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Abstract

In this paper we introduce the notions of a pre-Λ-set and a pre-V-set in a topo-
logical space. We study the fundamental properties of pre-Λ-sets and pre-V-sets and
investigate the topologies defined by these families of sets.

1 Introduction

In 1986, Maki [11] continued the work of Levine [9] and Dunham [5] on generalized closed

sets and closure operators by introducing the notion of a generalized Λ-set in a topological

space (X, τ) and by defining an associated closure operator, i.e. the Λ-closure operator. He

studied the relationship between the given topology τ and the topology τΛ generated by the

family of generalized Λ-sets. Caldas and Dontchev [3] built on Maki’s work by introducing

and studying so-called Λs-sets and Vs-sets, and also other forms called g.Λs-sets and g.Vs-

sets. They were able to use these notions to provide new characterizations of semi-T1 spaces,

semi-R0 spaces and semi-T1/2 spaces.

The purpose of our paper is to continue research along these directions but this time by

utilizing preopen sets. We introduce pre-Λ-sets and pre-V-sets in a given topological space

and thus obtain new topologies defined by these families of sets. We also consider some of

the fundamental properties of these new topologies.
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2 Pre-Λ-Sets and Pre-V-Sets

A subset S of a topological space (X, τ) is said to be preopen [12] (resp. semi-open [10],

β-open [1]) if S ⊆ int(cl S) (resp. S ⊆ cl(int S) , S ⊆ cl(int(cl S)) ), where int S and cl S

denote the interior and the closure of S. The complement of a preopen set is called preclosed.

The intersection of all preclosed supersets of a subset S is called the preclosure of S and is

denoted by pcl S. It is well known that a subset S is preclosed if and only if cl(int S) ⊆ S ,

and that pcl S = S ∪ cl(int S) for any subset S. We shall denote the families of all preopen

sets (resp. preclosed sets) in a space (X, τ) by PO(X, τ) (resp. PC(X, τ)).

In the following X and Y (or (X, τ) and (Y, σ)) will always denote topological spaces.

No separation axioms are assumed unless stated explicitly.

Definition 1 Let S be a subset of a space (X, τ). We define subsets Λp(S) and Vp(S) as

follows:

Λp(S) =
⋂{ G : S ⊆ G , G ∈ PO(X, τ)} and

Vp(S) =
⋃{ D : D ⊆ S , D ∈ PC(X, τ)} .

Observe that in [8] Λp(S) is called the pre-kernel of S. In our first result we summarize

the fundamental properties of the sets Λp(S) and Vp(S).

Lemma 2.1 For subsets S, Q and Si , i ∈ I, of a space (X, τ) the following properties hold:

(1) S ⊆ Λp(S) ,

(2) Q ⊆ S implies that Λp(Q) ⊆ Λp(S) ,

(3) Λp( Λp(S) ) = Λp(S) ,

(4) If S ∈ PO(X, τ) then S = Λp(S) ,

(5) Λp(
⋃{ Si : i ∈ I} ) =

⋃{ Λp(Si) : i ∈ I} ,

(6) Λp(
⋂{ Si : i ∈ I} ) ⊆ ⋂{ Λp(Si) : i ∈ I} ,

(7) Λp(X \ S) = X \ Vp(S) .
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Proof. (1), (2), (4), (6) and (7) are immediate consequences of Definition 1. To prove

(3), first observe that by (1) and (2), we have Λp(S) ⊆ Λp( Λp(S) ) . If x /∈ Λp(S) , then

there exists G ∈ PO(X, τ) such that S ⊆ G and x /∈ G . Hence Λp(S) ⊆ G ,and so we have

x /∈ Λp( Λp(S) ) . Thus Λp( Λp(S) ) = Λp(S) .

To prove (5), let S =
⋃{ Si : i ∈ I} . By (2), we have that

⋃{ Λp(Si) : i ∈ I} ⊆ Λp(S) .

If x /∈ ⋃{ Λp(Si) : i ∈ I}, then, for each i ∈ I, there exists Gi ∈ PO(X, τ) such that Si ⊆ Gi

and x /∈ Gi . If G =
⋃{ Gi : i ∈ I} then G ∈ PO(X, τ) with S ⊆ G and x /∈ G. Hence

x /∈ Λp(S), and so (5) holds. 2

By using Lemma 2.1 (7), one can easily verify our next result.

