
δ-closure, θ-closure and generalized closed sets ∗

J. Cao, M. Ganster, I. Reilly and M. Steiner

Abstract

We study some new classes of generalized closed sets (in the sense of N. Levine) in
a topological space via the associated δ-closure and θ-closure. The relationships among
these new classes and existing classes of generalized closed sets are investigated. In the
last section we provide an extensive and more or less complete survey on separation
axioms characterized via singletons.

1 Introduction and Preliminaries

Let (X, τ) be a topological space. Recall that a point x ∈ X is said to be in the δ-closure

(resp. θ-closure) of a subset A ⊆ X (see [15]) if for each open neighbourhood U of x we have

int(cl(U))∩A 6= ∅ (resp. cl(U)∩A 6= ∅) . We shall denote the δ-closure (resp. θ-closure) of

A by clδ(A) (resp. clθ(A)). A subset A ⊆ X is called δ-closed (resp. θ-closed) if A = clδ(A)

(resp. A = clθ(A)). The complement of a δ-closed (resp. θ-closed) set is called δ-open (resp.

θ-open). It is very well known that the families of all δ-open (resp. θ-open) subsets of (X, τ)

are topologies on X which we shall denote by τδ (resp. τθ). From the definitions it follows

immediately that τθ ⊆ τδ ⊆ τ . The space (X, τδ) is also called the semi-regularization of

(X, τ) . A space (X, τ) is said to be semi-regular if τδ = τ . (X, τ) is regular if and only if

τθ = τ . It should be noted that clδ(A) is the closure of A with respect to (X, τδ). In general,

clθ(A) will not be the closure of A with respect to (X, τθ). It is easily seen that one always

has A ⊆ cl(A) ⊆ clδ(A) ⊆ clθ(A) ⊆ A
θ

where A
θ

denotes the closure of A with respect to

(X, τθ).
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Definition 1 A subset A of a space (X, τ) is called

(i) α-closed if cl(int(cl(A))) ⊆ A ,

(ii) α-open if X \ A is α-closed, or equivalently, if A ⊆ int(cl(int(A))) ,

(iii) semi-closed if int(cl(A)) ⊆ A ,

(iv) semi-open if X \ A is semi-closed, or equivalently, if A ⊆ cl(int(A)) ,

(v) preclosed if cl(int(A)) ⊆ A ,

(vi) preopen if X \ A is preclosed, or equivalently, if A ⊆ int(cl(A)) ,

(vii) β-closed if int(cl(int(A))) ⊆ A ,

(viii) β-open if X \ A is β-closed, or equivalently, if A ⊆ cl(int(cl(A))) .

For a subset A of (X, τ) the α-closure (resp. semi-closure, preclosure, β-closure) of A is

the smallest α-closed (resp. semi-closed, preclosed, β-closed) set containing A . These

closures are denoted by clα(A), cls(A), clp(A) and clβ(A) , respectively. It is known that

clα(A) = A ∪ cl(int(cl(A))) , cls(A) = A ∪ int(cl(A)) , clp(A) = A ∪ cl(int(A)) and

clβ(A) = A ∪ int(cl(int(A))) .

For the sake of completeness, a subset A of (X, τ) is called regular open (resp. regular closed,

nowhere dense) if A = int(cl(A)) (resp. A = cl(int(A)) , int(cl(A)) = ∅). It is well known

that the family of regular open subsets of (X, τ) form a base for τδ .

In 1970, N. Levine [11] defined a subset A of a space (X, τ) to be generalized closed (briefly,

g-closed) if cl(A) ⊆ U whenever A ⊆ U and U ∈ τ . By considering other generalized clo-

sures or classes of generalized open sets, numerous additional notions analogous to Levine’s

g-closed sets have been introduced. We refer the reader to [1] for further details.

