
ar
X

iv
:1

51
2.

02
41

8v
2 

 [
m

at
h.

PR
] 

 9
 M

ar
 2

01
6

Asymptotic entropy of random walks on Fuchsian buildings and

Kac-Moody groups

Lorenz Gilch∗ Sebastian Müller† James Parkinson‡

March 10, 2016

Abstract

In this article we prove existence of the asymptotic entropy for isotropic random walks
on regular Fuchsian buildings. Moreover, we give formulae for the asymptotic entropy, and
prove that it is equal to the rate of escape of the random walk with respect to the Green
distance. When the building arises from a Fuchsian Kac-Moody group our results imply
results for random walks induced by bi-invariant measures on these groups, however our
results are proven in the general setting without the assumption of any group acting on the
building. The main idea is to consider the retraction of the isotropic random walk onto an
apartment of the building, to prove existence of the asymptotic entropy for this retracted
walk, and to ‘lift’ this in order to deduce the existence of the entropy for the random walk
on the building.

1 Introduction

Buildings are combinatorial/geometric objects which arose from the fundamental work of Jacques
Tits related to semisimple Lie groups and algebraic groups. Celebrated results in the theory
include Tits’ classification theorems for irreducible thick spherical buildings of rank at least 3,
and irreducible thick affine buildings of rank at least 4 (see Tits [24] and [25]), showing that
these classes of buildings are essentially equivalent to certain classes of Lie-type groups. Later
developments in the theory of more general Kac-Moody groups stimulated interest in buildings
of more general type (see Tits [26]).

The theory of random walks on buildings has, until recently, focused primarily on the spher-
ical and affine cases (see the survey of Parkinson [21]). In [13] we initiated an investigation of
probability theory on Fuchsian buildings, and proved a rate of escape theorem and a central
limit theorem for random walks on these buildings. In this sequel to [13] we study the asymp-
totic entropy for random walks on Fuchsian buildings and associated groups, which is another
important characteristical number of random walks.

Before stating our main results we give some background. Let (W,S) be a Coxeter system.
A building (∆, δ) of type (W,S) consists of a set ∆ (whose elements are the chambers of the
building) along with a “generalised distance function” δ : ∆×∆ → W satisfying various axioms
analogously to the usual metric space axioms (see Definition 2.1). Thus the “distance” between
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chambers x, y ∈ ∆ is an element δ(x, y) of the Coxeter group W , and by taking word length
in W this gives rise to a metric d(·, ·) on the building.

The structure of the building (∆, δ) is heavily influenced by the Coxeter system (W,S). If W
is a finite reflection group then the building is called spherical, and if W is a Euclidean reflection
group then the building is called affine. In this paper we are interested in the case where W is
a group generated by reflections in the hyperbolic plane, in which case the building is called a
Fuchsian building. In general, buildings contain many copies of the Cayley graph of the Coxeter
system (W,S). These substructures are called the apartments of the building, and in the case
of a Fuchsian building each apartment can be realised as a tessellation of the hyperbolic disc H2

by the reflection group W .
While the classification theorems for spherical and affine buildings imply that these buildings

always admit transitive automorphism groups if the rank of the building is sufficiently large, the
case for Fuchsian buildings is quite different and there exist free constructions of these buildings
with the only constraints being the existence of certain local geometries (see Ronan [22] and
[13, §2.4]). Thus Fuchsian buildings typically admit no transitive group action.

We consider the class of isotropic random walks (Xn)n≥0 on the set ∆ of chambers of a
Fuchsian building. These random walks have the property that their single-step transition
probabilities p(x, y), x, y ∈ ∆, depend only on the generalised distance δ(x, y). While we proved
in [13] a rate of escape theorem for isotropic random walks on Fuchsian buildings and associated
groups, we turn our attention in the present paper to an investigation of the asymptotic entropy
for isotropic random walks on Fuchsian buildings.

The (asymptotic) entropy, as introduced by Avez [3], of a random walk (Xn)n≥0 is defined
by

h = lim
n→∞

−
1

n
E[log πn(Xn)] if the limit exists,

where πn is the distribution of Xn. Intuitively, the entropy can be seen as the “asymptotic
uncertainty” of the random walk and it plays an important role in the description of the asymp-
totic behavior of the random walk, see Derriennic [9, 10], Guivarc?h [15], Kaimanovich [17],
Kaimanovich and Vershik [18] and Vershik [24], amongst others.

