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Abstract

This paper continues the study of preclosed sets and of generalized
preclosed sets in a topological space. Our main objective is to establish
results about the relationships between the various types of generalized
closed sets. As a by-product, we are able to provide characterizations
of certain known classes of topological spaces by using preclosed sets
and their generalizations.

1 Introduction

Let X be a topological space. Recall that a subset A of X is said to be pre-
closed if cl(intA) ⊆ A. The preclosure of A, denoted by pclA, is the smallest
preclosed set in X containing A. It is easy to check that pclA = A

⋃
cl(intA).

Complements of preclosed sets are called preopen (= nearly open or locally
dense [8]) sets. The notion of preclosed sets plays an important role in
questions concerning generalized continuity. It leads to the notion of pre-
continuity. Recall that a function f : X → Y is precontinuous if the inverse
image of each closed set of Y is preclosed in X. Blumberg [4] proved that
any function f : R → R is precontinuous at each point of a certain dense
set of the real line R. Naimpally [18] showed that every linear function
between Banach spaces is precontinuous. In Functional Analysis, precon-
tinuous functions are important in the study of various versions of Closed
Graph Theorems and Open Mapping Theorems.

In 1970, Levine [13] initiated the investigation of so-called generalized
closed sets. By definition, a subset A of a topological space X is called
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generalized closed, briefly g-closed, if clA ⊆ U whenever A ⊆ U and U
is open. Moreover, A is called generalized open, or g-open, if X \ A is g-
closed. This concept has been studied extensively in recent years by a large
number of topologists (see e.g. References of this paper). In [17], Maki et al
introduced the concepts of pg-closed sets and gp-closed sets in an analogous
manner. These notions are generalizations of preclosed sets which were
further studied by Dontchev and Maki [10], leading to a new decomposition
of precontinuity.

Definition 1. Let X be a topological space. A subset A of X is called
(1) pre-generalized closed (briefly, pg-closed) [17], if pclA ⊆ U whenever

A ⊆ U and U is preopen;
(2) generalized preclosed (briefly, gp-closed) [17] if pclA ⊆ U whenever

A ⊆ U and U is open.

A space X has been called a pre-T 1
2
-space [17] if every pg-closed set of

X is preclosed. It was proved in [17] that a space X is a pre-T 1
2
-space if

and only if every singleton of X is either preopen or preclosed. However, it
is easily observed that in any topological space, a singleton is either open
or preclosed. Therefore, every pg-closed set is preclosed, or equivalently,
every space is pre-T 1

2
. In this paper, we shall therefore study gp-closed

sets and other generalizations of preclosed sets. Let us recall some basic
concepts first, although most of these concepts are well known. A subset A
of a topological space X is called α-open (resp. semi-open, semi-preopen)
if A ⊆ int(cl(intA)) (resp. A ⊆ cl(intA), A ⊆ cl(int(clA))). Moreover, A
is said to be α-closed (resp. semi-closed, semi-preclosed) if X \ A is α-
open (resp. semi-open, semi-preopen) or, equivalently, if cl(int(clA)) ⊆ A
(resp. int(clA) ⊆ A, int(cl(intA)) ⊆ A). The α-closure (resp. semi-closure,
semi-preclosure) of A ⊆ X is the smallest α-closed (resp. semi-closed, semi-
preclosed) set containing A. It is well-known that α-clA = A

⋃
cl(int(clA)),

sclA = A
⋃

int(clA) and spclA = A
⋃

int(cl(intA)).

Definition 2. Let X be a topological space. A subset A of X is called
(1) semi-generalized closed (briefly, sg-closed) [3], if sclA ⊆ U whenever

A ⊆ U and U is semi-open;
(2) generalized semiclosed (briefly, gs-closed) [2] if sclA ⊆ U whenever

A ⊆ U and U is open;
(3) generalized α-closed (briefly, gα-closed) [14], if α-clA ⊆ U whenever

A ⊆ U and U is α-open;
(4) α-generalized closed (briefly, αg-closed) [15] if α-clA ⊆ U whenever

A ⊆ U and U is open;
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(5) generalized semi-preclosed (briefly, gsp-closed) [9] if spclA ⊆ U when-
ever A ⊆ U and U is open.

