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Abstract. Suppose we are given an infinite, finitely generated group G and a
transient random walk on the wreath product (Z/2Z) ≀G, such that its projection
on G is transient and has finite first moment. This random walk can be interpreted
as a lamplighter random walk on G. Our aim is to show that the random walk on
the wreath product escapes to infinity with respect to a suitable (pseudo-)metric
faster than its projection onto G. We also address the case where the pseudo-
metric is the length of a shortest “travelling salesman tour”. In this context, and
excluding some degenerate cases if G = Z, the linear rate of escape is strictly
bigger than the rate of escape of the lamplighter random walk’s projection on G.

1. Introduction

Let G be an infinite group generated by a finite symmetric set S, and imagine a lamp
sitting at each group element. These lamps have two states: 0 (“off”) or 1 (“on”),
and initially all lamps are off. We think of a lamplighter walking randomly on G and
switching lamps on or off as he walks. We investigate the following model: at each
step the lamplighter may walk to some random neighbour vertex, and may flip some
lamps in a bounded neighbourhood of his position. This model can be interpreted as
a random walk on the wreath product (Z/2Z) ≀G governed by a probability measure
µ. The random walk is described by a Markov chain (Zn)n∈N0

, which represents the
position Xn of the lamplighter and the lamp configuration ηn : G → Z/2Z at time
n. We assume that the lamplighter random walk’s projection on G has finite first
moment and is also transient.

For better visualization, we identify G with its Cayley graph with respect to the
generating set S. Suppose we are given “lengths” of the elements of S such that
s ∈ S and s−1 ∈ S have the same length. The length of a path in G is the sum of
the lengths of its edges, and we denote by d(·, ·) the metric on G induced by the
lengths of the edges. We denote by dTS(η, x) the length of an optimal “travelling
salesman tour” from the identity e to x ∈ G that visits each point in supp(η) (where
η : G → Z/2Z has finite support). Then a natural length function ℓ(η, x) is given by
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dTS(η, x) + cL · |supp(η)| for an arbitrary, but fixed constant cL ≥ 0. By transience,
our random walk escapes to infinity with respect to this length function.

The (new) topic that we address in this paper is the comparison of the limits
ℓ = limn→∞ ℓ(Zn)/n and ℓ0 = limn→∞ d(e, Xn)/n, which exist almost surely. They
describe the speed of the lamplighter random walk and its projection on G, respec-
tively. The number ℓ0 is called the rate of escape, or the drift, of (Xn)n∈N0

and ℓ is
the rate of escape of the lamplighter random walk (Zn)n∈N0

. It is well-known that
the rate of escape exists for random walks with finite first moment on transitive
graphs. This follows from Kingman’s subadditive ergodic theorem; see Kingman [15],
Derriennic [6] and Guivarc’h [10]. We will prove that, under some weak assumptions
on G, we have ℓ > ℓ0, that is, the lamplighter random walk escapes strictly faster
to infinity than its projection onto G, on which we have the metric d(·, ·). If the
lamplighter random walk’s projection on G is transient and has zero drift, then the
acceleration of the lamplighter random walk follows from results of Kaimanovich
and Vershik [12] and of Varopoulos [18]. Thus, we may restrict ourselves to the case
ℓ0 > 0. More explicitly, we will prove that limn→∞ |supp(ηn)|/n > 0, where ηn is
the lamp configuration at time n. From this it follows directly that ℓ > ℓ0. We also
prove limn→∞ dTS(Zn)/n > ℓ0 (except for some degenerate cases), providing ℓ > ℓ0.

Let us briefly review a few selected results regarding the rate of escape. The classical
case is that of random walks on the k-dimensional grid Z

k, where k ≥ 1, which can
be described by the sum of n i.i.d. random variables, the increments of n steps. By
the law of large numbers the limit limn→∞ ‖Zn‖/n, where ‖ · ‖ is the distance on the
grid to the starting point of the random walk, exists almost surely. Furthermore, this
limit is positive if the increments have non-zero mean vector. There is an important
link between drift and the Liouville property: the entropy (introduced by Avez [1])
of any random walk on a group is non-zero if and only if non-constant harmonic
functions exist; see Kaimanovich and Vershik [12] and Derriennic [6]. Moreover, if
the rate of escape is zero, then the entropy is zero (first observed by Guivarc’h [10]).
Varopoulos [18] has shown the converse for symmetric finite range random walks on
groups. The recent work of Karlsson and Ledrappier [14] generalizes this result to
symmetric random walks with finite first moment of the step lengths.

In this paper we deal with random walks on wreath products, for which there are
many detailed results: Lyons, Pemantle and Peres [16] gave a lower bound for the
rate of escape of inward-biased random walks on lamplighter groups. Revelle [17]
examined the rate of escape of random walks on wreath products. He proved laws
of the iterated logarithm for the inner and outer radius of escape. For a finitely
generated group A, Dyubina [7] proved that the drift w.r.t. the word metric of a
random walk on the wreath product (Z/2Z) ≀ A is zero if and only if the random
walk’s projection onto A is recurrent.
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It is not obvious that lamplighter random walks are in general faster than their
projections onto G: e.g., consider the Switch-Walk lamplighter random walk on
Z with drift: in each step switch the lamp at the actual position with probability
p ∈ (0, 1) and then walk to a random neighbour vertex. Then the rate of escape of the
lamplighter random walk is equal to the random walk’s projection onto Z whenever
cL = 0; compare with Bertacchi [3]. However, this example is more or less the
only counterexample. The author of this article has investigated the rate of escape
of lamplighter random walks arising from a simple random walk on homogeneous
trees providing tight lower and upper bounds for the rate of escape; see Gilch [9].
In particular, the lamplighter random walk is significantly faster than its projection
onto the tree. This was the starting point for the investigation of the relation between
ℓ and ℓ0 on more general classes of graphs.

The structure of this article is as follows: in Section 2 we give an introduction to
lamplighter random walks on groups and some basic properties. In Section 3 we
prove that limn→∞ |supp(ηn)|/n > 0 if and only if the lamplighter random walk’s
projection on G is transient. In Section 4 we prove limn→∞ dTS(Zn)/n > ℓ0 under
some weak assumptions on S, which exclude some degenerate cases. Finally, in
Section 5 we give some additional remarks regarding extensions of the presented
results.