It is well-known that the limit defining h necessarily exists for random walks on groups
whenever E[− log π1(X1)] < ∞ (this is an application of Kingman’s subadditive ergodic theo-
rem [17]). However existence of the entropy for more general structures is not known a priori.
In particular in our setting of Fuchsian buildings there is typically no transitive group action
on the building, and hence the existence of entropy cannot be straightforwardly deduced from
Kingman’s theorem due to lack of subadditivity. This forces us to employ other techniques,
primarily generating functions.

Our generating function approach is motivated by the work of Benjamini and Peres [4] where
it is shown that for random walks on groups the entropy equals the rate of escape with respect to
the Green distance; compare also with Blachère, Häıssinsky and Mathieu [5]. Indeed we prove in
this paper that the entropy h exists for isotropic random walks on Fuchsian buildings, and show
that h equals the rate of escape with respect to the Green distance. Moreover, we prove that the
sequence − 1

n log πn(Xn) converges to h in L1, and we also show that h can be computed along
almost every sample path as the limit inferior of the aforementioned sequence. The question of
almost sure convergence of − 1

n log πn(Xn) to h, however, remains open.
The main idea in our proofs is to project the random walk (Xn)n≥0 on the building onto

the Coxeter group W by setting Xn = δ(o,Xn), where o ∈ ∆ is some fixed chamber (the
origin of the building). Geometrically this projection is a retraction of the building onto an
apartment, and we refer to (Xn)n≥0 as the retracted walk. It turns out that (Xn)n≥0 is indeed a
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random walk on W , and we write p(u, v), u, v ∈ W , for the transition probabilities for this walk.
However we note that the retracted walk is not W -invariant, that is, p(wu,wv) 6= p(u, v) in
general for w ∈ W . In order to track the projected random walk’s path to infinity we construct
a sequence of nested cones in (W,S) which allows us to cut the random walk trajectory into
aligned pieces such that these pieces arise as the realization of some Markov chain. From this
construction we are able to deduce the existence of the entropy of the retracted walk, which is
given by h = limn→∞− 1

nE
[
log π(Xn)

]
with π being the distribution of Xn. It is then relatively

straightforward to prove the existence of the entropy for the random walk on the building.
Denote by p(k)(x, y) the k-step transition probabilities of (Xn)n≥0 and by p(k)(u, v) the k-step
transition probabilities of (Xn)n≥0. We define the Green functions

G(x, y) :=

∞∑

k=0

p(k)(x, y) and G(u, v) :=

∞∑

k=0

p(k)(u, v).

With the above notations and definitions in hand, the main results of this paper are sum-
marised in the following.

Theorem 1.1. Let (∆, δ) be a locally finite thick regular Fuchsian building of type (W,S). Let
(Xn)n≥0 be an isotropic random walk on ∆ with bounded range, and let (Xn)n≥0 be the associated
retracted random walk on W . Then:

1. The asymptotic entropy h of (Xn)n≥0 exists, and equals the rate of escape of (Xn)n≥0 with
respect to the Green distance. That is,

h = lim
n→∞

−
1

n
logG(e,Xn) almost surely.

2. The asymptotic entropy h of (Xn)n≥0 exists, and is equal to the rate of escape of (Xn)n≥0

with respect to the Green distance. That is,

h = lim
n→∞

−
1

n
logG(e,Xn) almost surely.

Moreover, we have the formula

h = h+ hq, where hq = lim
n→∞

1

n
log qXn

almost surely,

where for w ∈ W the number qw is the cardinality of the sphere {x ∈ ∆ | δ(o, x) = w}.

We note that Theorem 3.16 together with (3.13) gives a formula for h in terms of the rate of
escape and the entropy of a hidden Markov chain, while Proposition 4.2 gives a formula for hq.

We also note that Ledrappier and Lim [19] have investigated volume entropy for hyperbolic
buildings (that is, the exponential growth rate of balls in the building). While this form of
entropy is quite different to the asymptotic entropy considered here, it is interesting to note the
similar forms to the formulae in Theorem 1.1 and [19, Theorem 1.1].