Lemma 2.2 For subsets S, Q and Si , i ∈ I, of a space (X, τ) the following properties hold:

(1) Vp(S) ⊆ S ,

(2) Q ⊆ S implies that Vp(Q) ⊆ Vp(S) ,

(3) Vp( Vp(S) ) = Vp(S) ,

(4) If S ∈ PC(X, τ) then S = Vp(S) ,

(5) Vp(
⋂{ Si : i ∈ I} ) =

⋂{ Vp(Si) : i ∈ I} ,

(6)
⋃{ Vp(Si) : i ∈ I} ⊆ Vp(

⋃{ Si : i ∈ I} ) .

Note that in general we have Λp(S∩Q) 6= Λp(S) ∩ Λp(Q) as the following example shows.

Example 2.3 Let X = {a, b, c} and let τ = {X, ∅, {a}}. If S = {b} and Q = {c}, then

Λp(S ∩Q) = ∅ but Λp(S) ∩ Λp(Q) = {a} .

Definition 2 A subset S of a space (X, τ) is called

(1) a pre-Λ-set (resp. a pre-V-set) if S = Λp(S) (resp. V = Vp(S)).

(2) a Λ-set (resp. a V-set) if S = SΛ (resp. S = SV ) [11], where

SΛ =
⋂{ O : S ⊆ O , O ∈ τ} and SV =

⋃{ F : F ⊆ S , X \ F ∈ τ} .

(3) a Λs-set (resp. a Vs-set) if S = SΛs (resp. S = SVs) [3], where

SΛs =
⋂{ O : S ⊆ O , O ∈ SO(X, τ)} and SV =

⋃{ F : F ⊆ S , X \ F ∈ SO(X, τ)} .
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Clearly, a subset S is a pre-Λ-set (resp. a pre-V-set) if and only if it is an intersection

(resp. a union) of preopen (resp. preclosed) sets. A subset S is a Λ-set (resp. a V-set) if

and only if it is an intersection (resp. a union) of open (resp. closed) sets. A subset S is a

Λs-set (resp. a Vs-set) if and only if it is an intersection (resp. a union) of semi-open (resp.

semi-closed) sets. Hence Λ-sets and preopen sets are pre-Λ-sets, and V-sets and preclosed

sets are pre-V-sets.

Observe also, that a subset S is a pre-Λ-set if and only if X \ S is a a pre-V-set.

Proposition 2.4 For a space (X, τ) the following statements hold:

(1) ∅ and X are pre-Λ-sets and pre-V-sets.

(2) Every union of pre-Λ-sets (resp. pre-V-sets) is a pre-Λ-set (resp. pre-V-set).

(3) Every intersection of pre-Λ-sets (resp. pre-V-sets) is a pre-Λ-set (resp. pre-V-set).

Proof. We shall only consider the case of pre-Λ-sets. (1) and (3) are obvious. Let {Si

: i ∈ I} be a family of pre-Λ-sets in (X, τ). If S =
⋃{ Si : i ∈ I}, then by Lemma 2.1 we

have S =
⋃{ Λp(Si) : i ∈ I} = Λp(S). 2

Remark 2.5 Let τΛp (resp. τVp) denote the family of all pre-Λ-sets (resp. pre-V-sets) in

(X, τ). Then τΛp (resp. τVp) is a topology on X containing all preopen (resp. preclosed)

sets. Clearly, (X, τΛp) and (X, τVp) are Alexandroff spaces [2], i.e. arbitrary intersections of

open sets are open.

Recall that a space (X, τ) is said to be pre-T1 [14] if for each pair of distinct points x and

y of X there exists a preopen set containing x but not y . Clearly a space (X, τ) is pre-T1

if and only if singletons are preclosed. We now offer additional characterizations of pre-T1

spaces.

Theorem 2.6 For a space (X, τ) the following are equivalent:

(1) (X, τ) is pre-T1,

(2) Every subset of X is a pre-Λ-set,

(3) Every subset of X is a pre-V-set,

(4) Every semi-open subset of X is a pre-V-set.
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Proof. Clearly (2) ⇔ (3) .

(1) ⇒ (3): Let A ⊆ X . Since A =
⋃{{x} : x ∈ A} , A is a union of preclosed sets, hence

a pre-V-set.

(3) ⇒ (4): This is obvious.

(4) ⇒ (1): First observe that every singleton is open or preclosed. Let x ∈ X. If {x}
is open, then by assumption, {x} is a pre-V-set and so preclosed. Hence each singleton is

preclosed, i.e. (X, τ) is pre-T1. 2

3 Generalized pre-Λ-sets

Following the lines of investigation of Maki in [11] one could now define generalized pre-Λ-sets

and generalized pre-V-sets in the following way.

Definition 3 A subset S of a space (X, τ) is called

(i) a generalized pre-Λ-set, briefly g-Λp-set, if Λp(S) ⊆ P whenever S ⊆ P and P ∈
PC(X, τ) ,

(ii) a generalized pre-V-set, briefly g-Vp-set, if V ⊆ Vp(S) whenever V ⊆ S and V ∈
PO(X, τ).

