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Abstract
In this paper we present an overview of our research in the field of generalized closed

sets (in the sense of N. Levine). We will demonstrate that certain key concepts play a
decisive role in the study of the various generalizations of closed sets.

1 Introduction and Preliminaries

In recent years there has been considerable interest in the study of generalized closed sets in

the sense of N. Levine, and their relationships to other classes of sets such as α-open sets,

semi-open sets and preopen sets. This investigation has led to significant contributions to

the theories of separation axioms, covering properties and generalizations of continuity. In

this paper we shall give an overview of our approach to these topics, thereby demonstrating

that certain key notions seem to play a fundamental role in the overall discussion.

For the convenience of the reader we first review some basic concepts, although most

of them are very well known from the literature. A subset S of a topological space (X, τ)

is called α–open (semi–open, preopen, semi–preopen) if S ⊆ int(cl(intS)) (S ⊆ cl(intS),

S ⊆ int(clS), S ⊆ cl(int(clS)). Moreover, S is said to be α–closed (semiclosed, preclosed,

semi–preclosed) if X \ S is α–open (semi–open, preopen, semi–preopen) or, equivalently, if

cl(int(clS)) ⊆ S (int(clS) ⊆ S, cl(intS) ⊆ S, int(cl(intS)) ⊆ S). The α-closure (semi–

closure, preclosure, semi–preclosure) of S ⊆ X is the smallest α–closed (semiclosed, pre-

closed, semi–preclosed) set containing S. It is well known that α–clS = S ∪ cl(int(clS)) and
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sclS = S ∪ int(clS), pclS = S ∪ cl(intS) and spclS = S ∪ int(cl(intS)). Njastad [25] has

shown that the collection of α–open sets of a space (X, τ) is a topology τα on X. Moreover,

if SO(X, τ) denotes the collection of all semi-open sets of (X, τ), then SO(X, τ) is a topology

if and only if (X, τ) is extremally disconnected, i.e. the closure of every open set is open. In

this case, SO(X, τ) = τα (see [25]).

Recall that a space (X, τ) is called resolvable if there exists a pair of disjoint dense subsets.

Otherwise it is called irresolvable. (X, τ) is said to be strongly irresolvable if every open

subspace is irresolvable. Hewitt [17] has shown that every space (X, τ) has a decomposition

X = F ∪G, where F is closed and resolvable and G is open and hereditarily irresolvable. We

shall call this decomposition the Hewitt decomposition of (X, τ). There is another important

decomposition of a space which we shall call the Jankovic–Reilly decomposition. Since every

singleton {x} of a space (X, τ) is either nowhere dense or preopen (see [18]), we clearly have

X = X1 ∪ X2, where X1 = {x ∈ X : {x} is nowhere dense } and X2 = {x ∈ X : {x} is

preopen }.

Remark 1.1. Throughout this paper, F resp. G will always refer to the Hewitt decompo-

sition, and X1 resp. X2 always to the Jankovic-Reilly decomposition.

In 1970, N. Levine [19] called a subset A of a space (X, τ) generalized closed, shortly

g–closed, if clA ⊆ O whenever A ⊆ O and O is open. Complements of g–closed sets are

called g–open. It is obvious that every closed set is g–closed but not vice versa. A space

(X, τ) is called T1/2 [19] if every g–closed set is closed, or equivalently, if every singleton is

either open or closed [15].

Definition 1. A subset A of a space (X, τ) is called

(1) α–generalized closed (briefly, αg–closed) [20] if α–clA ⊆ U whenever A ⊆ U and U

is open,

(2) generalized α–closed (briefly, gα–closed) [21], if α–clA ⊆ U whenever A ⊆ U and U

is α–open,

(3) generalized semiclosed (briefly, gs–closed) [1] if sclA ⊆ U whenever A ⊆ U and U is

open,
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(4) semi–generalized closed (briefly, sg–closed) [2], if sclA ⊆ U whenever A ⊆ U and U

is semi–open,

(5) generalized semi–preclosed (briefly, gsp–closed) [13] if spclA ⊆ U whenever A ⊆ U

and U is open.

