On S_i -metacompact Spaces *

M. Sarsak, M. Ganster and M. Steiner

Abstract

The primary purpose of this paper is to introduce and study new variations of metacompactness by utilizing semi-open sets.

1 Introduction and Preliminaries

Let (X, τ) be a topological space. We shall denote the closure and the interior of a subset A of (X, τ) by clA and intA, respectively. A subset A of (X, τ) is called α -open (or an α -set [6]), if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int} A))$, semi-open [4] if $A \subseteq \operatorname{cl}(\operatorname{int} A)$, preopen [5] if $A \subseteq \operatorname{int}(\operatorname{cl} A)$ and regular closed if $A = \operatorname{cl}(\operatorname{int} A)$. Clearly, α -sets and regular closed sets are semi-open. Njastad [6] pointed out that the family of all α -sets of (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . Reilly and Vamanamurthy observed in [7] that a subset A of (X, τ) is an α -set if and only if it is semi-open and preopen. We denote the family of all semi-open (resp. preopen, regular closed) sets in (X, τ) by $SO(X, \tau)$ (resp. $PO(X, \tau)$, $RC(X, \tau)$).

Remark 1.1 [3] Let (X, τ) be a space. Then $(\tau^{\alpha})^{\alpha} = \tau^{\alpha}$, $SO(X, \tau^{\alpha}) = SO(X, \tau)$, $PO(X, \tau^{\alpha}) = PO(X, \tau)$ and $RC(X, \tau^{\alpha}) = RC(X, \tau)$.

Throughout this paper, \mathbb{N} and \mathbb{R} denote the set of natural numbers and the set of real numbers, respectively. The Stone-Cech compactification of \mathbb{N} is denoted by $\beta \mathbb{N}$. The cardinality of a set A will be denoted by |A|. No separation axioms are assumed unless stated explicitly. For concepts not defined in our paper we refer the reader to [2].

^{*2000} Math. Subject Classification — 54D20.

Key words and phrases — S_1 -metacompact, S_2 -metacompact, S_3 -metacompact, α -open, semi-open.

2 S_i -metacompact spaces

Definition 1 A space (X, τ) is called

- (i) S_1 -metacompact if every semi-open cover has a point-finite open refinement,
- (ii) S_2 -metacompact if every semi-open cover has a point-finite semi-open refinement,
- (iii) S_3 -metacompact if every open cover has a point-finite semi-open refinement.

Definition 2 A space (X, τ) is called

(i) globally disconnected [1] if every semi-open set is open,

(ii) nodec [10] (or an α -space) if every nowhere dense subset is closed, or equivalently (see [6]), if $\tau = \tau^{\alpha}$.

Clearly, if (X, τ) is globally disconnected then all the notions in Definition 1 coincide and are equivalent to metacompactness. In general, we have the following obvious implications:

$$S_1$$
-metacompact \Rightarrow S_2 -metacompact
 $\downarrow \qquad \qquad \downarrow$
metacompact \Rightarrow S_3 -metacompact

It will be seen, however, that none of the implications above can be reversed, and that S_2 -metacompactness and metacompactness are independent of each other. We shall first characterize globally disconnected spaces and S_1 -metacompact spaces.

Proposition 2.1 For a space (X, τ) the following are equivalent:

1) (X, τ) is globally disconnected,

2) every semi-open cover of (X, τ) has an open refinement.

Proof. 1) \Rightarrow 2) is clear. To show that 2) \Rightarrow 1) let $A \in SO(X, \tau)$ and let $U=\operatorname{int} A$. Then $\mathcal{U} = \{U \cup \{x\} : x \in \operatorname{cl} U\} \cup \{X \setminus \operatorname{cl} U\}$ is a semi-open cover of (X, τ) . By assumption, there exists an open refinement of \mathcal{U} , say \mathcal{V} . Suppose that A is not open, i.e. there is an $x \in A \setminus U$. Pick $V \in \mathcal{V}$ such that $x \in V$. Then $V \subseteq U \cup \{x\} \subseteq A$ and thus $x \in U$, a contradiction. Hence A is open. **Corollary 2.2** A space (X, τ) is S_1 -metacompact if and only if it is metacompact and globally disconnected.

Recall that a space (X, τ) is said to be *extremally disconnected* if the closure of each open set is open, or equivalently, if each regular closed set is clopen. Jankovic [3] observed that (X, τ) is extremally disconnected if and only if $SO(X, \tau) \subseteq PO(X, \tau)$. The next (known) result follows easily from the fact that $\tau^{\alpha} = SO(X, \tau) \cap PO(X, \tau)$ [7] and from Remark 1.1.

