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Abstract
The primary purpose of this paper is to introduce and study new variations of

metacompactness by utilizing semi-open sets.

1 Introduction and Preliminaries

Let (X, τ) be a topological space. We shall denote the closure and the interior of a subset A

of (X, τ) by clA and intA, respectively. A subset A of (X, τ) is called α-open (or an α-set

[6]), if A ⊆ int(cl(intA)), semi-open [4] if A ⊆ cl(intA), preopen [5] if A ⊆ int(clA) and

regular closed if A = cl(intA). Clearly, α-sets and regular closed sets are semi-open. Njastad

[6] pointed out that the family of all α-sets of (X, τ), denoted by τα, is a topology on X finer

than τ . Reilly and Vamanamurthy observed in [7] that a subset A of (X, τ) is an α-set if and

only if it is semi-open and preopen. We denote the family of all semi-open (resp. preopen,

regular closed) sets in (X, τ) by SO(X, τ) (resp. PO(X, τ), RC(X, τ)).

Remark 1.1 [3] Let (X, τ) be a space. Then (τα)α = τα, SO(X, τα) = SO(X, τ),

PO(X, τα) = PO(X, τ) and RC(X, τα) = RC(X, τ).

Throughout this paper, N and R denote the set of natural numbers and the set of real num-

bers, respectively. The Stone-Cech compactification of N is denoted by βN. The cardinality

of a set A will be denoted by |A| . No separation axioms are assumed unless stated explicitly.

For concepts not defined in our paper we refer the reader to [2].
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2 Si-metacompact spaces

Definition 1 A space (X, τ) is called

(i) S1-metacompact if every semi-open cover has a point-finite open refinement,

(ii) S2-metacompact if every semi-open cover has a point-finite semi-open refinement,

(iii) S3-metacompact if every open cover has a point-finite semi-open refinement.

Definition 2 A space (X, τ) is called

(i) globally disconnected [1] if every semi-open set is open,

(ii) nodec [10] (or an α-space) if every nowhere dense subset is closed, or equivalently (see

[6]), if τ = τα .

Clearly, if (X, τ) is globally disconnected then all the notions in Definition 1 coincide and

are equivalent to metacompactness. In general, we have the following obvious implications:

S1-metacompact ⇒ S2-metacompact
⇓ ⇓

metacompact ⇒ S3-metacompact

It will be seen, however, that none of the implications above can be reversed, and that

S2-metacompactness and metacompactness are independent of each other. We shall first

characterize globally disconnected spaces and S1-metacompact spaces.

Proposition 2.1 For a space (X, τ) the following are equivalent:

1) (X, τ) is globally disconnected,

2) every semi-open cover of (X, τ) has an open refinement.

Proof. 1) ⇒ 2) is clear. To show that 2) ⇒ 1) let A ∈ SO(X, τ) and let U=intA . Then

U = {U ∪ {x} : x ∈ clU} ∪ {X\ clU} is a semi-open cover of (X, τ). By assumption,

there exists an open refinement of U , say V . Suppose that A is not open, i.e. there is an

x ∈ A \ U . Pick V ∈ V such that x ∈ V . Then V ⊆ U ∪ {x} ⊆ A and thus x ∈ U , a

contradiction. Hence A is open.
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Corollary 2.2 A space (X, τ) is S1-metacompact if and only if it is metacompact and

globally disconnected.

Recall that a space (X, τ) is said to be extremally disconnected if the closure of each open set

is open, or equivalently, if each regular closed set is clopen. Jankovic [3] observed that (X, τ)

is extremally disconnected if and only if SO(X, τ) ⊆ PO(X, τ) . The next (known) result

follows easily from the fact that τα = SO(X, τ) ∩ PO(X, τ) [7] and from Remark 1.1.

Remark 2.3 For a space (X, τ) the following are equivalent:

(i) (X, τ) is extremally disconnected,

(ii) (X, τα) is extremally disconnected,

(iii) SO(X, τ) ⊆ τα ,

(iv) (X, τα) is globally disconnected.

Remark 2.4 (i) A space (X, τ) is globally disconnected if and only if it is extremally

disconnected and nodec.

(ii) If (X, τ) is extremally disconnected then the concepts of (X, τα) being metacompact,

S1-metacompact, S2-metacompact and S3-metacompact coincide.

Remark 2.5 The notions of (X, τ) being metacompact and of (X, τα) being metacompact

are, in general, independent of each other. In Corollary 2.10 we provide an example of

a compact, thus metacompact, space (X, τ) such that (X, τα) fails to be metacompact.

On the other hand, if (X, τ) denotes the space in Theorem 2.14(2) then (X, τ) fails to be

metacompact while (X, τα) is metacompact.