(6) regular generalized closed (briefly, r-g–closed) [26] if clA ⊆ U whenever A ⊆ U and U

is regular open.

In [14], J. Dontchev summarized the relationships between these notions in a beautiful

diagram. He also pointed out that none of the implications can be reversed.
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2 Results

Our starting point in the investigation of generalized closed sets were two open questions

that Dontchev posed in [14], namely :

Characterize those spaces where

(A) Every semi–preclosed set is sg–closed, and

(B) Every preclosed set is gα–closed.

These questions have been solved by Cao, Ganster and Reilly in [4]. To our surprise,

both decompositions mentioned before, i.e. the Hewitt decomposition and the Jankovic–

Reilly decomposition, played a key role in our solution to these questions. Further studies
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have shown that these decompositons are important in many more questions concerning

generalized closed sets.

Recall that a space (X, τ) is called submaximal (resp. g–submaximal) if every dense subset

is open (resp. g–open). (X, τ) is said to be locally indiscrete if every open subset is closed.

Theorem 2.1. [4]

For a space (X, τ) the following are equivalent:

(1) (X, τ) satisfies (A),

(2) X1 ∩ sclA ⊆ spclA for each A ⊆ X,

(3) X1 ⊆ int(clG),

(4) (X, τ) is the topological sum of a locally indiscrete space and a strongly irresolvable

space,

(5) (X, τ) satisfies (B),

(6) (X, τα) is g-submaximal.

This result motivated us to look for other possible converses in Dontchev’s diagram. Out

of the many results we obtained we shall present here two key results.

Theorem 2.2. [5]

For a space (X, τ) the following are equivalent:

(1) every semi–preclosed set is gα–closed,

(2) (X, τα) is extremally disconnected and g–submaximal.

Theorem 2.3. [5]

For a space (X, τ) the following are equivalent:

(1) X1 ⊆ clG ,

(2) every preclosed subset is sg–closed,

(3) (X, τ) is sg–submaximal,

(4) (X, τα) is sg–submaximal,

Corollary 2.4. If (X, τα) is g–submaximal then (X, τα) is also sg–submaximal. The con-

verse, however, is false (see [5]).
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3 Lower Separation Axioms

We already mentioned that the closer investigation of generalized closed sets had great

impact on the theory of separation axioms. If we again have a look at Dontchev’s diagram,

the search for converses of other implications leads to the consideration of certain lower

separation axioms.

Recall that Maki et al. [22] have called a space (X, τ) a Tgs space if every gs–closed

subset is sg–closed. We have been able to characterize Tgs spaces in the following way.

Theorem 3.1. [6]

For a space (X, τ), the following are equivalent:

(1) (X, τ) is a Tgs space,

(2) every nowhere dense subset of (X, τ) is a union of closed subsets, i.e. (X, τ) is T ∗
1

[16],

(3) every gsp–closed set is semi–preclosed, i.e. (X, τ) is semi–pre–T1/2 [13],

(4) every singleton of (X, τ) is either preopen or closed.

A space (X, τ) is called semi-T1 [23] if each singleton is semi–closed, it is called semi-T1/2

[2] if every singleton is either semi-closed or semi-open. Let τs denote the semi-regularization

topology of a space (X, τ). The closure of a subset A ⊆ X with respect to τs will be denoted

by δ − clA. A subset A of X is called δ–generalized closed if δ − clA ⊆ U when A ⊆ U and

U is open in (X, τ). Moreover, (X, τ) is called a T3/4–space [12] if every δ-generalized closed

subset of (X, τ) is closed in (X, τs). The well-known digital line, also called the Khalimsky

line, is a T3/4-space which fails to be T1.

We now have the following result.