2. Lamplighter Groups

2.1. Groups and Random Walks. Consider an infinite, finitely generated group
G with identity e and a finite, symmetric set of generators S ⊆ G \ {e}, which
generates G as a semigroup. We assign to each s ∈ S a length l(s) = l(s−1) > 0. We
write r1 := mins∈S l(s). These lengths induce a metric on G: the distance between
x, y ∈ G is given by

d(x, y) := min

{ n
∑

i=1

l(si)
∣

∣

∣
s1, . . . , sn ∈ S such that y = xs1s2 · · · sn

}

.

We identify G with its Cayley graph with respect to S. A path in G is a finite
sequence of group elements [x0, x1, . . . , xn] such that x−1

i−1xi ∈ S. The length of this

path is
∑n

i=1 l(x−1
i−1xi). The ball B(x, r) centered at x ∈ G with radius r ≥ 0 is given

by the set of all elements y ∈ G with d(x, y) ≤ r.

2.2. Lamplighter Random Walks. Imagine a lamp sitting at each vertex of G,
which can be switched off or on, encoded by “0” and “1”. We think of a lamplighter
walking on G and switching lamps on and off. The lamp configurations are encoded
by functions η : G → Z/2Z. Writing Z2 := Z/2Z, the set of finitely supported
configurations of lamps is

N :=
{

η : G → Z2

∣

∣ |supp(η)| < ∞
}

.
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Here, |A| denotes the cardinality of a set A. Denote by 0 the zero configuration,
which will be the initial lamp configuration of the random walk, and by 1x the
configuration where only the lamp at x ∈ G is on and all other lamps are off. The
wreath product of Z2 with G is

L :=
(

∑

x∈G

Z2

)

⋊ G = Z2 ≀ G.

The elements of L are pairs of the form (η, x) ∈ N × G, where η represents a
configuration of the lamps and x the position of the lamplighter. For x, w ∈ G and
η ∈ N , define

(xη)(w) := η(x−1w).

A group operation on L is given by

(η1, x)(η2, y) :=
(

η1 ⊕ (xη2), xy
)

,

where x, y ∈ G, η1, η2 ∈ N , ⊕ is the componentwise addition modulo 2. The
group identity is (0, e). We call L together with this operation the lamplighter group
over G.

A natural symmetric set of generators of L is given by

SL :=
{

(1e, e), (0, s)
∣

∣ s ∈ S
}

.

Consider the Cayley graph of L with respect to SL. We lift d(·, ·) to a (pseudo-)metric
dL(·, ·) on L by assigning the following lengths to the elements of SL: l

(

(0, s)
)

:=

l(s) for s ∈ S and l
(

(1e, e)
)

:= cL ≥ 0, where cL is some arbitrary, but fixed
non-negative constant. These lengths induce a (pseudo-)metric on L. The distance
between (η, x) and (η′, y) is then the minimal length of all paths in the Cayley graph
of L joining both vertices. More explicitely, we denote by dTS(η, x) the minimal
length of a “travelling salesman tour” on G (not on L) from e to x, which visits each
y ∈ supp(η). With this notation, we have

ℓ(η, x) := dL

(

(0, e), (η, x)
)

= dTS(η, x) + cL · |supp(η)|.

The case cL = 0 can also be interpreted as the model where SL is replaced by
{(0, s), (1e, s) | s ∈ S} and where the length of (1e, s) equals l(s). In this case, lamp
switches are not charged by the pseudo-metric.

We now consider an irreducible, transient random walk on L starting at the identity
(0, e) such that the random walk’s projection onto G is also transient. For this
purpose, consider the sequence of i.i.d. L-valued random variables (in)n∈N governed
by a probability measure µ which satisfies the following conditions:

(1) 〈supp(µ)〉 = L.
(2) There is a non-negative real number R such that

µ(η, x) > 0 implies d(e, y) ≤ R for all y ∈ supp(η).
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(3) The projection of µ onto G has finite first moment, that is,
∑

(η,x)∈L d(e, x)µ(η, x) < ∞.

We write µ(n) for the n-th convolution power of µ. A lamplighter random walk
starting at (0, e) is described by the sequence of L-valued random variables (Zn)n∈N0

in the following natural way:

Z0 := (0, e), Zn := Zn−1in for all n ≥ 1.

More precisely, we write Zn = (ηn, Xn), where ηn is the random configuration of
the lamps at time n and Xn is the random group element at which the lamplighter
stands at time n. As a general assumption we assume transience of (Xn)n∈N0

. We
explain below what happens if this assumption fails.

The corresponding single and n-step transition probabilities of the random walk on
L are denoted by p(·, ·) and p(n)(·, ·). We write Pz[ · ] := P[ · | Z0 = z] for any z ∈ L,
if we want to start the lamplighter walk at z instead of (0, e).

Observe that by transience of (Xn)n∈N0
each finite subset of G is visited only finitely

often yielding that the sequence (ηn)n∈N0
converges pointwise to a random limit

configuration η∞ : G → Z2, which is not necessarily finitely supported. On the other
hand, (Xn)n∈N0

leaves every finite set after some finite time forever, that is, d(e, Xn)
goes to infinity.

As a consequence of Kingman’s subadditive ergodic theorem there are non-negative
numbers ℓ0, ℓ ∈ R such that

ℓ0 = lim
n→∞

d(e, Xn)

n
and ℓ = lim

n→∞

ℓ(Zn)

n
almost surely;

see Derriennic [6] and Guivarc’h [10]. The number ℓ0 is called the rate of escape or
drift of the lamplighter random walk’s projection onto G. Analogously, ℓ is the rate
of escape of the lamplighter random walk. Moreover, we can write

ℓ = ℓTS + cL · ℓsupp,(2.1)

where

ℓTS := lim
n→∞

dTS(ηn, Xn)

n
(core rate of escape) and

ℓsupp := lim
n→∞

|supp(η)|

n
(asymptotic configuration size).