The fundamental relationships between the various types of generalized
closed sets considered in Definition 1 and Definition 2 can be summarized
in the following diagram.

gα-closed

preclosed αg-closed

gp-closed

semi-preclosed gsp-closed

©©©©©¼

HHHHHj

HHHHHj

©©©©©¼

HHHHHj
-

?

Diagram 1

We observe that none of the implications in the above diagram can be
reversed in general. The main aim of our paper is to characterize the classes
of spaces where the converses of the implications in our diagram hold.

2 Tgs-spaces and generalized preclosed sets

In this section, we start with establishing relations between various general-
ized preclosed sets. This will lead us to characterize the class of Tgs-spaces
and the class of extremally disconnected spaces. Recall that a space X is
called a Tgs-space [16] if every gs-closed set of X is sg-closed. The following
characterization of Tgs-spaces has been obtained in [5] and [7].

Lemma 2.1. For a space X the following are equivalent:
(1) X is a Tgs-space.
(2) Every singleton is either preopen or closed [5].
(3) Every αg-closed subset of X is gα-closed [7].
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In our next result we offer additional characterizations of Tgs-spaces
thereby answering several possible questions about our diagram.

Theorem 2.2. For a space X the following are equivalent:
(1) X is a Tgs-space.
(2) Every gp-closed subset of X is preclosed.
(3) Every gsp-closed subset of X is semi-preclosed.
(4) Every gp-closed subset of X is semi-preclosed.

Proof. The route of our proof is: (1) → (3) → (4) → (1) → (2) → (4).
Observe that the implications (3) → (4) and (2) → (4) are obvious.

(1) → (3). Suppose that X is a Tgs-space and let A be a gsp-closed subset
of X. We want to show that spclA ⊆ A. So let x ∈ spclA and suppose that
x 6∈ A , i.e. A ⊆ X \ {x}. If {x} is preopen, then spclA ⊆ pclA ⊆ X \ {x}, a
contradiction. If {x} is closed, then spclA ⊆ X \ {x} since A is gsp-closed,
also a contradiction. Thus A is semi-preclosed.

(4) → (1). First observe that every singleton in any topological space
is either preopen or nowhere dense (see e.g. [12]). Now suppose that every
gp-closed subset of X is semi-preclosed. Let x ∈ X. If {x} is preopen we
are done. Suppose that {x} is nowhere dense, i.e. int(cl{x}) = ∅, and not
closed. Then X \{x} is gp-closed, since the only open set containing X \{x}
is the whole space X itself. By assumption, X \ {x} is semi-preclosed, i.e.
{x} is semi-preopen, and so {x} ⊆ cl(int(cl{x})), a contradiction to the fact
that {x} is nowhere dense. Thus X is a Tgs-space.

The proof of (1) → (2) is very similar to the proof of (1) → (3) and
hence omitted.

Recall that a space X is said to be extremally disconnected if the closure
of each open subset of X is open, or equivalently, if every regular closed
subset of X is open.

Theorem 2.3. For a space X the following are equivalent:
(1) Every gsp-closed subset of X is gp-closed.
(2) Every semi-preclosed subset of X is gp-closed.
(3) The space X is extremally disconnected.

Proof. (1) → (2) is obvious. Therefore, we have to show that (2) → (3) and
(3) → (1).

(2) → (3). Let A be a regular open subset of X. Then A is semi-
preclosed. By hypothesis, A is gp-closed and so pclA ⊆ A which implies
A = cl(intA). Therefore, A is closed and hence X is extremally disconnected.
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(3) → (1). Let A be a gsp-closed subset of X, and let U ⊆ X be open
with A ⊆ U . If B = spclA then, by assumption, A ⊆ B ⊆ U . Since B is
semi-preclosed, by Theorem 2.3 in [5] we have that B is preclosed. Therefore
pclA ⊆ B ⊆ U , i.e. A is gp-closed.

As a consequence of Theorem 2.2 and Theorem 2.3 we now have

Corollary 2.4. For a space X the following are equivalent:
(1) Every gsp-closed subset of X is preclosed.
(2) X is Tgs and extremally disconnected.