The framework of our proofs follows ideas from Gilch [11], where the entropy for random
walks on regular languages is investigated. Similar results, in different contexts, concerning
existence of the entropy are proved in Gilch and Müller [15] for random walks on directed covers
of graphs, and in Gilch [14] for random walks on free products of graphs. Moreover, a survey
article on rate of escape and entropy of random walks is Gilch and Ledrappier [12] and, in
particular, for random walks on hyperbolic groups see Ledrappier [18].
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When a group acts sufficiently transitively on a regular Fuchsian building Theorem 1.1
provides information on the entropy for random walks associated to these groups. For examples
of this conversion we refer to [13, Corollary 1.3].

In Section 2 we give a brief introduction to Coxeter groups, Fuchsian buildings, and isotropic
random walks on these structures (with more details available in the companion paper [13]). In
Section 3 we prove existence of the asymptotic entropy of the retracted walk, and derive formulae
for the entropy. In Section 4 we lift these results to the isotropic random walk on the building,
completing the proof of Theorem 1.1.

2 Coxeter groups and buildings

In this section we give an introduction to Fuchsian buildings and random walks on them: we
give the formal definition of Coxeter systems and Fuchsian buildings, define isotropic random
walks on them, and collect some important properties; we refer to [13] for more details.

2.1 Fuchsian Coxeter groups

2.1.1 Coxeter systems

A Coxeter system (W,S) is a group W with neutral element e generated by a finite set S 6∋ e
with relations

s2 = e and (st)mst = e for all s, t ∈ S with s 6= t,

where mst = mts ∈ Z≥2 ∪ {∞} for all s 6= t (if mst = ∞ then it is understood that there is no
relation between s and t). The word length of w ∈ W is defined as

ℓ(w) := min{n ≥ 0 | w = s1 · · · sn with s1, . . . , sn ∈ S}

and an expression w = s1 · · · sn with n = ℓ(w) is called a reduced expression for w. If w ∈ W
and s ∈ S then ℓ(ws) ∈ {ℓ(w) − 1, ℓ(w) + 1}. In particular, ℓ(ws) = ℓ(w) is impossible. The
distance between elements u ∈ W and v ∈ W is defined as

d(u, v) := ℓ(u−1v).

The ball of radius n ∈ N0 with centre u ∈ W is Bn(u) := {v ∈ W | d(u, v) ≤ n}. A path in W is
a sequence of words [u0, u1, . . . , un] such that u−1

i−1ui ∈ S for all i ∈ {1, . . . , n}. A path from u to
v is a geodesic if it is a path of shortest length from u to v. A ray is an infinite path of the form
[u0, u1, . . . ] such that u−1

i−1ui ∈ S for all i ∈ N. An infinite geodesic is a ray starting at e with
d(e, ui) = i. Sometimes we will also identify paths or rays γ by their vertex sets {u0, u1, . . . }.

A Coxeter system (W,S) is irreducible if there is no partition of the generating set S into
disjoint nonempty sets S1 and S2 such that s1s2 = s2s1 for all s1 ∈ S1 and all s2 ∈ S2. We will
always assume that (W,S) is irreducible.

2.1.2 Fuchsian Coxeter groups

We now define a special class of Coxeter groups that are discrete subgroups of PGL2(R), called
Fuchsian Coxeter groups. Let n ≥ 3 be an integer, and let k1, . . . , kn ≥ 2 be integers satisfying

n∑

i=1

1

ki
< n− 2. (2.1)
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Assign the angles π/ki to the vertices of a combinatorial n-gon F . There is a convex realisation
of F (which we also call F ) in the hyperbolic disc H

2, and the subgroup of PGL2(R) generated
by the reflections in the sides of F is a Coxeter group (W,S) (see Davis [8, Example 6.5.3]). If
s1, . . . , sn are the reflections in the sides of F (arranged cyclically), then the order msisj = mij

of sisj is

mij =

{
ki if j = i+ 1

∞ if |i− j| > 1,
(2.2)

where the indices are read cyclically with n+ 1 ≡ 1.
A Coxeter system (W,S) given by data (2.1) and (2.2) is called a Fuchsian Coxeter system.