The latter limits exist for the same reason as above. Obviously, ℓ ≥ ℓTS ≥ ℓ0. By
Kaimanovich and Vershik [12], we have h ≤ ℓ · g, where

h = lim
n→∞

−
1

n

∑

(η,x)∈N×G

p(n)
(

(0, e), (η, x)
)

log p(n)
(

(0, e), (η, x)
)
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is the asymptotic entropy and g = limn→∞(log |BL(n)|)/n is the growth rate of
L, where BL(n) denotes the ball around (0, e) of radius n with respect to dL(·, ·).
Existence of h and g follows again from Kingman’s subadditive ergodic theorem.
We have g < ∞ even if one considers the balls with respect to the pseudo-metric
dTS(·, ·), because of the relation

{

(η, x) ∈ L | dTS(η, x) ≤ n
}

⊆ BL

(

n + (⌊n/r1⌋ + 1)cL
)

.

Furthermore, we also have h > 0: the mapping

(η, x) 7→ P(η,x)[η∞(e) = 0]

defines a non-constant bounded harmonic function. Thus, the Poisson boundary is
non-trivial, that is, h > 0; see Kaimanovich [11] and Kaimanovich and Woess [13].
Thus, we get ℓ > 0. As an additional remark, let us mention that Dyubina [7]
proved that lamplighter random walks w.r.t. the word metric have non-zero drift if
and only if the projection on G is transient. Since S is finite and the lengths of edges
are bounded, we have in our situation ℓ = 0 if G is recurrent.

Our basic aim is to show that ℓ is strictly bigger than ℓ0, that is, the lamplighter
random walk escapes faster to infinity than its projection onto G. For this purpose,
we will show ℓsupp > 0 in the following section, giving ℓ > ℓ0 in the case cL > 0.
In Section 4, we will prove ℓTS > ℓ0 under suitable weak assumptions on G, which
exclude degenerate cases for special choices of S and l(·) when G = Z.

3. The Asymptotic Configuration Size

In this section we want to show that the number of lamps which are on increases
asymptotically at linear speed. We show that ℓsupp > 0, giving ℓ > ℓ0 in the case
cL > 0.

Consider now the lamplighter random walk’s projection on G and its range Rn ⊆ G,
which is the set of visited elements up to time n. By Derriennic [6], |Rn|/n converges
to P[∀n ≥ 1 : Xn 6= e], which is strictly positive in our case by transience. For j ∈ N,
let

sj := min
{

n ∈ N0

∣

∣ |Rn| = j
}

.

By transience, sj < ∞ almost surely. For k ∈ N0, let

∆k,j :=

{

1, if ηsj+k(Xsj
) = 1,

0, otherwise.

With this definition we have for all n ∈ N0

(3.1) |supp(ηn)| ≥

|Rn|
∑

j=1

∆n−sj ,j.
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We give now a uniform lower bound for the probability P(η,x)[η∞(x) = 1] with
(η, x) ∈ N × G.

Lemma 3.1. There are κ ∈ N and C > 0 such that for all (η, x) ∈ N × G

P(η,x)[∀n ≥ κ : ηn(x) = 1] ≥ C.

Proof. By transience and bounded range of the random walk (Xn)n∈N0
, there is at

least one vertex y ∈ G with R < d(e, y) such that

p̃ := P(η′,y)[∀n ≥ 1 : Xn /∈ B(e, R)] > 0 for each η′ ∈ N .

Moreover, there are κ0, κ1 ∈ N such that C0 := µ(κ0)
(

(0, y)
)

> 0 and C1 :=

µ(κ1)
(

(1e, y)
)

> 0. Transitivity provides that the probability of walking from (η, x)
to some (η′, xy) with x ∈ supp(η′) in at most κ := max{κ0, κ1} steps is at least
C ′ := min{C0, C1}. With C := C ′ · p̃ follows the claim of the lemma. �

The next lemma gives a non-trivial uniform lower bound for E[∆n,j] with n ≥ κ:

Lemma 3.2. For all j, n ∈ N with n ≥ κ we have E[∆n,j ] ≥ C > 0.

Proof. In order to bound P[∆n,j = 1] uniformly from below, we decompose according
to all possible states of Xsj

, followed by walking steps to some Xsj
y ∈ G\B(Xsj

, R),
such that the lamp at Xsj

– if necessary – will be switched on and after reaching
Xsj

y the random walk does not return to B(Xsj
, R).

By vertex-transitivity and Lemma 3.1, the probability of starting in Xsj
and walking

in at most κ steps to some vertex Xsj
y ∈ G \ B(Xsj

, R), such that the lamp at Xsj

rests on and no further visit in B(Xsj
, R) after reaching Xsj

y is at least C > 0.

Observe that, by transience we have for each j ∈ N

∑

x∈G

∑

m≥0

P[sj = m, Xm = x] = P[sj < ∞] = 1.

We get for n ≥ κ:

E[∆n,j] =
∑

(η,x)∈L

∑

m≥0

P
[

sj = m, Zm = (η, x), ηm+n(x) = 1
]

≥
∑

(η,x)∈L

∑

m≥0

P
[

sj = m, Zm = (η, x)
]

· P(η,x)

[

ηn(x) = 1
]

≥ P[sj < ∞] · C = C > 0.

�

Now we can conclude:
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Theorem 3.3. For the lamplighter random walk with respect to the infinite, finitely
generated group G,

ℓsupp > 0.

Moreover, if cL > 0, then ℓ > ℓ0.

Proof. Recall the definition of κ from Lemma 3.1. We have:

ℓsupp = lim
n→∞

|supp(ηn+κ)|

|Rn|

|Rn|

n

n

n + κ
= ℓ1 · F̄ ,

where ℓ1 := limn→∞ |supp(ηn+κ)|/|Rn| and F̄ := P[∀n ≥ 1 : Xn 6= e] > 0. As ℓsupp

exists, the limit ℓ1 also exists. If we set Dn :=
∑|Rn|

j=1 ∆n+κ−sj ,j/|Rn|, then (3.1) yields
the inequality ℓ1 ≥ lim supn∈N Dn. Since the Dn’s are bounded, Fatou’s lemma yields

ℓ1 ≥ E

[

lim sup
n∈N

Dn

]

≥ lim sup
n∈N

E[Dn].