We shall see, however, that we obtain nothing new.

Proposition 3.1 Let S be a subset of a space (X, τ).

(i) S is a generalized pre-Λ-set if and only if S is a pre-Λ-set,

(ii) S is a generalized pre-V-set if and only if S is a pre-V-set.

Proof. (i) Clearly, every pre-Λ-set is a generalized pre-Λ-set. Now let S be a generalized

pre-Λ-set. Suppose there exists x ∈ Λp(S) \ S. Observe that {x} is open or preclosed,

and that S ⊆ X \ {x}. If {x} is open, then X \ {x} is closed, hence preclosed, and so

Λp(S) ⊆ X \ {x}, a contradiction. If {x} is preclosed, then X \ {x} is preopen and so

Λp(S) ⊆ X \ {x}, a contradiction. Hence S is a pre-Λ-set.

(ii) This is proved in a similar way. 2
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4 Properties of pre-Λ-Sets and pre-V-Sets

Recall that a subset A of a space (X, τ) is said to be generalized closed, briefly g-closed [9],

if cl A ⊆ U whenever A ⊆ U and U ∈ τ . A space (X, τ) is said to be a T1/2 space if every

g-closed subset of X is closed. Dunham [6] pointed out that a space (X, τ) is T1/2 if and

only if each singleton is open or closed.

Proposition 4.1 Let (X, τ) be a space.

(1) (X, τΛp) and (X, τVp) are always T1/2 spaces,

(2) If (X, τ) is pre-T1, then both (X, τΛp) and (X, τVp) are discrete spaces,

(3) The identity function id : (X, τΛp) → (X, τ) is continuous,

(4) The identity function id : (X, τVp) → (X, τ) is contra-continuous [4], i.e. inverse

images of open sets are closed.

Proof. (1): Let x ∈ X. Then {x} is open or preclosed in (X, τ). If {x} is open, thus

preopen, then {x} ∈ τΛp . If {x} is preclosed in (X, τ), then X \ {x} is preopen and so

X \ {x} ∈ τΛp , i.e. {x} is closed in (X, τΛp). Hence (X, τΛp) and (X, τVp) are T1/2 spaces.

(2): This follows from Theorem 2.6.

(3) and (4) are obvious. 2

Recall that a space (X, τ) is called resolvable if it has two disjoint dense subsets.

Corollary 4.2 If (X, τ) is resolvable, then (X, τΛp) and (X, τVp) are discrete.

Proof. We will show that (X, τ) is pre-T1. Let D and E be disjoint dense subsets of

(X, τ), and let x ∈ X, wlog x ∈ D. Then X \ {x} = E ∪ (D \ {x}) is dense, hence preopen,

and so {x} is preclosed. 2

Proposition 4.3 If (X, τΛp) is connected, then (X, τ) is preconnected, i.e. X cannot be

represented as a disjoint union of nonempty preopen subsets of (X, τ).
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Proof. Suppose that (X, τ) is not preconnected. Hence there exist nonempty disjoint

preopen sets S, T in (X, τ) such that S ∪ T = X. Since S and T are open in (X, τΛp), we

have a contradiction.

Observe also that (X, τΛp) is connected if and only if (X, τVp) is connected. 2

Proposition 4.1 points out that for many spaces (X, τ), τΛp is the discrete topology. In

our final result we provide an example of an infinite space (X, τ) such that (X, τVp) (and

thus (X, τΛp)) is not discrete.

Let (X, τ) be a space having a point x0 such that {x0} is open and dense. Let S = {x0}.
Clearly, the only preclosed set containing S is X. Hence, if x0 ∈ O with O ∈ τVp , then

O = X. This shows that (X, τVp) is a compact and connected space, and thus cannot be

discrete.

Example 4.4 Let X = N, i.e. the set of natural numbers, and let τ = {∅}∪ {{1, 2, ...., n} :

n ∈ N}. Then {1} is open and dense in (X, τ), hence (X, τVp) is an infinite, compact and

connected space. Observe also that for n 6= 1, {n} is preclosed in (X, τ) and so {n} ∈ τVp .

Now let V ∈ PO(X, τVp) with 1 ∈ V . By a result of Ganster [7], V = O ∩D where O ∈ τVp

and D is dense in (X, τVp). From our previous observations it follows that O = X. Since

{n} ∈ τVp for n 6= 1, we also have D = X and thus V = X. This shows that (X, τΛp) is also

strongly compact [13], i.e. every preopen cover has a finite subcover.
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