Observe that these systems are always infinite. The group W acts on H
2 with fundamental

domain F . Note that this action does not preserve orientation, however the index 2 subgroupW ′

generated by the even length elements of W is orientation preserving. Thus W ′ is a discrete
subgroup of PSL2(R), and so is a ‘Fuchsian group’ in the strictest sense of the expression.

The Fuchsian Coxeter system (W,S) induces a tessellation of H2 by isometric polygons wF ,
w ∈ W . The polygons wF are called chambers, and we usually identify the set of chambers
with W by wF ↔ w. We call this the hyperbolic realisation of the Coxeter system (W,S) (it is
closely related to the Davis complex from [8], see the discussion in Abramenko and Brown [1,
Example 12.43]).

We refer e.g. to [13, Example 2.1] for examples of Fuchsian Coxeter systems.

2.2 Fuchsian buildings

We now give an axiomatic definition of buildings, following [1].

Definition 2.1. Let (W,S) be an irreducible Fuchsian Coxeter system. A Fuchsian building of
type (W,S) is a pair (∆, δ) where ∆ is a nonempty set (whose elements are called chambers)
and δ : ∆×∆ → W is a function (called the Weyl distance function) such that if x, y ∈ ∆ then
the following conditions hold:

(B1) δ(x, y) = e if and only if x = y.

(B2) If δ(x, y) = w and z ∈ ∆ satisfies δ(y, z) = s with s ∈ S, then δ(x, z) ∈ {w,ws}. If, in
addition, ℓ(ws) = ℓ(w) + 1, then δ(x, z) = ws.

(B3) If δ(x, y) = w and s ∈ S, then there is a chamber z ∈ ∆ with δ(y, z) = s and δ(x, z) = ws.

Let (∆, δ) be a building of type (W,S) and let s ∈ S. Chambers x, y ∈ ∆ are s-adjacent
(written x ∼s y) if δ(x, y) = s. One useful way to visualise a building is to imagine an |S|-gon
with edges labelled by the generators s ∈ S (think of the edges as being coloured by |S| different
colours). Call this |S|-gon the base chamber which we denote by o. Now take one copy of the
base chamber for each element x ∈ ∆, and glue these chambers together along edges so that
x ∼s y if and only if the chambers are glued together along their s-edges.

A gallery of type (s1, . . . , sn) joining x ∈ ∆ to y ∈ ∆ is a sequence x0, x1, . . . , xn of chambers
with

x = x0 ∼s1 x1 ∼s2 · · · ∼sn xn = y.

This gallery has length n.
The Weyl distance function δ has a useful description in terms of minimal length galleries

in the building: if s1 · · · sn is a reduced expression in W then δ(x, y) = s1 · · · sn if and only if
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there is a minimal length gallery in ∆ from x to y of type (s1, . . . , sn). The (numerical) distance
between chambers x, y ∈ ∆ is

d(x, y) := “length of a minimal length gallery joining x to y” = ℓ(δ(x, y)),

Note that we use the same notation d(·, ·) for distance in both the Coxeter system and the
building.

A building (∆, δ) is called thick if |{y ∈ ∆ | x ∼s y}| ≥ 2 for all chambers x ∈ ∆ and
all s ∈ S, and thin if |{y ∈ ∆ | x ∼s y}| = 1 for all chambers x ∈ ∆ and all s ∈ S. For
each Coxeter system (W,S) there is (up to isomorphism) a unique thin building of type (W,S).
This thin building is called the Coxeter complex of (W,S), and has ∆ = W and δ = δW where
δW (u, v) = u−1v for all u, v ∈ W .

A building (∆, δ) is regular if

qs := |{y ∈ ∆ | x ∼s y}| is finite and does not depend on x ∈ ∆.

For the remainder of this paper we will assume that (∆, δ) is regular. The numbers (qs)s∈S are
called the thickness parameters of the building.

For each x ∈ ∆ and each w ∈ W , let

∆w(x) := {y ∈ ∆ | δ(x, y) = w} be the “sphere of radius w” centred at x.

By Parkinson [20, Proposition 2.1] the cardinality qw = |∆w(x)| does not depend on x ∈ ∆, and
is given by

qw = qs1 · · · qsℓ whenever w = s1 · · · sℓ is a reduced expression.

If (∆′, δ′) is a building with ∆′ ⊆ ∆ and δ|∆′ = δ′ then we call (∆′, δ′) a sub-building of
(∆, δ).