In 2001, Cao, Greenwood and Reilly [3] provided a general framework to deal with these

notions by introducing the concept of a qr-closed set. For convenience it is useful to denote

closed (resp. semi-closed, preclosed) by τ -closed (resp. s-closed, p-closed), and cl(A) by

clτ (A) for a subset A ⊆ X . Similarly, open (resp. semi-open, preopen) are denoted by

τ -open (resp. s-open, p-open). If P = {τ, α, s, p, β} and q, r ∈ P then a subset A ⊆ X is
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called qr-closed if clq(A) ⊆ U whenever A ⊆ U and U is r-open. Using this notation, a set

A is g-closed if and only if it is ττ -closed, and most types of generalized closed sets can be

captured within this notation. One basic result (Theorem 2.5 in [3]) says that if q, r ∈ P
then every qr-closed subset of (X, τ) is q-closed if and only if each singleton of X is either

q-open or r-closed.

The aim of this paper is to continue the discussion initiated in [3] by considering the expanded

family P∗ = {τ, α, s, p, β, δ, θ} . It is easily observed that Theorem 2.5 in [3] still remains

valid.

Remark 1.1 If q, r ∈ P∗ then every qr-closed subset of (X, τ) is q-closed if and only if each

singleton of X is either q-open or r-closed.

So far we are aware of three relevant notions of generalized closed sets that have appeared

in the literature for the δ-topology. A subset A of a space (X, τ) is called (i) δg-closed [6] if

clδ(A) ⊆ U whenever A ⊆ U and U ∈ τ , (ii) gδ-closed [5] if clτ (A) ⊆ U whenever A ⊆ U

and U ∈ τδ , (iii) δg∗-closed [5] if clδ(A) ⊆ U whenever A ⊆ U and U ∈ τδ . In terms of the

qr-closed notation of [3], (i) is equivalent to δτ -closed, (ii) is equivalent to τδ-closed and (iii)

is equivalent to δδ-closed.

The most important notion of generalized closed set involving the θ-topology is due to

Dontchev and Maki. A ⊆ X is said to be (iv) θg-closed [7] if clθ(A) ⊆ U whenever A ⊆ U

and U ∈ τ . Clearly, (iv) is equivalent to θτ -closed.

2 δθ-closed sets and θδ-closed sets

We shall investigate what happens when we mix δ and θ in the context of generalized closed

sets.

Definition 2 A subset A of a space (X, τ) is called

(i) δθ-closed, if clδ(A) ⊆ U whenever A ⊆ U and U ∈ τθ ,

(ii) θδ-closed, if clθ(A) ⊆ U whenever A ⊆ U and U ∈ τδ .

3



Remark 2.1 Obviously every δ-closed (resp. θ-closed) set is δθ-closed (resp. θδ-closed).

Since τθ ⊆ τδ ⊆ τ , every θδ-closed set is δθ-closed. If x ∈ U and U ∈ τθ then there is V ∈ τ

such that x ∈ V ⊆ cl(V ) ⊆ U . Since cl(V ) is δ-closed we have clδ({x}) ⊆ U , i.e. every

singleton in any space is always δθ-closed. Now let X be an infinite set and p ∈ X . Let τ be

the topology on X consisting of X and all subsets of X not containing p . If x 6= p then {x}
is δ-open and cl({x}) = {x, p} ⊆ clθ({x}) . Thus {x} is δθ-closed but fails to be θδ-closed.

Clearly every δg-closed subset is δg∗-closed, and every δg∗-closed subset is δθ-closed. More-

over, every θg-closed subset is θδ-closed. Consider the space (X, τ) in Remark 2.1. If x 6= p

then {x} is δθ-closed but obviously not δg∗-closed. Now let X be an infinite set and τ be

the cofinite topology on X. Then τθ = τδ = {∅, X} hence every subset of X is θδ-closed. If

A is a proper cofinite subset of X then A is θδ-closed but not θg-closed.

Remark 1.1 suggests the consideration of the following properties as candidates for possibly

new separation properties.

Definition 3 A space (X, τ) satisfies property

(i) A if every δθ-closed set is δ-closed, i.e. each singleton is either δ-open or θ-closed,

(ii) B if every θδ-closed set is θ-closed, i.e. each singleton is either θ-open or δ-closed.

We shall see, however, that we do not obtain any new separation axioms. Recall that a

space (X, τ) is said to be T1/2 [8] if each singleton is either open or closed. (X, τ) is called

weakly Hausdorff [13] (resp. almost weakly Hausdorff [6]) if (X, τδ) is T1 (resp. T1/2). We

also mention the folklore result that a space (X, τ) is Hausdorff if and only if (X, τθ) is T1 if

and only if (X, τθ) is T1/2 if and only if (X, τθ) is T0.