Clearly, every discrete space is S1-metacompact. To provide an example of a non-discrete

S1-metacompact space, we consider X = N∪{p} where p denotes a free ultrafilter on N. We

take as a base for the topology τ all sets of the form U ∪{p} where U ∈ p , together with all

singletons {n}, n ∈ N . It is very well known (see e.g. [9], Ex. 114) that (X, τ) is perfectly

normal, extremally disconnected and metacompact. Clearly every nowhere dense set is

closed, so (X, τ) is nodec and thus globally disconnected. Hence (X, τ) is S1-metacompact

by Corollary 2.2.
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Remark 2.6 Spaces which fail to be S1-metacompact exist in profusion. The usual space

R of reals is metacompact but not S1-metacompact. βN is a compact T2 space which is not

S1-metacompact as N ∪ {p} with p ∈ βN \ N is a semi-open subset of βN that is not open.

We shall now consider S2-metacompact spaces and S3-metacompact spaces. First of all, by

Remark 1.1 we have that (X, τ) is S2-metacompact if and only if (X, τα) is S2-metacompact.

Example 2.7 Let X∗ = X ∪{p} denote the 1-point-compactification of an infinite discrete

space X, where p /∈ X. Let U be a semi-open cover of X∗. Pick S ∈ U such that p ∈ S.

Then S = {p}∪A where A is an infinite subset of X. Clearly, V = {S}∪{{x} : x ∈ X \A}
is a disjoint semi-open refinement of U . Thus X∗ is a compact Hausdorff S2-metacompact

space. In addition, it is easily seen that X∗ fails to be globally disconnected, hence cannot

be S1-metacompact.

Next we recall the following set-theoretic construction that has been observed in [8].

Lemma 2.8 [8] Let X be an infinite set with |X| = µ and let X = A ∪ B where |A| = µ,

|B| = ν < µ and A ∩ B = ∅ . For each x ∈ A let Cx = B ∪ {x} . Then C = {Cx : x ∈ A}
is a cover of X . Suppose that D is a refinement of C . For each x ∈ A there exists Dx ∈ D
such that x ∈ Dx ⊆ Cx . If |Dx| > 1 for each x ∈ A then there exists an element z ∈ B such

that z lies in at least µ elements of the refinement D .

Theorem 2.9 Let (X, τ) be an infinite space possessing a dense open subset D such that

|D| < |X| . Then (X, τ) fails to be S2-metacompact.

Proof. Let A = X\D and B = D . Utilizing Lemma 2.8 we obtain a semi-open cover C that

does not have a semi-open point finite refinement. Thus (X, τ) fails to be S2-metacompact.

Corollary 2.10 (i) βN fails to be S2-metacompact.

(ii) Let σ denote the topology of κN, the Katetov extension of N, and let τ be the topology

of βN. It is well known that σ = τα . Clearly κN fails to be S2-metacompact. Since βN is

known to be extremally disconnected, by Remark 2.4, κN even fails to be S3-metacompact.
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Theorem 2.11 Let (X, τ) be an infinite space possessing a closed nowhere dense subset N

and a dense subset B such that |B| < |N | ≥ ℵ0 . Then (X, τ) fails to be S2-metacompact.

Proof. For each x ∈ N let Sx = (X \N) ∪ {x} . Then U = {Sx : x ∈ N} is a semi-open

cover of X . Suppose that V is a semi-open refinement of U . For each x ∈ N there exists

Tx ∈ V such that x ∈ Tx. Clearly Tx ⊆ Sx for x ∈ N , and Tx 6= Ty for distinct points

x, y ∈ N . Now, {intTx : x ∈ N} is a family of |N | nonempty open subsets of (X, τ). Since

B is dense and |B| < |N | ≥ ℵ0, there must be a point z ∈ B which is contained in infinitely

many sets Tx. Thus V cannot be point-finite and (X, τ) fails to be S2-metacompact.

Corollary 2.12 The usual space R fails to be S2-metacompact (let N be the Cantor set,

B the set of rationals and apply Theorem 2.11).

In the following we exhibit a useful method for generating new topological spaces from

given spaces. Let (Y, σ) be a topological space, Z be an infinite set disjoint from Y and let

X = Y ∪ Z . We define a topology τ on X in the following way: every set S ⊆ Y with

S ∈ σ is open in (X, τ) and a basic neighbourhood of z ∈ Z is of the form {z}∪Y . Clearly,

(Y, σ) is a dense and open subspace of (X, τ). It is easily checked that for S 6= ∅ we have

that S ∈ SO(X, τ) if and only if S ∩ Y is a nonempty semi-open subset of (Y, σ).