With the help of Lemma 3.2 we obtain:

E

[

1

|Rn|

|Rn|
∑

j=1

∆n+κ−sj ,j

]

=

n+1
∑

m=1

P
[

|Rn| = m
]

· E

[

1

|Rn|

|Rn|
∑

j=1

∆n+κ−sj ,j

∣

∣

∣

∣

|Rn| = m

]

≥
n+1
∑

m=1

P
[

|Rn| = m
]

· C = C > 0.

This yields
ℓsupp ≥ F̄ · lim sup

n∈N

E[Dn] ≥ F̄ · C > 0.

The rest follows by (2.1) and ℓ ≥ ℓTS ≥ ℓ0. �

We can generalize the last theorem, if we do not necessarily assume transience of
the projection (Xn)n∈N0

:

Theorem 3.4. For the lamplighter random walk with respect to the infinite, finitely
generated group G, we have ℓsupp > 0 if and only if (Xn)n∈N0

is transient.

Proof. By Theorem 3.3, transience implies ℓsupp > 0. For the proof of the inverse
direction assume now ℓsupp > 0. We have |supp(ηn)| ≤ |B(e, R)| · |Rn|. This yields

0 < ℓsupp = lim
n→∞

|supp(ηn)|

n

≤ lim
n→∞

|B(e, R)| · |Rn|

n
= |B(e, R)| · P[∀n ≥ 1 : Xn 6= e].

Thus, P[∃n ≥ 1 : Xn = e] < 1, that is, (Xn)n∈N0
is transient. �

We get also as a consequence of Theorem 3.3:
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Corollary 3.5. The core rate of escape satisfies ℓTS > 0.

Proof. We have dTS(ηn, Xn) ≥
(

|supp(ηn)| − 1
)

· r1. Dividing both sides of the in-
equality by n and taking limits yields the proposed claim. �

Finally, we give an explicit formula for ℓsupp for the special case of a “Walk-Switch”
lamplighter random walk.

Example 3.6: Suppose we are given a probability measure µ0 on G with finite
support and 〈supp(µ0)〉 = G. Then a “Walk-Switch” lamplighter random walk over
G is given by the transition probabilities

p
(

(η1, x1), (η2, x2)
)

:=
1

2
µ0(x

−1
1 x2)

for x1, x2 ∈ G and η1, η2 ∈ N with η1 = η2 or η1 ⊕ 1x2
= η2. It is easy to see that

E[|supp(ηn)|] = E[|Rn|]/2, providing

ℓsupp =
1

2

(

1 − P[∃n ≥ 1 : Xn = e]
)

.

4. The Core Rate of Escape

In this section we want to prove ℓTS > ℓ0 whenever G is generated as a semigroup
by a symmetric set S with at least three elements. If, however, G = Z we have to
make some weak assumption on the lengths of the elements of S to show ℓTS > ℓ0;
otherwise we can construct counterexamples where ℓTS = ℓ0. In this section we may
again assume ℓ0 > 0, since ℓTS > 0.

4.1. Groups generated by at least three elements. In this section we assume
that S = {s1, . . . , sr} is symmetric with r ≥ 3 such that there is no symmetric
set {s, s′} ⊆ S with G = 〈s, s′〉. If G = 〈s, s′〉, then G is isomorphic to Z or
Z2 ∗ Z2 = 〈a, b | a2 = b2 = e〉, and we treat these cases in Section 4.2. We want to
prove that ℓTS > ℓ0 under the above assumption to S. Without loss of generality
we may assume that the elements of S are ordered such that l(s1) ≤ l(s2) ≤ · · · ≤
l(sr). Our next aim is to choose three elements σ1, σ2, σ3 ∈ S such that d(σk, σl) ≥
max{d(e, σk), d(e, σl)} (with one single exception). For this purpose, we have to make
a case distinction:

I. If s1 6= s−1
1 , then we define σ1 := s1, σ2 := s−1

1 and we set σ3 := si with
i = min{k ≥ 2 | sk /∈ 〈s−1

1 , s1, s2, . . . , sk−1〉}, that is, σ3 is not a multiple of
σ1 or σ2. Note that we ensured by the above assumptions on S the existence
of such a σ3.
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II. If s1 = s−1
1 and s2 = s−1

2 , then define σ1 := s1, σ2 := s2 and σ3 := si with
i = min{k ≥ 3 | sk /∈ 〈s1, . . . , sk−1〉}. E.g., this may happen in the case
G = 〈a, b, c | a2 = b2 = c2 = e〉.

III. If s1 = s−1
1 and s2 6= s−1

2 , then define σ1 := s1, σ2 := s2 and σ3 := s−1
2 . E.g.,

this may happen in the case G = Z/4Z × Z
3, where (2, 0), (1, 0) ∈ S.

We will see that in fact it is not relevant which one of the above cases happens. In
each of the cases we get the following straightforward equalities, resp. inequalities:

(4.1)

d(e, σ1) = l(σ1) = r1, d(e, σ2) ≤ l(σ2), d(e, σ3) ≤ l(σ3),

d(σ1, σ2) ≤ l(σ1) + l(σ2), d(σ1, σ3) ≤ l(σ1) + l(σ3),

d(σ2, σ3) ≤ l(σ2) + l(σ3).

Moreover, we get the following (uniform) lower bounds:

Lemma 4.1. In all the cases I, II, III,

(i) d(e, σ2) = l(σ2), (ii) d(e, σ3) = l(σ3), (iii) d(σ1, σk) ≥ l(σk) for k ∈ {2, 3}.

Furthermore,

(iv) d(σ2, σ3) ≥

{

l(σ3), in case I and II,

l(σ1), in case III.

Proof. Equation (i) follows from l(σ1) = l(σ−1
1 ) in the case I. In the cases II and

III, we have s2 6= sm
1 ∈ {e, s1} for each m ∈ N. Thus (4.1) yields equation (i). In

case III, equation (ii) holds, since s−1
2 is not a multiple of s1. For the proof of (ii)

in case I and II, assume d(e, σ3) < l(σ3), that is, there is a path [e, x1, . . . , xm = σ3]
with d(xj−1, xj) < l(σ3), that is, σ3 = si can be written as a product of elements of
s−1
1 , s1, . . . , si−1, a contradiction to the minimal choice of σ3. The inequalities (iii)

and (iv) are proved by analogous arguments. Note that the case distinction in (iv)
is necessary, as the equation s2

2 = s1 in case III may hold. �

With the last lemma we can prove the following lemma:

Lemma 4.2. Let A = {e, σ1, σ2, σ3} and let ϕ : {1, 2, 3, 4} → A be an injective
function. Then in each of the cases I, II, III,

d
(

ϕ(1), ϕ(4)
)

+ r1 ≤ d
(

ϕ(1), ϕ(2)
)

+ d
(

ϕ(2), ϕ(3)
)

+ d
(

ϕ(3), ϕ(4)
)

.

