On Pre-A-Sets and Pre-V-sets *

Maximilian Ganster, Saeid Jafari and Takashi Noiri

Abstract

In this paper we introduce the notions of a pre- Λ -set and a pre-V-set in a topological space. We study the fundamental properties of pre- Λ -sets and pre-V-sets and investigate the topologies defined by these families of sets.

1 Introduction

In 1986, Maki [11] continued the work of Levine [9] and Dunham [5] on generalized closed sets and closure operators by introducing the notion of a generalized Λ -set in a topological space (X, τ) and by defining an associated closure operator, i.e. the Λ -closure operator. He studied the relationship between the given topology τ and the topology τ^{Λ} generated by the family of generalized Λ -sets. Caldas and Dontchev [3] built on Maki's work by introducing and studying so-called Λ_s -sets and V_s -sets, and also other forms called $g.\Lambda_s$ -sets and $g.V_s$ sets. They were able to use these notions to provide new characterizations of semi- T_1 spaces, semi- R_0 spaces and semi- $T_{1/2}$ spaces.

The purpose of our paper is to continue research along these directions but this time by utilizing preopen sets. We introduce pre- Λ -sets and pre-V-sets in a given topological space and thus obtain new topologies defined by these families of sets. We also consider some of the fundamental properties of these new topologies.

^{*2000} Math. Subject Classification — Primary: 54A05; Secondary: 54D10. Key words and phrases — Pre-A-set, pre-V-set, $T_{1/2}$ space

2 Pre- Λ -Sets and Pre-V-Sets

A subset S of a topological space (X, τ) is said to be preopen [12] (resp. semi-open [10], β -open [1]) if $S \subseteq int(cl S)$ (resp. $S \subseteq cl(int S)$, $S \subseteq cl(int(cl S))$), where int S and cl S denote the interior and the closure of S. The complement of a preopen set is called *preclosed*. The intersection of all preclosed supersets of a subset S is called the *preclosure* of S and is denoted by pcl S. It is well known that a subset S is preclosed if and only if $cl(int S) \subseteq S$, and that pcl $S = S \cup cl(int S)$ for any subset S. We shall denote the families of all preopen sets (resp. preclosed sets) in a space (X, τ) by $PO(X, \tau)$ (resp. $PC(X, \tau)$).

In the following X and Y (or (X, τ) and (Y, σ)) will always denote topological spaces. No separation axioms are assumed unless stated explicitly.

Definition 1 Let S be a subset of a space (X, τ) . We define subsets $\Lambda_p(S)$ and $V_p(S)$ as follows:

 $\Lambda_p(\mathbf{S}) = \bigcap \{ \mathbf{G} : \mathbf{S} \subseteq \mathbf{G} , \mathbf{G} \in \mathrm{PO}(X, \tau) \} \text{ and } V_p(\mathbf{S}) = \bigcup \{ \mathbf{D} : \mathbf{D} \subseteq \mathbf{S} , \mathbf{D} \in \mathrm{PC}(X, \tau) \}.$

Observe that in [8] $\Lambda_p(S)$ is called the *pre-kernel* of S. In our first result we summarize the fundamental properties of the sets $\Lambda_p(S)$ and $V_p(S)$.

Lemma 2.1 For subsets S, Q and S_i , $i \in I$, of a space (X, τ) the following properties hold: (1) $S \subseteq \Lambda_p(S)$,

- (2) $Q \subseteq S$ implies that $\Lambda_p(Q) \subseteq \Lambda_p(S)$, (3) $\Lambda_p(\Lambda_p(S)) = \Lambda_p(S)$, (4) If $S \in PO(X, \tau)$ then $S = \Lambda_p(S)$, (5) $\Lambda_p(\bigcup \{ S_i : i \in I \}) = \bigcup \{ \Lambda_p(S_i) : i \in I \}$, (6) $\Lambda_p(\cap \{ S_i : i \in I \}) \subseteq \cap \{ \Lambda_p(S_i) : i \in I \}$,
- (7) $\Lambda_p(\mathbf{X} \setminus \mathbf{S}) = \mathbf{X} \setminus V_p(\mathbf{S})$.

Proof. (1), (2), (4), (6) and (7) are immediate consequences of Definition 1. To prove (3), first observe that by (1) and (2), we have $\Lambda_p(S) \subseteq \Lambda_p(\Lambda_p(S))$. If $x \notin \Lambda_p(S)$, then there exists $G \in PO(X, \tau)$ such that $S \subseteq G$ and $x \notin G$. Hence $\Lambda_p(S) \subseteq G$, and so we have $x \notin \Lambda_p(\Lambda_p(S))$. Thus $\Lambda_p(\Lambda_p(S)) = \Lambda_p(S)$.