Theorem 2.2 For a space (X, τ) the following are equivalent:

(a) (X, τ) is Hausdorff,

(b) (X, τ) satisfies A ,

(c) (X, τ) is almost weakly Hausdorff and δ-closed singletons are θ-closed.
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Proof. (a) ⇒ (b): If (X, τ) is Hausdorff then (X, τθ) is T1, i.e. singletons are θ-closed.

Thus (X, τ) satisfies A.

(b) ⇒ (a): If (X, τ) satisfies A then, by Remark 2.1, each singleton is either δ-clopen or

θ-closed. Hence (X, τθ) is T1 and thus (X, τ) is Hausdorff.

(b) ⇒ (c): Suppose that (X, τ) satisfies A. Then each singleton is clearly either δ-open or

δ-closed, i.e. (X, τ) is almost weakly Hausdorff. If {x} is δ-closed then {x} is either δ-clopen

or θ-closed, hence always θ-closed.

(c) ⇒ (b): This is obvious.

Theorem 2.3 [14] For a space (X, τ) the following are equivalent:

(a) (X, τ) is weakly Hausdorff,

(b) (X, τ) satisfies B .

Proof. (a) ⇒ (b): If (X, τ) is weakly Hausdorff then each singleton is δ-closed. Hence

(X, τ) satisfies B.

(b) ⇒ (a): This follows from the fact that each θ-open singleton must be clopen.

3 Separation axioms characterized via singletons

Remark 1.1 suggests to characterize the topological spaces in which each singleton is either q-

open or r-closed, where q, r ∈ P∗ = {τ, α, s, p, β, δ, θ} . We shall first present what is already

known and then answer the remaining cases. To do this we need some further preparation.

Observation 3.1 Let (X, τ) be a space and let x ∈ X .

(a) {x} is either preopen or nowhere dense [10] ,

(b) {x} is either open or preclosed,

(c) {x} is open ⇔ {x} is α-open ⇔ {x} is semi-open,

(d) {x} is preopen ⇔ {x} is β-open,

(e) {x} is nowhere dense ⇒ {x} is α-closed and thus semi-closed, preclosed and β-closed,

(f) {x} is semi-closed ⇔ {x} is nowhere dense or regular open.
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Definition 4 A space (X, τ) is said to be

(i) semi-T1 (resp. pre-T1, β-T1) if each singleton is semi-closed (resp. preclosed, β-closed),

(ii) a T3/4 space [6] if each singleton is either δ-open or closed,

(iii) semi-T1/2 if each singleton is either semi-open or semi-closed,

(iv) feebly T1 [12] if each singleton is either nowhere dense or clopen,

(v) Tgs [2] if each singleton is either preopen or closed.

The table below exhibits what is already known in the literature and what has been obtained

in Section 2. It has to be read in the following way: each column represents a q-open set and

each row represents a r-closed set. According to Observation 3.1 we only need to consider

q ∈ {p, τ, δ, θ} . A separation axiom (P ) in a cell means that a space (X, τ) satisfies (P ) if

and only if each singleton is either q-open or r-closed. The symbol ”
√

” in a cell means that

in any space each singleton is either q-open or r-closed. Finally, the symbol ”?” in a cell

means that the property in question has yet to be determined. We also observe that ”a.w.

T2” (resp. ”w. T2”) means almost weakly Hausdorff (resp. weakly Hausdorff). The present

entries in our table can easily be verified by Observation 3.1 and Definition 4. The result

that (X, τ) is almost weakly Hausdorff if and only if each singleton is either open or δ-closed

can be found in [5].

preopen open δ-open θ-open
β-closed

√ √
? ?

preclosed
√ √

? ?
semi-closed

√
semi-T1/2 ? ?

α-closed
√

? ? ?
closed Tgs T1/2 T3/4 ?
δ-closed ? a.w. T2 a.w. T2 w. T2

θ-closed ? T2 T2 T2

As an immediate consequence of Observation 3.1 we note that a space (X, τ) is semi-T1/2 if

and only if each singleton is either α-closed or open.