Proof. The lemma states that for each choice of ϕ a shortest tour from ϕ(1) to ϕ(4)
visiting ϕ(2) and ϕ(3) on this trip has length at least d

(

ϕ(1), ϕ(4)
)

+ l(σ1). Assume
for the moment that ϕ(1) = e and ϕ(4) = σ3. Then before finally reaching σ3 a
shortest tour visiting all elements of A has to pass through σ1 and σ2 in this order
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(or first through σ2 and then σ1); it is not forbidden to visit e or σ3 twice. This tour
has a length of at least

d(e, σ1) + d(σ1, σ2) + d(σ2, σ3) ≥

{

l(σ1) + l(σ2) + l(σ3), in cases I and II,

2 l(σ1) + l(σ2), in case III.

But d(e, σ3) ≤ l(σ3) in case I and II, and d(e, σ3) ≤ l(σ2) in case III. Thus, the claim
follows for the specific choice of ϕ with ϕ(1) = e, ϕ(2) = σ1, ϕ(3) = σ2, ϕ(4) = σ3.
For all other choices of ϕ the same result follows; compare with Figure 1: the first
four columns build a case distinction for the choice of ϕ (we use symmetries!), the
fifth column gives an upper bound for d

(

ϕ(1), ϕ(4)
)

; the sixth column gives a lower
bound for the right hand side of the inequality in the lemma and the last column
is a lower bound for the difference between the sixth and fifth column

(

recall that

l(σ1) ≤ l(σ2) ≤ l(σ3)
)

. For case III, we only summarize the different possibilities,
where ϕ(i − 1) = σ2, ϕ(i) = σ3 or ϕ(i − 1) = σ3, ϕ(i) = σ2, where we use Lemma
4.1(iv); the lower and upper bounds for all other choices for ϕ conincide with case
I and II. Compare also with Figure 2, where the labels on the dotted lines are the
lower bounds for the distances between two points. This proves the lemma. �

In other words, the lemma states that a shortest tour starting at some a ∈ A visiting
all other elements of A and finishing at some a′ ∈ A has length of at least d(a, a′)+r1.
We will now apply this lemma independently of which of the cases I, II, III applies.
For y ∈ G let By := {y, yσ1, yσ2, yσ3} and let be xy ∈ G \ By. Obviously, for each
choice of w, z ∈ By,

(4.2) d(e, xy) ≤ d(e, w) + d(w, z) + d(z, xy).

Let F be the set of all injective functions ϕ : {1, 2, 3, 4} → By. Then the last lemma
and (4.2) yield the following inequality:

dTS

(

1y ⊕ 1yσ1
⊕ 1yσ2

⊕ 1yσ3
, x

)

≥ min
ϕ∈F

{

d
(

e, ϕ(1)
)

+

3
∑

i=1

d
(

ϕ(i), ϕ(i + 1)
)

+ d
(

ϕ(4), x
)

}

≥ d(e, x) + r1.(4.3)

We now come back to our lamplighter random walk. Our next aim is to bound
dTS(Zn) from below with the help of (4.3), independently of which of the cases I, II,
III holds. For this purpose, define hitting times

t1 := 0, and tk := min

{

m ∈ N

∣

∣

∣

∣

m > tk−1, Xm /∈
k−1
⋃

j=1

B
(

Xtj
, 2l(σ3)

)

}

for k ≥ 2,
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Cases I and II:

ϕ(1) ϕ(2) ϕ(3) ϕ(4) d
(

ϕ(1), ϕ(4)
)

≤ Right Side ≥ Difference ≥
e σ1 σ2 σ3 l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ1) + l(σ2)
e σ1 σ3 σ2 l(σ2) l(σ1) + 2 l(σ3) l(σ1) + l(σ3)
e σ2 σ1 σ3 l(σ3) 2 l(σ2) + l(σ3) 2 l(σ2)
e σ3 σ1 σ2 l(σ2) l(σ2) + 2 l(σ3) 2 l(σ3)
e σ2 σ3 σ1 l(σ1) l(σ2) + 2 l(σ3) 2 l(σ3)
e σ3 σ2 σ1 l(σ1) l(σ2) + 2 l(σ3) 2 l(σ3)
σ1 e σ2 σ3 l(σ1) + l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ2)
σ1 e σ3 σ2 l(σ1) + l(σ2) l(σ1) + 2 l(σ3) l(σ3)
σ1 σ2 e σ3 l(σ1) + l(σ3) 2 l(σ2) + l(σ3) l(σ2)
σ1 σ3 e σ2 l(σ1) + l(σ2) l(σ2) + 2 l(σ3) l(σ3)
σ2 e σ1 σ3 l(σ2) + l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ1)
σ2 σ1 e σ3 l(σ2) + l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ1)

Case III:

ϕ(1) ϕ(2) ϕ(3) ϕ(4) d
(

ϕ(1), ϕ(4)
)

≤ Right Side ≥ Difference ≥
e σ1 σ2 σ3 l(σ2) 2 l(σ1) + l(σ2) 2 l(σ1)
e σ1 σ3 σ2 l(σ2) 2 l(σ1) + l(σ2) 2 l(σ1)
e σ2 σ3 σ1 l(σ1) l(σ1) + 2 l(σ2) 2 l(σ2)
e σ3 σ2 σ1 l(σ1) l(σ1) + 2 l(σ2) 2 l(σ2)
σ1 e σ2 σ3 l(σ1) + l(σ2) 2 l(σ1) + l(σ2) l(σ1)
σ1 e σ3 σ2 l(σ1) + l(σ2) 2 l(σ1) + l(σ2) l(σ1)