3 When is every gp-closed set αg-closed?

In order to answer this question we need some preparation. A subspace A of
a space X is called resolvable if it has two disjoint dense subsets, otherwise
it is called irresolvable. In addition, A is said to be strongly irresolvable if
every open subspace of A is irresolvable. It has been shown by Hewitt [11]
that every topological space X has a decomposition X = F ∪G, where F is
closed and resolvable, and G is open and hereditarily irresolvable. We will
call this decomposition the Hewitt decomposition of X. Recall also that a
space X is said to be locally indiscrete if every open subset of X is closed.
The following crucial result has been obtained in [6].

Theorem 3.1. [6] Let X = F ∪ G be the Hewitt decomposition of a space
(X, τ) and let X1 = {x ∈ X : {x} is nowhere dense }. Then the following
are equivalent:

(1) Every semi-preclosed set is sg-closed.
(2) X1 ∩ sclA ⊆ spclA for each A ⊆ X.
(3) X1 ⊆ int(clG).
(4) (X, τ) is the topological sum of a locally indiscrete space and a

strongly irresolvable space.
(5) Every preclosed set is gα-closed.
(6) (X, τα) is g-submaximal, i.e. every dense set is g-open in (X, τα).

Proposition 3.2. Let X = F ∪ G be the Hewitt decomposition of a space
X. If every preclosed set is αg-closed then intF is a clopen locally indiscrete
subspace.

Proof. Let U be an open subset of intF . Since intF is resolvable, it can be
decomposed into two disjoint dense subsets, say E1 and E2. If R = U ∩ E1

then R has empty interior, hence is preclosed in X. By assumption, R ⊆ U
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is αg-closed and so α-clR ⊆ U . Since clR = clU , we have cl(int(clU)) ⊆ U
and so cl(int(clU)) = U , i.e. U is closed in X. It follows that intF is a
clopen locally indiscrete subspace.

Remark 3.3. If X = F ∪G is the Hewitt decomposition of a space X, then
X \ intF = clG is always strongly irresolvable. Hence, under the hypothesis
of Proposition 3.2, (4) in Theorem 3.1 is fulfilled.

We are now able to answer the question posed in the title of this section.

Theorem 3.4. For a space X the following are equivalent:
(1) Every gp-closed set is αg-closed.
(2) Every preclosed set is αg-closed.
(3) Every preclosed set is gα-closed.

Proof. (1) → (2) and (3) → (2) are obvious, and (2) → (3) follows from
Remark 3.3 and Theorem 3.1.

(2) → (1). Let A be gp-closed and A ⊆ U where U is open. If B = pclA
then B ⊆ U . By assumption, B is αg-closed and so α-clA ⊆ α-clB ⊆ U , i.e.
A is αg-closed.

Corollary 3.5. For a space X the following are equivalent:
(1) Every gp-closed set is gα-closed.
(2) X is Tgs and every gp-closed set is αg-closed.

Proof. (1) → (2). We have to show that X is Tgs. Let x ∈ X and suppose
that {x} is nowhere dense and not closed. Then X \ {x} is α-open and
gp-closed, and so α-cl(X \ {x}) ⊆ X \ {x}. Thus X \ {x} is α-closed and
{x} is α-open, a contradiction. This proves that X is Tgs.

(2) → (1). This follows from Lemma 2.1.

In concluding this section we provide an example of a space where every
gp-closed set is αg-closed but which fails to be Tgs, hence must have a gp-
closed subset which is not gα-closed.

Example 3.6. Let X be the set of natural numbers with ∅, X and sets of
the form {1, 2, ..., n}, n ∈ N, as open sets. Since {1} ⊆ U for every open set
U , X is strongly irresolvable and so, by Theorem 3.1, every preclosed set is
gα-closed. By Theorem 3.4, every gp-closed set is αg-closed. If m > 1 then
cl{m} = {m,m + 1, ...}. Hence {m} is nowhere dense but not closed, so X
is not Tgs.
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4 gp-closed sets and sg-closed sets

In this section we shall consider the relationships between gp-closed sets and
sg-closed sets (resp. gs-closed sets). First observe that every sg-closed set
is obviously gs-closed. The relationships between sg-closed sets (gs-closed)
sets and other generalized preclosed sets can be illustrated in the following
diagram.

sg-closed gs-closed

semi-preclosed gsp-closed-

-

? ?

Diagram 2

In general, the notions of gp-closed sets and sg-closed (gs-closed) sets
are independent of each other. Recall also that a space X is said to be
sg-submaximal [5] if every dense subset is sg-open.