Remark 2.3 For a space (X, τ) the following are equivalent:

- (i) (X, τ) is extremally disconnected,
- (ii) (X, τ^{α}) is extremally disconnected,
- (iii) $SO(X,\tau) \subseteq \tau^{\alpha}$,
- (iv) (X, τ^{α}) is globally disconnected.

Remark 2.4 (i) A space (X, τ) is globally disconnected if and only if it is extremally disconnected and nodec.

(ii) If (X, τ) is extremally disconnected then the concepts of (X, τ^{α}) being metacompact, S₁-metacompact, S₂-metacompact and S₃-metacompact coincide.

Remark 2.5 The notions of (X, τ) being metacompact and of (X, τ^{α}) being metacompact are, in general, independent of each other. In Corollary 2.10 we provide an example of a compact, thus metacompact, space (X, τ) such that (X, τ^{α}) fails to be metacompact. On the other hand, if (X, τ) denotes the space in Theorem 2.14(2) then (X, τ) fails to be metacompact while (X, τ^{α}) is metacompact.

Clearly, every discrete space is S_1 -metacompact. To provide an example of a non-discrete S_1 -metacompact space, we consider $X = \mathbb{N} \cup \{p\}$ where p denotes a free ultrafilter on \mathbb{N} . We take as a base for the topology τ all sets of the form $U \cup \{p\}$ where $U \in p$, together with all singletons $\{n\}, n \in \mathbb{N}$. It is very well known (see e.g. [9], Ex. 114) that (X, τ) is perfectly normal, extremally disconnected and metacompact. Clearly every nowhere dense set is closed, so (X, τ) is nodec and thus globally disconnected. Hence (X, τ) is S_1 -metacompact by Corollary 2.2.

Remark 2.6 Spaces which fail to be S_1 -metacompact exist in profusion. The usual space \mathbb{R} of reals is metacompact but not S_1 -metacompact. $\beta \mathbb{N}$ is a compact T_2 space which is not S_1 -metacompact as $\mathbb{N} \cup \{p\}$ with $p \in \beta \mathbb{N} \setminus \mathbb{N}$ is a semi-open subset of $\beta \mathbb{N}$ that is not open.

We shall now consider S_2 -metacompact spaces and S_3 -metacompact spaces. First of all, by Remark 1.1 we have that (X, τ) is S_2 -metacompact if and only if (X, τ^{α}) is S_2 -metacompact.

Example 2.7 Let $X^* = X \cup \{p\}$ denote the 1-point-compactification of an infinite discrete space X, where $p \notin X$. Let \mathcal{U} be a semi-open cover of X^* . Pick $S \in \mathcal{U}$ such that $p \in S$. Then $S = \{p\} \cup A$ where A is an infinite subset of X. Clearly, $\mathcal{V} = \{S\} \cup \{\{x\} : x \in X \setminus A\}$ is a disjoint semi-open refinement of \mathcal{U} . Thus X^* is a compact Hausdorff S_2 -metacompact space. In addition, it is easily seen that X^* fails to be globally disconnected, hence cannot be S_1 -metacompact.

Next we recall the following set-theoretic construction that has been observed in [8].

Lemma 2.8 [8] Let X be an infinite set with $|X| = \mu$ and let $X = A \cup B$ where $|A| = \mu$, $|B| = \nu < \mu$ and $A \cap B = \emptyset$. For each $x \in A$ let $C_x = B \cup \{x\}$. Then $\mathcal{C} = \{C_x : x \in A\}$ is a cover of X. Suppose that \mathcal{D} is a refinement of \mathcal{C} . For each $x \in A$ there exists $D_x \in \mathcal{D}$ such that $x \in D_x \subseteq C_x$. If $|D_x| > 1$ for each $x \in A$ then there exists an element $z \in B$ such that z lies in at least μ elements of the refinement \mathcal{D} .

Theorem 2.9 Let (X, τ) be an infinite space possessing a dense open subset D such that |D| < |X|. Then (X, τ) fails to be S_2 -metacompact.

Proof. Let $A = X \setminus D$ and B = D. Utilizing Lemma 2.8 we obtain a semi-open cover C that does not have a semi-open point finite refinement. Thus (X, τ) fails to be S_2 -metacompact.

Corollary 2.10 (i) $\beta \mathbb{N}$ fails to be S_2 -metacompact.

(ii) Let σ denote the topology of $\kappa \mathbb{N}$, the Katetov extension of \mathbb{N} , and let τ be the topology of $\beta \mathbb{N}$. It is well known that $\sigma = \tau^{\alpha}$. Clearly $\kappa \mathbb{N}$ fails to be S_2 -metacompact. Since $\beta \mathbb{N}$ is known to be extremally disconnected, by Remark 2.4, $\kappa \mathbb{N}$ even fails to be S_3 -metacompact.