Figure 1. Comparision for the choice of ϕ

s1 s1

si

1
  l

e

−1

I

i
i

i

1 1

  l   l   l

  l  l

s1

si

2
  l

s2

e
2

II

i
i

i

1

  l   l   l

  l   l

s1
2

  l
s2

s2
−1

e
2 1

2

2

III

1

  l   l   l

  l   l

Figure 2. Distances between e, σ1, σ2, σ3 with l1 = l(s1), l2 = l(s2)
and li = l(si).

that is, tk is the first instant of time after time tk−1 for which the random walk
leaves the finite set

⋃k−1
j=0 B

(

Xtj
, 2l(σ3)

)

. By transience, tk < ∞ almost surely. Fur-

thermore, we write Hk := Xtk
and R′

n := {Xtj
| j ∈ N with tj ≤ n}. Observe that

(4.4) {Hk,Hkσ1,Hkσ2,Hkσ3} ∩ {Hl,Hlσ1,Hlσ2,Hlσ3} = ∅
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for k 6= l. The idea is to investigate, if enough lamps are on in B
(

Xtj
, l(σ3)

)

such
that we have dTS(η, y) > d(e, y), where y ∈ G and supp(η) is a subset of this ball.
Our aim is to construct deviations to establish such a situation for each of these
balls with a strict positive probability independently of k. See Figure 3.

H1

H2

H3

H4

H5

Figure 3. Hitting points

For n ∈ N0, k ∈ N, define

∆n,k :=

{

r1, if {Hk,Hkσ1,Hkσ2,Hkσ3} ⊆ supp(ηtk+n),

0, otherwise.

If n ≥ tk and ∆n−tk,k = 1, a shortest tour from e to Xn visiting each element of
supp(ηn) has to visit in particular each element of

{

Hk,Hkσ1,Hkσ2,Hkσ3

}

. But by
Lemma 4.2 and (4.3) this means that

dTS(Zn) ≥ d(e, Xn) + r1.

Due to (4.4), iterated applications of the triangular inequality and Lemma 4.2 yield

(4.5) dTS(Zn) ≥ d(e, Xn) +

|R′

n|
∑

j=1

∆n−tj ,j .

Our next aim is to bound P[∆n,k = r1] for n big enough, and thus E[∆n,k], uniformly
from below by a non-zero constant.

Proposition 4.3. There exist λ ∈ N and D > 0 such that E[∆n,k] ≥ D for all
k, n ∈ N with n ≥ λ.

Proof. By transience, there is y ∈ G with d(e, y) ≥ R + l(σ3) such that

p̂ := P(η′,y)

[

∀n ≥ 1 : Xn /∈ B
(

e, R + l(σ3)
)]

> 0 for all η′ ∈ N .
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For each subset A ⊆ {e, σ1, σ2, σ3} there is λA ∈ N such that

DA := µ(λA)
((

∑

w∈A

1w, y
))

> 0.

We sum over all possibilities for the hitting point Hk. Assume now for a moment that
x is the hitting point. Thus, the probability of walking from x with configuration η
to xy such that the lamps at x, xσ1, xσ2, xσ3 are on when the lamplighter reaches
xy is at least D′ := min

{

DA|A ⊆ {e, σ1, σ2, σ3}
}

. The lamplighter will not return

to B
(

x, R + l(σ3)
)

when starting at xy with a positive probability, namely with a

probability of at least p̂. We now obtain for n ≥ λ := max
{

λA|A ⊆ {e, σ1, σ2, σ3}
}

:

E[∆n,k] = r1 · P[∆n,k = r1]

= r1 ·
∑

(η,x)∈L

∑

m≥0

P
[

tk = m, Zm = (η, x), {x, xσ1, xσ2, xσ3} ⊆ supp(ηm+n)
]

≥ r1 ·
∑

(η,x)∈L

∑

m≥0

P
[

tk = m, Zm = (η, x)
]

· D′ · p̂

= r1 · D
′ · p̂ =: D.

�

Now we can summarize:

Theorem 4.4. For the lamplighter random walk on the infinite, finitely generated
group G, generated as a semigroup by the symmetric set S such that G 6= 〈sk, sl〉 for
sk, sl ∈ S,

ℓ ≥ ℓTS > ℓ0.

Proof. In view of inequality (4.5), Fatou’s lemma and Proposition 4.3 give

ℓTS =

∫

lim
n→∞

dTS

(

Zn+λ

)

n
dP

≥

∫

lim sup
n∈N

(

d(e, Xn+λ)

n
+

1

n

|R′

n|
∑

j=1

∆n+λ−tj ,j

)

dP

≥ ℓ0 + lim sup
n∈N

∫
(

1

n

|R′

n|
∑

j=1

∆n+λ−tj ,j

)

dP

= ℓ0 + lim sup
n∈N

n+1
∑

k=1

P
[

|R′
n| = k

]

· E

[

1

n

|R′

n|
∑

j=1

∆n+λ−tj ,j

∣

∣

∣

∣

|R′
n| = k

]

.



ACCELERATION OF LAMPLIGHTER RANDOM WALKS 15

This provides

ℓTS ≥ ℓ0 + lim sup
n∈N

n+1
∑

k=1

P
[

|R′
n| = k

]

·
k

n
· D = ℓ0 + D · lim sup

n∈N

E[|R′
n|]

n
.

By Kingman’s subadditive ergodic theorem E[|R′
n|]/n converges, and due to the

inequality |Rn| ≤ |B
(

e, 2l(σ3)
)

| · |R′
n| its limit is bounded from below by some

constant D̄ > 0, completing the proof. �

4.2. Z-isomorphic Groups. In this section we consider the remaining case, where
G is generated as a semigroup by two elements sk, sl ∈ S, that is, G ≃ Z or
G ≃ Z2 ∗ Z2 = 〈a, b | a2 = b2 = e〉. For the sake of completeness we prove the
following lemma:

Lemma 4.5. Any irreducible random walk (Xn)n∈N0
on G = Z2 ∗ Z2 governed by a

probability measure µ0 with finite first moment is recurrent. In particular, ℓTS = 0.

Proof. Observe that

Z :=
{

(ab)z | z ∈ Z
}

≃ Z

is a subgroup of G, which has index 2. We identify from now on the elements of Z
with integers and write Z for the complement G \ Z. Consider the stopping times
T0 := 0, Tn := min{m ∈ N | Xm ∈ Z, m > Tm−1} for m ∈ N, and define Yn := XTn

.
Then the random walk (Xn)n∈N0

on G is recurrent if and only if (Yn)n∈N0
is recurrent.