Theorem 4.1. For a space X the following are equivalent:
(1) Every gs-closed subset of X is gp-closed.
(2) Every sg-closed subset of X is gp-closed.
(3) Every semi-closed subset of X is gp-closed.
(4) The space X is extremally disconnected.

Proof. (1) → (2) and (2) → (3) are obvious. We shall show implications
(3) → (4) and (4) → (1).

(3) → (4). Let A be a regular open subset of X. Then A is semi-closed.
By assumption, A is gp-closed and A ⊆ A. So pclA = clA ⊆ A, i.e. A is
closed and thus X is extremally disconnected.

(4) → (1). Let A be gs-closed with A ⊆ U where U is open. Then
sclA = A ∪ int(clA) ⊆ U . By assumption, int(clA) is closed and so clearly
pclA = A ∪ cl(intA) ⊆ U , i.e. A is gp-closed.

Theorem 4.2. For a space X the following are equivalent:
(1) Every gp-closed set is gs-closed.
(2) Every preclosed set is gs-closed.
(3) X is sg-submaximal.
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Proof. (1) → (2) is obvious and (2) ↔ (3) is Theorem 4.5 in [7].

(2) → (1). Let A be gp-closed with A ⊆ U where U is open. If B = pclA
then B is preclosed and B ⊆ U . By assumption, B is gs-closed and so
sclA ⊆ sclB ⊆ U , i.e. A is gs-closed.

The proof of the following result is similar to that of Theorem 4.2, thus
is omitted.

Theorem 4.3. For a space X the following are equivalent:
(1) Every gsp-closed set of X is gs-closed.
(2) Every semi-preclosed set of X is gs-closed.

Proposition 4.4. If every gp-closed subset of a space X is sg-closed, then
X is Tgs.

Proof. Suppose that {x} is nowhere dense but not closed. Then X \ {x}
is semi-open and gp-closed. By assumption, X \ {x} is sg-closed and thus
semi-closed. So {x} is semi-open, contradicting the fact that {x} is nowhere
dense.

As corollaries to Theorem 3.1, Theorem 4.2, Theorem 4.3 and Proposi-
tion 4.4 we now have the following results.

Corollary 4.5. For a space X the following are equivalent:
(1) Every gp-closed set is sg-closed.
(2) X is both Tgs and sg-submaximal.

Recall that a space is T 1
2

(resp. semi-T 1
2
) if every g-closed set is closed

(resp. every sg-closed set is semi-closed). It is known that a space X is T 1
2

if and only if every singleton is either open or closed. Moreover, X is semi-
T 1

2
if every singleton is either semi-open or semi-closed [3]. Every T 1

2
space

is semi-T 1
2
. By Theorem 3.1 and Theorem 3.3 in [5], strong irresolvability

implies sg-submaximality. But Example 3.5 in [5] shows that these two
notions are distinct in general. In the following, we shall prove that strong
irresolvability is equivalent to sg-submaximality in the class of T 1

2
spaces.

Corollary 4.6. For a space X the following are equivalent:
(1) X is both T 1

2
and sg-submaximal.

(2) Every gp-closed set is semi-closed.
(3) X is both T 1

2
and strongly irresolvable.
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Proof. (1) → (2). Follows from Lemma 2.1, Corollary 4.5 and the definition
of semi-T 1

2
spaces.

(2) → (3). Obviously, under the hypothesis, every preclosed set of X
is semi-closed. By Theorem 3.2 in [1], X is strongly irresolvable. Thus, it
suffices to show that X is T 1

2
. By Proposition 4.4, X is Tgs, that is, each

singleton {x} is either preopen or closed. Suppose that {x} is preopen.
Then, by the hypothesis, {x} is semi-open, which implies that {x} is open.

(3) → (1). It follows from Theorem 4.2 directly.

Corollary 4.7. For a space X the following are equivalent:
(1) Every gsp-closed set is sg-closed.
(2) X is Tgs and every gsp-closed set is gs-closed.
(3) X is Tgs and (X, τα) is g-submaximal.

Remark 4.8. One might ask whether every sg-submaximal space has to
be Tgs. This is, however, not the case. The space in our Example 3.6 is
not Tgs and has the property that every preclosed set is gα-closed and thus
gs-closed. Hence, by Theorem 4.2, it is sg-submaximal.
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