Theorem 3.2. For every space (X, τ),

(1) T3/4 = Tgs + semi-T1 [12],

(2) T1/2 = Tgs + semi-T1/2 [22],

(3) Tgs = every αg–closed set is gα–closed,

(4) Tgs + extremally disconnected = every gs–closed set is preclosed.
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Corollary 3.3. In a Tgs space, every g–closed set is gα–closed.

This has led to the natural question of characterizing those spaces where every gα–closed

set is g–closed.

Theorem 3.4. [6]

For a space (X, τ) the following are equivalent:

(1) Every gα–closed set is g–closed,

(2) every nowhere dense subset is locally indiscrete as a subspace,

(3) every nowhere dense subset is g–closed,

(4) every α–closed set is g–closed.

Observe, however, that there exist spaces in which every nowhere dense subset is g–closed

but there exists a nowhere dense set which is not closed (see [6]).

4 Gp–closed Sets

Definition 2. A subset A of a space (X, τ) is called generalized preclosed , briefly gp–closed ,

[24] if pclA ⊆ U whenever A ⊆ U and U is open.

Our study of generalized preclosed sets has been carried out to a great detail in [7]. As

one might expect, here also the Hewitt decomposition, the Jankovic–Reilly decomposition,

submaximality and extremal disconnectedness play a significant role. Out of the many results

that we obtained we mention here two important characterizations.

Theorem 4.1. [7]

For a space (X, τ) the following are equivalent :

(1) (X, τ) is a Tgs-space,

(2) Every gp–closed subset of (X, τ) is preclosed,

(3) Every gsp–closed subset of (X, τ) is semi–preclosed,

(4) Every gp–closed subset of (X, τ) is semi–preclosed.
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Theorem 4.2. [7]

For a space (X, τ) the following are equivalent :

(1) Every gsp–closed subset of (X, τ) is gp–closed,

(2) Every semi–preclosed subset of (X, τ) is gp–closed,

(3) (X, τ) is extremally disconnected.

5 Sg–compact Spaces

Definition 3. A topological space (X, τ) is called sg–compact if every cover by sg–open sets

has a finite subcover.

The class of sg–compact spaces has been introduced by Caldas [3], Devi, Balachandran

and Maki [9] and Tapi, Thakur and Sonwalkar [27]. Sg–compact spaces are quite interesting

because sg–openness seems to be the weakest form of generalized openness for which there

exists a nontrivial corresponding notion of compactness. For example, the cofinite topology

on any infinite set yields a sg–compact space. Clearly, every sg–compact space is semi–

compact and thus hereditarily compact.

Dontchev and Ganster [10] called a subset A of a space (X, τ) hereditarily sg–closed,

briefly hsg–closed, if every subset is A is sg–closed. A space (X, τ) is said to be a C3space

[10] if every hsg–closed set is finite. It is easily observed that every nowhere dense set is

hsg–closed. Moreover, A ⊆ X is hsg–closed if and only if X1 ∩ int(clA) = ∅ [10].

Theorem 5.1. [10]

For a space (X, τ) the following are equivalent :

(1)(X, τ) is sg–compact,

(2) (X, τ) is a C3 space.

The question concerning products of sg–compact spaces is rather tricky. It has been

shown in [11] that there exists a space (X, τ) which is sg–compact but X × X fails to be

sg–compact. In addition, the following result holds.
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Theorem 5.2. [11]

(1) If X =
∏{Xi : i ∈ I} is sg–compact then only finitely many Xi are not indiscrete,

(2) Suppose that X =
∏{Xi : i ∈ I} is sg–compact. Then : either all Xi are finite, or

exactly one of them is infinite and sg–compact and the rest are finite and locally indiscrete.

6 Concluding Remark

We want to draw the attention of the reader to a forthcoming paper of Cao, Greenwood and

Reilly [8] where all the various notions of generalized closedness considered in the literature

so far have been brought under a common framework.
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