We now compute the expectation of the drift Dn := Yn−Yn−1, which is independent
of n. We write µZ(z) = µ0(z)/µ0(Z) for every z ∈ Z and dZ =

∑

w∈Z w µZ(w).

Observe that for each w, w′ ∈ Z we have ww′ ∈ Z and ww′ = −w′w. Now we can
compute the expected drift by distinguishing how one can walk from Yn−1 to Yn:

E[Dn] =
∑

w∈Z

w µ0(w) +
∑

n≥1

∑

w0,wn∈Z

∑

w1,...,wn−1∈Z

(w0 − w1 − · · · − wn−1 + wn) ·

·µ0(w0)µ0(w1) · · ·µ0(wn−1)µ0(wn)

= µ0(Z) · dZ +
∑

n≥1

µ0(Z)n−1
(

∑

w0,wn∈Z

(w0 + wn)µ0(w0)µ0(wn) +

+
(

1 − µ0(Z)
)2

·
∑

w1,...,wn−1∈Z

(−w1 − · · · − wn−1)µZ(w1) . . . µZ(wn−1)
)

= µ0(Z) · dZ −
(

1 − µ0(Z)
)

· dZ

∑

n≥1

(n − 1) µ0(Z)n−1
(

1 − µ0(Z)
)

= µ0(Z) · dZ −
(

1 − µ0(Z)
)

· dZ · µ0(Z)/
(

1 − µ0(Z)
)

= 0.

By Chung-Ornstein [5] it follows that (Yn)n∈N0
is recurrent, and thus (Xn)n∈N0

is
recurrent. From Dyubina [7] follows ℓTS = 0. �
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We want to show that Theorem 4.4 holds also in the case G = Z under suitable
assumptions on the lengths of the elements of S. Note that we may assume again
that ℓ0 > 0 and that |S| ≥ 3. If |S| = 2, then G is isomorphic to Z = 〈S〉 with
S = {−1, 1}, whose Cayley graph is the infinite line, on which one can easily show
that the lamplighter random walk has the same speed as its projection onto G; see
also Bertacchi [3]. Thus, we only have to take a closer look on Z generated by a
symmetric set S with −1, 1 ∈ S and |S| ≥ 3. Observe that if ±1 /∈ S, then we
may apply the results of the previous section. Furthermore, assume that there is
s ∈ S \ {±1} with l(s) < |s| · l(1); otherwise we are more or less in the situation
of S = {±1}, see the end of this section. Moreover, we may assume that d(0, 1) =
d(0,−1) = l(1); otherwise [x0 = 0, x1 = 1] is not a shortest path from 0 to 1, that
is, S \ {−1, 1} provides the same metric as the metric induced by S, that is, we may
apply the results of Section 4.1 in such case. Due to the same argument we may
assume that the only shortest path from 0 to 1 is [x0 = 0, x1 = 1].

We proceed similarily to Section 4.1. We make a case distinction and define:

I. If there is s ∈ S \ {±1} such that r1 = l(s) < l(1), then define σ1 = s,
σ2 = s−1 and σ3 = 1.

II. Otherwise we set σ1 = 1, σ2 = −1 and σ3 = s, where s ∈ N ∩ (S \ {1}) such
that l(s) < |s| · l(1) and l(s) ≤ l(s′) for all s′ ∈ S with l(s′) < |s′| · l(1).

In case I we have trivially d(0, s) = d(0, s−1) = l(s) = r1 and d(s, s−1) ≥ l(s) = r1,
while in case II we have d(0, 1) = d(0,−1) = l(1) = r1 and d(1,−1) ≥ l(1). Moreover:

Lemma 4.6. We have the following equations and lower bounds:

(1) In case I there is some ε0 > 0 such that
(i) d(0, 1) = l(1),

(ii) d(s, 1) ≥ l(1) − l(s) + ε0,
(iii) d(s−1, 1) ≥ l(1) − l(s) + ε0.

(2) In case II there is some ε0 > 0 such that
(i) d(0, s) = l(s),

(ii) d(1, s) ≥ l(s) − l(1) + ε0,
(iii) d(−1, s) ≥ l(s) − l(1) + ε0.

Proof. Equation (1).(i) holds by the assumption made above. For the proof of (1).(ii)
assume that d(s, 1) ≤ l(1) − l(s). Then there is a shortest path [s, x1, . . . , xn = 1]
with d(xi−1, xi) ≤ l(1) − l(s), that is, x−1

i−1xi 6= ±1. But this means that there is
another path from 0 to 1 of length at most l(1), namely [0, s, x1, . . . , xn], distinct
from [0, 1], a contradiction to the assumptions above. As S is finite, existence of ε0

is ensured. Inequality (1).(iii) is proved analogously.
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Assume that equation (2).(i) does not hold. This implies that there is a shortest
path [0, x1, . . . , xn = s] from 0 to s with d(xi−1, xi) < l(s), that is, we may assume
x−1

i−1xi = ±1 by minimality of l(s). But this implies l(s) > d(0, s) = |s| · l(1),
a contradiction to the choice of s. To prove (2).(ii) assume d(1, s) ≤ l(s) − l(1),
that is, there is a shortest path [1, x1, . . . , xn = s] with d(xi−1, xi) ≤ l(s) − l(1),
that is, we may assume x−1

i−1xi = ±1 by minimality of l(s). But this provides now
l(s) ≥ l(1)+d(1, s) = |s| · l(1), a contradiction to the choice of s. Inequality (2).(iii)
is proved analogously. �

We get the analogue to Lemma 4.2:

Lemma 4.7. Let be A = {0, σ1, σ2, σ3} and let ϕ : {1, 2, 3, 4} → A be an injective
function. Then in each of the cases I and II,

d
(

ϕ(1), ϕ(4)
)

+ min{ε0, l(s), l(1)} ≤ d
(

ϕ(1), ϕ(2)
)

+ d
(

ϕ(2), ϕ(3)
)

+ d
(

ϕ(3), ϕ(4)
)

.