Theorem 2.11 Let (X, τ) be an infinite space possessing a closed nowhere dense subset N and a dense subset B such that $|B| < |N| \ge \aleph_0$. Then (X, τ) fails to be S₂-metacompact.

Proof. For each $x \in N$ let $S_x = (X \setminus N) \cup \{x\}$. Then $\mathcal{U} = \{S_x : x \in N\}$ is a semi-open cover of X. Suppose that \mathcal{V} is a semi-open refinement of \mathcal{U} . For each $x \in N$ there exists $T_x \in \mathcal{V}$ such that $x \in T_x$. Clearly $T_x \subseteq S_x$ for $x \in N$, and $T_x \neq T_y$ for distinct points $x, y \in N$. Now, $\{\operatorname{int} T_x : x \in N\}$ is a family of |N| nonempty open subsets of (X, τ) . Since B is dense and $|B| < |N| \ge \aleph_0$, there must be a point $z \in B$ which is contained in infinitely many sets T_x . Thus \mathcal{V} cannot be point-finite and (X, τ) fails to be S_2 -metacompact.

Corollary 2.12 The usual space \mathbb{R} fails to be S_2 -metacompact (let N be the Cantor set, B the set of rationals and apply Theorem 2.11).

In the following we exhibit a useful method for generating new topological spaces from given spaces. Let (Y, σ) be a topological space, Z be an infinite set disjoint from Y and let $X = Y \cup Z$. We define a topology τ on X in the following way: every set $S \subseteq Y$ with $S \in \sigma$ is open in (X, τ) and a basic neighbourhood of $z \in Z$ is of the form $\{z\} \cup Y$. Clearly, (Y, σ) is a dense and open subspace of (X, τ) . It is easily checked that for $S \neq \emptyset$ we have that $S \in SO(X, \tau)$ if and only if $S \cap Y$ is a nonempty semi-open subset of (Y, σ) .

Proposition 2.13 Let (Y, σ) be a topological space, Z be an infinite set and let (X, τ) be as defined above. Then

(a) (X, τ) fails to be metacompact,

(b) (X, τ) is extremally disconnected if and only if (Y, σ) is hyperconnected (i.e. every nonempty open set in (Y, σ) is dense in (Y, σ)),

(c) if (Y, σ) has a nonempty finite open set, then (X, τ) is not S₂-metacompact,

(d) if Z is countable and (Y, σ) is countably infinite, T_1 and dense-in-itself then (X, τ) is S_2 -metacompact,

(e) Let Z be countable. Then (X, τ) is S_3 -metacompact if and only if (Y, σ) has a countably infinite point-finite family of nonempty semi-open sets.

Proof. (a) First observe that the open cover $\mathcal{U} = \{Y \cup \{z\} : z \in Z\}$ cannot have a point-finite open refinement. Thus (X, τ) fails to be metacompact.

(b) Suppose that (X, τ) is extremally disconneced and let $\emptyset \neq U \subseteq Y$ be open in (Y, σ) . Then $U \in \tau$ and $Z \subseteq \operatorname{cl} U$. By assumption, $\operatorname{cl} U$ is open in (X, τ) and thus $\operatorname{cl} U = X$. Hence U is dense in (Y, σ) , i.e. (Y, σ) is hyperconnected. To prove the converse, suppose that (Y, σ) is hyperconnected and let $U \neq \emptyset$ be open in (X, τ) . Then $V = U \cap Y$ is nonempty and open in (Y, σ) . Since $\operatorname{cl} V = \operatorname{cl}_Y V \cup Z$, we have, by assumption, that $\operatorname{cl} V = X$ and thus $\operatorname{cl} U = X$, i.e. (X, τ) is extremally disconnected. Observe that we have also shown that (X, τ) is hyperconnected if and only if (Y, σ) is hyperconnected.

(c) Now let $U \neq \emptyset$ be a finite open subset of (Y, σ) . We may assume that U is minimal open, i.e. U does not properly contain a nonempty open set. Let \mathcal{V} be a semi-open refinement of the semi-open cover $\mathcal{U} = \{Y\} \cup \{U \cup \{z\} : z \in Z\}$. For each $z \in Z$ there is $T_z \in \mathcal{V}$ such that $z \in T_z$, and $T_z \neq T_{z'}$ whenever $z \neq z'$. Since U is minimal open we have $T_z = U \cup \{z\}$. This shows that \mathcal{V} cannot be point-finite, i.e. (c) holds.