To prove (5), let $S = \bigcup \{ S_i : i \in I \}$. By (2), we have that $\bigcup \{ \Lambda_p(S_i) : i \in I \} \subseteq \Lambda_p(S)$. If $x \notin \bigcup \{ \Lambda_p(S_i) : i \in I \}$, then, for each $i \in I$, there exists $G_i \in PO(X, \tau)$ such that $S_i \subseteq G_i$ and $x \notin G_i$. If $G = \bigcup \{ G_i : i \in I \}$ then $G \in PO(X, \tau)$ with $S \subseteq G$ and $x \notin G$. Hence $x \notin \Lambda_p(S)$, and so (5) holds. \Box

By using Lemma 2.1 (7), one can easily verify our next result.

Lemma 2.2 For subsets S, Q and $S_i, i \in I$, of a space (X, τ) the following properties hold: (1) $V_p(S) \subseteq S$,

- (2) $\mathbf{Q} \subseteq \mathbf{S}$ implies that $V_p(\mathbf{Q}) \subseteq V_p(\mathbf{S})$,
- (3) $V_p(V_p(S)) = V_p(S)$,
- (4) If $S \in PC(X, \tau)$ then $S = V_p(S)$,
- (5) $V_p(\cap \{ S_i : i \in I \}) = \cap \{ V_p(S_i) : i \in I \}$,
- (6) \bigcup { $V_p(S_i) : i \in I$ } \subseteq $V_p(\bigcup$ { $S_i : i \in I$ }).

Note that in general we have $\Lambda_p(S \cap Q) \neq \Lambda_p(S) \cap \Lambda_p(Q)$ as the following example shows.

Example 2.3 Let $X = \{a, b, c\}$ and let $\tau = \{X, \emptyset, \{a\}\}$. If $S = \{b\}$ and $Q = \{c\}$, then $\Lambda_p(S \cap Q) = \emptyset$ but $\Lambda_p(S) \cap \Lambda_p(Q) = \{a\}$.

Definition 2 A subset S of a space (X, τ) is called

(1) a pre- Λ -set (resp. a pre-V-set) if $S = \Lambda_p(S)$ (resp. $V = V_p(S)$).

(2) a Λ -set (resp. a V-set) if $S = S^{\Lambda}$ (resp. $S = S^{V}$) [11], where

 $S^{\Lambda}= \bigcap\{ \ \mathcal{O}:\mathcal{S}\subseteq\mathcal{O} \ , \ \mathcal{O}\in\tau\} \ \text{and} \ S^{V}= \bigcup\{ \ \mathcal{F}:\mathcal{F}\subseteq\mathcal{S} \ , \ X\setminus F\in\tau\}$.

(3) a Λ_s -set (resp. a V_s -set) if $S = S^{\Lambda_s}$ (resp. $S = S^{V_s}$) [3], where

 $S^{\Lambda_s} = \bigcap \{ \mathbf{O} : \mathbf{S} \subseteq \mathbf{O} \ , \ \mathbf{O} \in SO(X,\tau) \} \text{ and } S^V = \bigcup \{ \mathbf{F} : \mathbf{F} \subseteq \mathbf{S} \ , \ X \setminus F \in SO(X,\tau) \} \ .$

Clearly, a subset S is a pre- Λ -set (resp. a pre-V-set) if and only if it is an intersection (resp. a union) of preopen (resp. preclosed) sets. A subset S is a Λ -set (resp. a V-set) if and only if it is an intersection (resp. a union) of open (resp. closed) sets. A subset S is a Λ_s -set (resp. a V_s -set) if and only if it is an intersection (resp. a union) of semi-open (resp. semi-closed) sets. Hence Λ -sets and preopen sets are pre- Λ -sets, and V-sets and preclosed sets are pre-V-sets.

Observe also, that a subset S is a pre- Λ -set if and only if $X \setminus S$ is a pre-V-set.

Proposition 2.4 For a space (X, τ) the following statements hold:

- (1) \emptyset and X are pre- Λ -sets and pre-V-sets.
- (2) Every union of pre- Λ -sets (resp. pre-V-sets) is a pre- Λ -set (resp. pre-V-set).
- (3) Every intersection of pre- Λ -sets (resp. pre-V-sets) is a pre- Λ -set (resp. pre-V-set).