Proof. The proof works analogously to the proof of Lemma 4.2; compare with
Figure 4 for the comparision of the distances in case I. The inequality for case II
follows analogously by symmetry. �

ϕ(1) ϕ(2) ϕ(3) ϕ(4) d
(

ϕ(1), ϕ(4)
)

≤ Right Side ≥ Difference ≥
0 s s−1 1 l(1) 2 l(s) + (l(1) − l(s) + ε0) l(s) + ε0

0 s−1 s 1 l(1) 2 l(s) + (l(1) − l(s) + ε0) l(s) + ε0

0 1 s−1 s l(s) l(1) + (l(1) − l(s) + ε0) + l(s) l(1) + ε0

0 s−1 1 s l(s) l(s) + 2(l(1) − l(s) + ε0) ε0

0 1 s s−1 l(s) l(1) + (l(1) − l(s) + ε0) + l(s) l(1) + ε0

0 s 1 s−1 l(s) l(s) + 2(l(1) − l(s) + ε0) 2ε0

s 0 1 s−1 2 l(s) l(s) + l(1) + (l(1) − l(s) + ε0) ε0

s 1 0 s−1 2 l(s) (l(1) − l(s) + ε0) + l(1) + l(s) ε0

s 0 s−1 1 l(s) + l(1) 2 l(s) + (l(1) − l(s) + ε0) ε0

s s−1 0 1 l(s) + l(1) 2l(s) + l(1) l(s)
s−1 0 s 1 l(s) + l(1) 2 l(s) + (l(1) − l(s) + ε0) ε0

s−1 s 0 1 l(s) + l(1) 2 l(s) + l(1) l(s)

Figure 4. Comparision for the choices of ϕ in case I

Now we can conlude:

Corollary 4.8. For the lamplighter random walk on G = Z, generated as a semi-
group by the symmetric set S such that −1, 1 ∈ S, |S| ≥ 3 and l(s) < |s| · l(1) for
some s ∈ S \ {−1, 1},

ℓ ≥ ℓTS > ℓ0.
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Proof. Due to Lemma 4.7 the proof follows analogously to the considerations of
Section 4.1, where we redefine ∆n,k by

∆n,k :=

{

min{ε0, l(s), l(1)}, if {Hk,Hkσ1,Hkσ2,Hkσ3} ⊆ supp(ηtk+n),

0, otherwise.

�

We now explain the necessity of having some s ∈ S \ {−1, 1} with l(s) < |s| · l(1). If
this assumption is not satisfied, then the metric on G = Z is d(x, y) = r1 ·|x−y|, that
is, we have the natural metric on Z if r1 = 1. In this case the lamplighter random
walk has the same speed as its projection onto the group G. E.g., consider G = Z

generated by S =
{

±1,±2,±3
}

with l(±1) = 1, l(±2) = 3 and l(±3) = 5. Observe
that [0, 1, 2, . . . , z] for z > 0 is a shortest path from 0 to z. Let be p ∈ (1/2; 1).
We equip Z2 ≀ Z with a transient random walk defined by the following transition
probabilities:

µ(0, 1) = µ(10, 1) = µ(0, 2) = µ(10, 2) = µ(0, 3) = µ(10, 3) = p/6,

µ(0,−1) = µ(10,−1) = µ(0,−2) = µ(10,−2) = µ(0,−3) = µ(10,−3) = (1 − p)/6.

Thus, d(e, Xn)/n converges almost surely to 2p − 1. Analogously to the case G =
Z = 〈±1〉, it can be shown that the lamplighter does not escape faster than its
projection on Z, that is, we have ℓTS = ℓ0.

5. Remarks

5.1. Generalization to Transitive Graphs and Markovian Distance. The re-
sults of Sections 3 and 4 can be generalized to transient lamplighter random walks on
transitive, connected, locally finite graphs, which are not necessarily Cayley graphs
of finitely generated groups. Again, it is assumed that the lamplighter random walk’s
projection onto the base graph is transient. The results of the previous sections also
apply in this case, if graph automorphisms leave the lamplighter random walk op-
erator invariant; compare with Gilch [8].

One can also investigate the rate of escape with respect to the Markovian distance
dP

(

(η, x), (η′, x′)
)

on Z2 ≀ G, which is given by

min

{

n
∑

i=1

d(xi−1, xi)

∣

∣

∣

∣

n ∈ N0, there are x0, x1, . . . xn ∈ G with x0 = x, xn = x′

such that P(η,x)

[

X1 = x1, . . . , Xn = x′, ηn = η′
]

> 0

}

.

The limit ℓP := limn→∞ dP

(

(0, e), Zn

)

/n exists almost surely by Kingman’s subad-
ditive ergodic theorem and is almost surely constant. It can be shown that if the
Cayley graph of G has infinitely many ends, then with respect to the Markovian
distance the lamplighter escapes faster to infinity than its projection onto G. If the
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assumption is dropped one can find counterexamples such that the lamplighter is
not faster; e.g. if G = Z × Z2.

5.2. Multi-State Lamps. The presented techniques for proving the acceleration
of the lamplighter random walks can also be applied to the case that there are more
possible lamp states encoded by elements of Z/rZ with r > 2. In this case one may
assign lengths to a set of generators of Z/rZ. Then the presented results can be
proved analogously.

5.3. Greenian Distance. Another metric on G is given by the Greenian distance

dGreen(x, y) := − ln Px[Ty < ∞],

where Ty is the hitting time of y ∈ G. Analogously, we can define the Greenian
metric for the random walk on Z2 ≀ G. These metrics are not path metrics induced
by lengths on the set of generators. Benjamini and Peres [2] proved that the entropy
and the rate of escape w.r.t. the Greenian distance of random walks on finitely
generated groups with finite support are equal. Blachère, Häıssinsky and Mathieu
[4] generalized this result to random walks on countable groups. If the random walk
on G is governed by a probability measure µ0 with 〈supp µ0〉 = G, then the entropy
of the lamplighter random walk on Z2 ≀ G is strictly bigger than the entropy of the
random walk’s projection onto G, because the Poisson boundary of the lamplighter
random walk projects non-trivially onto the one of the random walk on the base
graph; compare with Kaimanovich and Vershik [12, Theorem 3.2]. It follows that
with respect to the Greenian distance the lamplighter random walk is faster than
its projection onto G.
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