Proposition 2.13 Let (Y, σ) be a topological space, Z be an infinite set and let (X, τ) be

as defined above. Then

(a) (X, τ) fails to be metacompact,

(b) (X, τ) is extremally disconnected if and only if (Y, σ) is hyperconnected (i.e. every

nonempty open set in (Y, σ) is dense in (Y, σ)),

(c) if (Y, σ) has a nonempty finite open set, then (X, τ) is not S2-metacompact,

(d) if Z is countable and (Y, σ) is countably infinite, T1 and dense-in-itself then (X, τ) is

S2-metacompact,

(e) Let Z be countable. Then (X, τ) is S3-metacompact if and only if (Y, σ) has a countably

infinite point-finite family of nonempty semi-open sets.
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Proof. (a) First observe that the open cover U = {Y ∪ {z} : z ∈ Z} cannot have a

point-finite open refinement. Thus (X, τ) fails to be metacompact.

(b) Suppose that (X, τ) is extremally disconneced and let ∅ 6= U ⊆ Y be open in (Y, σ).

Then U ∈ τ and Z ⊆ clU . By assumption, clU is open in (X, τ) and thus clU = X. Hence

U is dense in (Y, σ), i.e. (Y, σ) is hyperconnected. To prove the converse, suppose that

(Y, σ) is hyperconnected and let U 6= ∅ be open in (X, τ). Then V = U ∩ Y is nonempty

and open in (Y, σ). Since clV =clY V ∪ Z, we have, by assumption, that clV = X and thus

clU = X, i.e. (X, τ) is extremally disconnected. Observe that we have also shown that

(X, τ) is hyperconnected if and only if (Y, σ) is hyperconnected.

(c) Now let U 6= ∅ be a finite open subset of (Y, σ). We may assume that U is minimal open,

i.e. U does not properly contain a nonempty open set. Let V be a semi-open refinement of

the semi-open cover U = {Y } ∪ {U ∪ {z} : z ∈ Z}. For each z ∈ Z there is Tz ∈ V such

that z ∈ Tz, and Tz 6= Tz′ whenever z 6= z′. Since U is minimal open we have Tz = U ∪ {z}.
This shows that V cannot be point-finite, i.e. (c) holds.

(d) Let Z = {zn : n ∈ N}, Y = {yn : n ∈ N} and suppose that (Y, σ) is T1 and dense-

in-itself. Let C1 = Y and Cn = Y \ {y1, y2, ..., yn−1} for each n > 1. By assumption, each

Cn is open and dense in (Y, σ). Suppose that U is a semi-open cover of (X, τ). For each

n ∈ N we pick Un, Vn ∈ U such that yn ∈ Un and zn ∈ Vn. Let Sn = Un ∩ Cn and

Tn = {zn} ∪ (Vn ∩ Cn) for each n ∈ N. Observe that Sn and Vn ∩ Cn are always nonempty

semi-open subsets of (Y, σ). Clearly we have yn ∈ Sn ⊆ Un and zn ∈ Tn ⊆ Vn for each n ∈ N,

hence V = {Sn : n ∈ N} ∪ {Tn : n ∈ N} is a semi-open refinement of U . Moreover, it is

easily checked that V is point-finite, thus (d) holds.

(e) Let Z = {zn : n ∈ N}. First suppose that (X, τ) is S3-metacompact. Then U =

{{zn} ∪ Y : n ∈ N} is an open cover of (X, τ). By assumption, there exists a point-finite

semi-open refinement V of U . For each n ∈ N pick Vn ∈ V such that zn ∈ Vn. Then

{Vn ∩ Y : n ∈ N} is a countably infinite point-finite family of nonempty semi-open subsets

of (Y, σ). To prove the converse, let {Sn : n ∈ N} be a point-finite family of nonempty

semi-open subsets of (Y, σ). Let U be an open cover of (X, τ). For each n ∈ N there

exists Un ∈ U such that zn ∈ {zn} ∪ Y ⊆ Un. If Tn = {zn} ∪ Sn for each n ∈ N, then
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V = {Tn : n ∈ N} ∪ {Y } is a point-finite semi-open refinement of U . Hence (X, τ) is S3-

metacompact.

As an application of Proposition 2.13 we have the following result which concludes our

discussion of Si-metacompact spaces.

Theorem 2.14 (1) There is an S3-metacompact space that is neither S2-metacompact nor

metacompact.

(2) There is an S2-metacompact space that is not metacompact.

Proof. (1) Let Z be a countably infinite set and let (Y, σ) be an infinite discrete space

such that Y ∩Z = ∅. By applying Proposition 2.13(e),(c) and (a), the resulting space (X, τ)

is S3-metacompact but neither S2-metacompact nor metacompact.

(2) Let Y and Z be two disjoint countably infinite sets and let σ be the cofinite topology on Y .

By applying Proposition 2.13(d) and (a), the resulting space (X, τ) is S2-metacompact but

not metacompact. In addition, (Y, σ) is hyperconnected so (X, τ) is extremally disconnected

by Proposition 2.13 (b). Since (X, τα) is also S2-metacompact, (X, τα) is metacompact by

Remark 2.4.
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