Proof. We shall only consider the case of pre- Λ -sets. (1) and (3) are obvious. Let $\{S_i : i \in I\}$ be a family of pre- Λ -sets in (X, τ) . If $S = \bigcup \{S_i : i \in I\}$, then by Lemma 2.1 we have $S = \bigcup \{\Lambda_p(S_i) : i \in I\} = \Lambda_p(S)$. \Box

Remark 2.5 Let τ^{Λ_p} (resp. τ^{V_p}) denote the family of all pre- Λ -sets (resp. pre-V-sets) in (X, τ) . Then τ^{Λ_p} (resp. τ^{V_p}) is a topology on X containing all preopen (resp. preclosed) sets. Clearly, (X, τ^{Λ_p}) and (X, τ^{V_p}) are Alexandroff spaces [2], i.e. arbitrary intersections of open sets are open.

Recall that a space (X, τ) is said to be *pre-T*₁ [14] if for each pair of distinct points x and y of X there exists a preopen set containing x but not y. Clearly a space (X, τ) is pre-T₁ if and only if singletons are preclosed. We now offer additional characterizations of pre-T₁ spaces.

Theorem 2.6 For a space (X, τ) the following are equivalent:

- (1) (X, τ) is pre- T_1 ,
- (2) Every subset of X is a pre- Λ -set,
- (3) Every subset of X is a pre-V-set,
- (4) Every semi-open subset of X is a pre-V-set.

Proof. Clearly $(2) \Leftrightarrow (3)$.

(1) \Rightarrow (3): Let $A\subseteq X$. Since $A=\bigcup\{\{x\}:x\in A\}$, A is a union of preclosed sets, hence a pre-V-set.

 $(3) \Rightarrow (4)$: This is obvious.

 $(4) \Rightarrow (1)$: First observe that every singleton is open or preclosed. Let $x \in X$. If $\{x\}$ is open, then by assumption, $\{x\}$ is a pre-V-set and so preclosed. Hence each singleton is preclosed, i.e. (X, τ) is pre- T_1 . \Box

3 Generalized pre- Λ -sets

Following the lines of investigation of Maki in [11] one could now define generalized pre- Λ -sets and generalized pre-V-sets in the following way.

Definition 3 A subset S of a space (X, τ) is called

(i) a generalized pre- Λ -set, briefly g- Λ_p -set, if $\Lambda_p(S) \subseteq P$ whenever $S \subseteq P$ and $P \in PC(X, \tau)$,

(ii) a generalized pre-V-set, briefly g- V_p -set, if $V \subseteq V_p(S)$ whenever $V \subseteq S$ and $V \in PO(X, \tau)$.

We shall see, however, that we obtain nothing new.

Proposition 3.1 Let S be a subset of a space (X, τ) .

(i) S is a generalized pre- Λ -set if and only if S is a pre- Λ -set,

(ii) S is a generalized pre-V-set if and only if S is a pre-V-set.

Proof. (i) Clearly, every pre- Λ -set is a generalized pre- Λ -set. Now let S be a generalized pre- Λ -set. Suppose there exists $x \in \Lambda_p(S) \setminus S$. Observe that $\{x\}$ is open or preclosed, and that $S \subseteq X \setminus \{x\}$. If $\{x\}$ is open, then $X \setminus \{x\}$ is closed, hence preclosed, and so $\Lambda_p(S) \subseteq X \setminus \{x\}$, a contradiction. If $\{x\}$ is preclosed, then $X \setminus \{x\}$ is preopen and so $\Lambda_p(S) \subseteq X \setminus \{x\}$, a contradiction. Hence S is a pre- Λ -set.

(ii) This is proved in a similar way. \Box

4 Properties of pre- Λ -Sets and pre-V-Sets

Recall that a subset A of a space (X, τ) is said to be generalized closed, briefly g-closed [9], if cl $A \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$. A space (X, τ) is said to be a $T_{1/2}$ space if every g-closed subset of X is closed. Dunham [6] pointed out that a space (X, τ) is $T_{1/2}$ if and only if each singleton is open or closed.

Proposition 4.1 Let (X, τ) be a space.

- (1) (X, τ^{Λ_p}) and (X, τ^{V_p}) are always $T_{1/2}$ spaces,
- (2) If (X, τ) is pre- T_1 , then both (X, τ^{Λ_p}) and (X, τ^{V_p}) are discrete spaces,
- (3) The identity function $id: (X, \tau^{\Lambda_p}) \to (X, \tau)$ is continuous,

(4) The identity function $id : (X, \tau^{V_p}) \to (X, \tau)$ is contra-continuous [4], i.e. inverse images of open sets are closed.

Proof. (1): Let $x \in X$. Then $\{x\}$ is open or preclosed in (X, τ) . If $\{x\}$ is open, thus preopen, then $\{x\} \in \tau^{\Lambda_p}$. If $\{x\}$ is preclosed in (X, τ) , then $X \setminus \{x\}$ is preopen and so $X \setminus \{x\} \in \tau^{\Lambda_p}$, i.e. $\{x\}$ is closed in (X, τ^{Λ_p}) . Hence (X, τ^{Λ_p}) and (X, τ^{V_p}) are $T_{1/2}$ spaces.

