⊆ X: IntA∗(I) = ∅}. The countable extension

of I [5], denoted by Ĩσ, is the family {A ⊆ X: A = ∪n∈NAn, An ∈ Ĩ for each n ∈ N}.

2 The generalized Banach Category theorem

An important property of ideals was first proved for the ideal of meager sets by Banach in

1930 [1]. Recall that the topology τ of an ideal topological space (X, τ, I) is compatible with

the ideal I [8], denoted τ ∼ I, if the following condition holds for every subset A of X: if
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for every x ∈ A there exists a U ∈ τ(x) such that U ∩ A ∈ I, i.e., if A ∩ A∗(I) = ∅, then

A ∈ I. If this condition holds, then the ideal I is also sometimes said to be local relative

to the topology [10] or to have the strong Banach’s localization property [11]. For example,

the σ-ideal of meager sets is always local and every topology is compatible with the ideal of

meager subsets—this result is known as the Banach category theorem and was first proven

by Banach [1] for metric spaces and extended to general topological spaces by Kuratowski

[6].

In 1992, Janković and Hamlett [5] extended the results of Banach and Kuratowski by

proving the following:

Theorem 2.1 [5] (Generalized Banach Category theorem) For every ideal topological space

(X, τ, I), we have Ĩσ ∼ τ .

The generalized Banach Category theorem plays a central role in the proof of our next

result which in turn extends the already mentioned theorem of Hamlett and Janković from

[4].

Theorem 2.2 Let (X, τ, I) be an ideal topological space. If (X, τ) is compact with respect to

the countable extension Ĩσ of I, then the local function of every subset A of X with respect

to τ and Ĩσ is a compact subspace with respect to the extension Ĩ in the subspace (A∗, τ |A∗).

Proof. Throughout this proof, A∗ will stand for A∗(Ĩσ). Let {Ui: i ∈ I} be a cover of A∗

consisting of open subsets of (A∗, τ |A∗). For each i ∈ I, let Vi be open in (X, τ) such that

Vi ∩A∗ = Ui. Since A∗ is closed in (X, τ), the family {Vi: i ∈ I} ∪ {X \A∗} is an open cover

of (X, τ). Due to the Ĩσ-compactness of (X, τ), there exists a finite subset F ⊆ I such that

X \ ((∪i∈F Vi) ∪ (X \ A∗)) = S ∈ Ĩσ. Hence, (∪i∈F Ui) ∪ S = A∗ and (∪i∈F Vi) ∩ S = ∅, in

particular, S is closed in (A∗, τ |A∗). We now claim that S ∈ Ĩ|A∗. Assuming the contrary,

suppose there exists nonempty set W ∈ τ |A∗ such that W ⊆ S∗(I|A∗) ⊆ ClA∗S = S. Let

W ′ ∈ τ such that W ′ ∩ A∗ = W . Clearly, if x ∈ W then x ∈ A∗ and so W ′ ∩ A /∈ Ĩσ. On

the other hand, W ′ ∩ A = (W ′ ∩ (A∗ ∩ A)) ∪ (W ′ ∩ (A \ A∗)). Set F = W ′ ∩ (A∗ ∩ A) and

G = W ′ ∩ (A \ A∗). Since F ⊆ S and S ∈ Ĩσ, we have F ∈ Ĩσ. If x ∈ G, then x 6∈ A∗
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and so there exists H ∈ τ such that H ∩ A ∈ Ĩσ. Since G ⊆ A, it follows immediately from

the Generalized Banach Category theorem that G ∈ Ĩσ. Due to the finite additivity of Ĩσ,

we have F∪G = W ′∩A ∈ Ĩσ, a contradiction. This shows that (A∗, τ |A∗) is Ĩ|A∗-compact. 2

Note that, if I = {∅} then Ĩ = N , so its countable extension is M. Clearly, a space X

is QHC if and only if X is N -compact. An immediate consequence of the theorem above is

the following result of Hamlett and Janković.

Corollary 2.3 [4] If a topological space (X, τ) isM-compact, then X∗ is QHC as a subspace.

Proof. Set I = {∅}, A = X and apply Theorem 2.2. 2

Example 2.4 Let Q be the space of all rationals with the usual topology (inherited from

the real line). Clearly, Q is M-compact but not QHC. Thus, if a space (X, τ, I) is compact

with respect to the countable extension Ĩσ of an ideal I, then not every subset A of X need

to be a compact subspace with respect to the extension Ĩ in A.