(d) Let $Z = \{z_n : n \in \mathbb{N}\}, Y = \{y_n : n \in \mathbb{N}\}$ and suppose that (Y, σ) is T_1 and densein-itself. Let $C_1 = Y$ and $C_n = Y \setminus \{y_1, y_2, ..., y_{n-1}\}$ for each n > 1. By assumption, each C_n is open and dense in (Y, σ) . Suppose that \mathcal{U} is a semi-open cover of (X, τ) . For each $n \in \mathbb{N}$ we pick $U_n, V_n \in \mathcal{U}$ such that $y_n \in U_n$ and $z_n \in V_n$. Let $S_n = U_n \cap C_n$ and $T_n = \{z_n\} \cup (V_n \cap C_n)$ for each $n \in \mathbb{N}$. Observe that S_n and $V_n \cap C_n$ are always nonempty semi-open subsets of (Y, σ) . Clearly we have $y_n \in S_n \subseteq U_n$ and $z_n \in T_n \subseteq V_n$ for each $n \in \mathbb{N}$, hence $\mathcal{V} = \{S_n : n \in \mathbb{N}\} \cup \{T_n : n \in \mathbb{N}\}$ is a semi-open refinement of \mathcal{U} . Moreover, it is easily checked that \mathcal{V} is point-finite, thus (d) holds.

(e) Let $Z = \{z_n : n \in \mathbb{N}\}$. First suppose that (X, τ) is S_3 -metacompact. Then $\mathcal{U} = \{\{z_n\} \cup Y : n \in \mathbb{N}\}$ is an open cover of (X, τ) . By assumption, there exists a point-finite semi-open refinement \mathcal{V} of \mathcal{U} . For each $n \in \mathbb{N}$ pick $V_n \in \mathcal{V}$ such that $z_n \in V_n$. Then $\{V_n \cap Y : n \in \mathbb{N}\}$ is a countably infinite point-finite family of nonempty semi-open subsets of (Y, σ) . To prove the converse, let $\{S_n : n \in \mathbb{N}\}$ be a point-finite family of nonempty semi-open subsets of (Y, σ) . Let \mathcal{U} be an open cover of (X, τ) . For each $n \in \mathbb{N}$ there exists $U_n \in \mathcal{U}$ such that $z_n \in \{z_n\} \cup Y \subseteq U_n$. If $T_n = \{z_n\} \cup S_n$ for each $n \in \mathbb{N}$, then

 $\mathcal{V} = \{T_n : n \in \mathbb{N}\} \cup \{Y\}$ is a point-finite semi-open refinement of \mathcal{U} . Hence (X, τ) is S_3 -metacompact.

As an application of Proposition 2.13 we have the following result which concludes our discussion of S_i -metacompact spaces.

Theorem 2.14 (1) There is an S_3 -metacompact space that is neither S_2 -metacompact nor metacompact.

(2) There is an S_2 -metacompact space that is not metacompact.

Proof. (1) Let Z be a countably infinite set and let (Y, σ) be an infinite discrete space such that $Y \cap Z = \emptyset$. By applying Proposition 2.13(e),(c) and (a), the resulting space (X, τ) is S_3 -metacompact but neither S_2 -metacompact nor metacompact.

(2) Let Y and Z be two disjoint countably infinite sets and let σ be the cofinite topology on Y. By applying Proposition 2.13(d) and (a), the resulting space (X, τ) is S_2 -metacompact but not metacompact. In addition, (Y, σ) is hyperconnected so (X, τ) is extremally disconnected by Proposition 2.13 (b). Since (X, τ^{α}) is also S_2 -metacompact, (X, τ^{α}) is metacompact by Remark 2.4.

References

- [1] A.G. El'kin, Decomposition of spaces, Soviet Math. Dokl. 10 (1969), 521-525.
- [2] R. Engelking, *General Topology*, Heldermann, Berlin (1989).
- [3] D. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hung. 46(1-2) (1985), 83-92.
- [4] N. Levine, Semi-open sets and semicontinuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [5] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt 53(1982), 47-53.
- [6] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.

- [7] I. Reilly and M.K. Vamanamurthy, On α -continuity in topological spaces, Acta Math. Hung. 45(1-2) (1985), 27-32.
- [8] M. Sarsak and M. Ganster, On P_i -metacompact spaces, International J. of Pure and Appl. Math., to appear.
- [9] L.A. Steen and J.A. Seebach, *Counterexamples in topology*, Springer Verlag (1978).
- [10] E. van Douwen, Applications of maximal topologies, Topology & Appl. 51 (1993), 125-139.

Mohammad S. Sarsak Department of Mathematics, The Hashemite University, P.O. Box 150459, Zarqa 13115; JORDAN.

Maximilian Ganster and Markus Steiner Department of Mathematics, Graz University of Technology Steyrergasse 30, A-8010 Graz; AUSTRIA.