- (2): This follows from Theorem 2.6.
- (3) and (4) are obvious. \Box

Recall that a space (X, τ) is called *resolvable* if it has two disjoint dense subsets.

Corollary 4.2 If (X, τ) is resolvable, then (X, τ^{Λ_p}) and (X, τ^{V_p}) are discrete.

Proof. We will show that (X, τ) is pre- T_1 . Let D and E be disjoint dense subsets of (X, τ) , and let $x \in X$, wlog $x \in D$. Then $X \setminus \{x\} = E \cup (D \setminus \{x\})$ is dense, hence preopen, and so $\{x\}$ is preclosed. \Box

Proposition 4.3 If (X, τ^{Λ_p}) is connected, then (X, τ) is preconnected, i.e. X cannot be represented as a disjoint union of nonempty preopen subsets of (X, τ) .

Proof. Suppose that (X, τ) is not preconnected. Hence there exist nonempty disjoint preopen sets S, T in (X, τ) such that $S \cup T = X$. Since S and T are open in (X, τ^{Λ_p}) , we have a contradiction.

Observe also that (X, τ^{Λ_p}) is connected if and only if (X, τ^{V_p}) is connected. \Box

Proposition 4.1 points out that for many spaces (X, τ) , τ^{Λ_p} is the discrete topology. In our final result we provide an example of an infinite space (X, τ) such that (X, τ^{V_p}) (and thus (X, τ^{Λ_p})) is not discrete.

Let (X, τ) be a space having a point x_0 such that $\{x_0\}$ is open and dense. Let $S = \{x_0\}$. Clearly, the only preclosed set containing S is X. Hence, if $x_0 \in O$ with $O \in \tau^{V_p}$, then O = X. This shows that (X, τ^{V_p}) is a compact and connected space, and thus cannot be discrete.

Example 4.4 Let $X = \mathbf{N}$, i.e. the set of natural numbers, and let $\tau = \{\emptyset\} \cup \{\{1, 2, ..., n\} : n \in \mathbf{N}\}$. Then $\{1\}$ is open and dense in (X, τ) , hence (X, τ^{V_p}) is an infinite, compact and connected space. Observe also that for $n \neq 1$, $\{n\}$ is preclosed in (X, τ) and so $\{n\} \in \tau^{V_p}$. Now let $V \in PO(X, \tau^{V_p})$ with $1 \in V$. By a result of Ganster [7], $V = O \cap D$ where $O \in \tau^{V_p}$ and D is dense in (X, τ^{V_p}) . From our previous observations it follows that O = X. Since $\{n\} \in \tau^{V_p}$ for $n \neq 1$, we also have D = X and thus V = X. This shows that (X, τ^{Λ_p}) is also strongly compact [13], i.e. every preopen cover has a finite subcover.

References

- M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [2] P. Alexandroff, Diskrete Räume, Mat. Sb. 2 (1937), 501–508.
- [3] M. Caldas and J. Dontchev, $G.\Lambda_s$ -sets and $G.V_s$ -sets, Mem. Fac. Sci. Kochi Univ. (Math.) **21** (2000), 21–30.
- [4] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. & Math. Sci. 19 (1996), 303–310.
- [5] W. Dunham, A new closure operator for non- T_1 topologies, Kyungpook Math. J. 22 (1982), 55–60.

- [6] W. Dunham, $T_{1/2}$ spaces, Kyungpook Math. J. 17 (1977), 161–169.
- [7] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J. 27 (1987), 135– 143.
- [8] S. Jafari and T. Noiri, Contra-strongly M-precontinuous functions, (under preparation).
- [9] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo* **19** (1970), 89–96.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [11] H. Maki, Generalized Λ-sets and the associated closure operator, Special Issue in Commemoration of Prof. Kazusada Ikeda's Retirement 1. Oct (1986), 139–146.
- [12] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [13] A.S. Mashhour, M.E. Abd El-Monsef, I.A. Hasanein and T. Noiri, Strongly compact spaces, *Delta J. Sci* 8 (1984), 30–46.
- [14] T.M. Nour, Contributions to the theory of bitopological spaces, Ph.D. Thesis , Delhi Univ. (1989).

Adresses :

Department of Mathematics A, Graz University of Technology, Steyrergasse 30, A-8010 Graz, AUSTRIA.

Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, DENMARK.

Yatsushiro College of Technology, 2627 Hirayama shinmachi, Yatsushiro-shi, Kumamoto-ken, 866 JAPAN