A topological space (X, τ) is called sporadic [2] if the Cantor-Bendixson derivative of X

is meager. Spaces without isolated points are usually called dense-in-themselves or crowded.

Recall also that a space X is called a T 1
2
-space if each singleton is open or closed.

Corollary 2.5 If (X, τ) is a crowded sporadic T 1
2
-space. Then the derived set Ad of every

subset A of X is QHC.

Proof. We will apply Theorem 2.2 for I = F . First we note that X is T1 (crowded +

T 1
2
⇒ T1). Thus A∗(F) = Ad for every subset A of X. Since F̃ = N by [5, Theorem 5.2], we

have that Ad is QHC ⇔ Ad is N -compact ⇔ Ad is F̃ -compact. Now, F̃σ = Nσ = M and

since Xd is meager, Xd = X is trivially F̃σ-compact. By Theorem 2.2, Ad is QHC. 2

Recall that an ideal I is called codense if each of its members is codense. Note that an

ideal I is codense if and only if τ ∩ I = {∅}. Observe that a topological space (X, τ) is a

Baire space if and only if M is codense. If I ∩PO(X, τ) = {∅} (resp. I ∩RO(X, τ) = {∅}),

4



then I is called completely codense [3] (resp. regular). Here, PO(X, τ) (resp. RO(X, τ))

denotes the collection of all preopen (resp. regular open) subsets of (X, τ), where a set A is

preopen (resp. regular open) if A ⊆ Int(Cl(A)) (resp. A = Int(Cl(A))). We will say that I is

normal if I is regular and N ⊆ I.

Note that every codense ideal is regular, in particular, N is regular. Most of the well-

known ideals defined on the real line with the usual topology are regular, for example

F , C, CD,N ,L,S. In hyperconnected (= irreducible) spaces every dual filter is regular.

One can also show that I is completely codense and normal if and only if I = N .

Example 2.6 Consider the density topology on the real line. Recall that a measurable set

E ⊆ R has density d at x ∈ R if

lim
h→0

m(E ∩ [x− h, x + h])

2h

exists and is equal to d. Set φ(E) = {x ∈ R: d(x,E) = 1}. The open sets of the density

topology T are those measurable sets E which satisfy the condition E ⊆ φ(E). Note that

the density topology T is finer than the usual topology on the real line. Now, it can be

easily seen that N ,M, CD,L are all normal ideal in the density topology. Note, however,

that (for example) CD and L are not normal in the usual topology.

Our next example will show that Ĩ does not necessarily coincide with the extension of

I over an arbitrary codense (and hence regular) ideal. However, we will show that Ĩ is

precisely the extension of I over an arbitrary normal ideal.

Example 2.7 Let X = {a, b, c}, τ = {∅, {a, b}, X}, I = {∅, {a}} and J = {∅, {b}}. Note

that N = {∅, {c}}. It is easily checked that Ĩ = I ∗ N = {∅, {a}, {c}, {a, c}} and I ∗ J =

{∅, {a}}.

Proposition 2.8 Let (X, τ, I) be an ideal topological space. Then Ĩ coincides with the

extension of I via an arbitrary normal ideal J .
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Proof. Let J be an arbitrary normal ideal. We claim that Ĩ = I ∗ J . Assume first

that A ∈ Ĩ. Then A∗(I) ∈ N and since J is normal, we have A∗(I) ∈ J . This shows that

A ∈ I ∗ J . For the converse, assume that A ∈ I ∗ J , i.e. A∗(I) ∈ J . Due to the heredity

of J , we have IntA∗(I) ∈ J . On the other hand, Int(Cl(A∗(I))) = IntA∗(I) is regular open

in (X, τ). Since J is normal and since IntA∗(I) ∈ RO(X, τ) ∩ J , we have IntA∗(I) = ∅.
Thus A∗(I) is codense and hence nowhere dense (being closed). This shows that A∗(I) ∈ N .

Consequently, A ∈ Ĩ. 2

Now, in the notion of Proposition 2.8, we can generalize the Banach Category theorem

as follows:

Theorem 2.9 Let (X, τ) be a topological space. Then, the countable extension of every ideal

I via an arbitrary normal ideal J is always compatible with the topology τ .

Proof. Follows directly from Theorem 2.1 and Proposition 2.8. 2

Question. Does Theorem 2.9 remain true if ‘normal’ is replaced with ‘regular’?
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