Proposition 3.2 [14] For a space (X, τ) the following are equivalent:

(a) (X, τ) is semi-T1 ,
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(b) each singleton is either θ-open or semi-closed,

(c) each singleton is either δ-open or semi-closed,

(d) each singleton is either δ-open or α-closed.

Proof. (a) ⇒ (b) ⇒ (c) is obvious. (c) ⇒ (d) follows from Observation 3.1 and (d) ⇒ (a)

is clear.

By observing that a θ-open singleton must be clopen and Observation 3.1 we have that a

space (X, τ) is feebly T1 if and only if each singleton is either θ-open or α-closed. By a

similar argument, (X, τ) is pre-T1 if and only if each singleton is either θ-open or preclosed.

In addition, (X, τ) is T1 if and only if each singleton is either closed or θ-open.

Proposition 3.3 [14] For a space (X, τ) the following are equivalent:

(a) (X, τ) is β-T1 ,

(b) each singleton is either θ-open or β-closed,

(c) each singleton is either δ-open or β-closed,

(d) each singleton is either δ-open or preclosed.

Proof. (a) ⇒ (b) ⇒ (c) is obvious. To show that (c) ⇒ (d) let x ∈ X such that {x} is

β-closed. If int({x}) = ∅ then {x} is preclosed. Otherwise, {x} is open and β-closed and

so regular open, i.e. δ-open. (d) ⇒ (a) is clear.

Definition 5 A space (X, τ) is called

(i) R1 if two points x and y have disjoint neighbourhoods whenever cl({x}) 6= cl({y}) ,

(ii) subweakly T2 [4] if clδ({x}) = cl({x}) for each x ∈ X ,

(iii) pointwise semi-regular (briefly p-semi-regular) [5] if each closed singleton is δ-closed,

(iv) pointwise regular [14] if each closed singleton is θ-closed.

Proposition 3.4 Let (X, τ) be a space.

(a) If A ⊆ X is preopen then cl(A) = clθ(A) ,

(b) (X, τ) is R1 if and only if cl({x}) = clθ({x}) for each x ∈ X .
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Proof. (a) The proof is straightforward, hence it is omitted. The proof of (b) is due to

Jankovic [9].

Theorem 3.5 For a space (X, τ) the following are equivalent:

(a) Each singleton is either θ-closed or preopen,

(b) (X, τ) is Tgs and R1,

(c) (X, τ) is Tgs and pointwise regular.

Proof. (a) ⇒ (b) : Suppose that each singleton is either θ-closed or preopen. Then (X, τ)

clearly is Tgs . Let x ∈ X . If {x} is preopen then cl({x}) = clθ({x}) by Proposition 3.4. If

{x} is θ-closed then {x} = clθ({x}) = cl({x}) . Hence (X, τ) is R1 .

(b) ⇒ (c) : This follows immediately from Proposition 3.4.

(c) ⇒ (a) : Follows straightforward from the definitions.

Theorem 3.6 For a space (X, τ) the following are equivalent:

(a) Each singleton is either δ-closed or preopen,

(b) (X, τ) is Tgs and subweakly T2,

(c) (X, τ) is Tgs and p-semi-regular.

Proof. (a) ⇒ (b) : Suppose that each singleton is either δ-closed or preopen. Then (X, τ)

clearly is Tgs . Let x ∈ X . If {x} is preopen then cl({x}) = cl(int(cl({x}))) , i.e. cl({x})
is regular closed and so cl({x}) = clδ({x}) . If {x} is δ-closed then obviously we have

cl({x}) = clδ({x}) . Thus (X, τ) is subweakly T2 .

(b) ⇒ (c) ⇒ (a) is clear.

As our final result we are now able to present the complete table.

preopen open δ-open θ-open
β-closed

√ √
β-T1 β-T1

preclosed
√ √

β-T1 pre-T1

semi-closed
√

semi-T1/2 semi-T1 semi-T1

α-closed
√

semi-T1/2 semi-T1 feebly T1

closed Tgs T1/2 T3/4 T1

δ-closed Tgs + subweakly T2 a.w. T2 a.w. T2 w. T2

θ-closed Tgs + R1 T2 T2 T2
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