Finally, let us remark that we will typically use the letters u, v, w for elements of a Coxeter
group W , and the letters x, y, z for chambers of a building (∆, δ).

2.3 Apartments and retractions

Let (W,S) be an irreducible Fuchsian Coxeter system, and let (∆, δ) be a building of type (W,S).
The thin sub-buildings of (∆, δ) of type (W,S) are called the apartments of (∆, δ). Thus each
apartment is isomorphic to the Coxeter complex of (W,S). Two key facts concerning apartments
are as follows:

(A1) If x, y ∈ ∆ then there is an apartment A containing both x and y.

(A2) If A and A′ are apartments containing a common chamber x then there is a unique iso-
morphism θ : A′ → A fixing each chamber of the intersection A ∩A′.

In fact conditions (A1) and (A2) can be taken as an alternative, equivalent definition of buildings
(see [1, Definition 4.1] for the precise statement, and [1, Theorem 5.91] for the equivalence of
the two axiomatic systems).

Roughly speaking, the properties (A1) and (A2) ensure that the hyperbolic metric on each
apartment can be coherently ‘glued together’ to make (∆, δ) a CAT(−1) space (see [8, Theo-
rem 18.3.9] for details).

Fix, once and for all, an apartment A0 and a chamber o ∈ A0. Identify A0 with the Coxeter
complex of (W,S) (or just with W ) such that o is identified with e, the neutral element of W .
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Thus we regard W = A0 as a “base apartment” of ∆. The retraction ρ of ∆ onto W with
centre o is the function ρ : ∆ → W with

ρ(x) := δ(o, x). (2.3)

Alternatively, let A′ be any apartment containing o and x (using (A1)) and let θ : A′ → W be
the isomorphism from (A2) fixing W ∩ A′. Then ρ(x) = θ(x). Thus ρ “radially flattens” the
building onto W , with centre o ∈ A0 = W .

We also note that in the apartment A0 = W the Weyl distance function is given by

δ(u, v) = u−1v for all u, v in the base apartment W.

2.4 Automata for Coxeter Groups

The notions of cones, cone types, and automata are well established for finitely generated groups,
with Epstein, Cannon et al.[9] being a standard reference. We briefly recall these notions in our
context of Coxeter groups.

Let (W,S) be a Coxeter system. Let w ∈ W . The cone of (W,S) with root w is the set

CW (w) := {v ∈ W | d(e, v) = d(e, w) + d(w, v)}.

That is, CW (w) is the set of all elements v ∈ W such that there exists a geodesic from e to v
passing through w. The cone type of the cone CW (w) is

TW (w) := {v ∈ W | wv ∈ CW (w)} = w−1CW (w).

Let T (W,S) be the set of cone types of (W,S). By Brink and Howlett [6, Theorem 2.8] there
are only finitely many cone types in a Coxeter system (W,S), and so |T (W,S)| < ∞.

Definition 2.2. The Cannon automaton of the Coxeter system (W,S) is the directed graph
A(W,S) with vertex set T (W,S) and with labelled edges defined as follows: there is a directed
edge with label s ∈ S from cone type T to cone type T′ if and only if there exists w ∈ W such
that T = TW (w) and T′ = TW (ws) and d(e, ws) = d(e, w) + 1.

Let G = (VG, EG, s∗) be a finite, directed graph with vertex set VG, edge set EG and with
some distinguished vertex s∗ ∈ VG together with a labelling α : EG → S of the edges. A path in
G is a sequence of vertices [x0,x1, . . . ,xm], m ∈ N, such that there is a directed edge from xi−1

to xi for all i ∈ {1, . . . ,m}. A ray is an infinite path of the form [x0,x1, . . . ] such that there
is a directed edge from xi−1 to xi for all i ∈ N. Sometimes we will identify paths or rays by
their set of vertices {x0,x1, . . . }. Denote by P the set of all finite paths in G starting at s∗ and
by P∞ the set of all rays in G starting at s∗. Each path of the form γ = [s∗,x1, . . . ,xm] ∈ P,
γ = [s∗,x1, . . .] ∈ P∞ respectively, gives rise to a path in W starting from e. Denote by e1
the edge between s∗ and x1 and by ei the edge between xi−1 and xi for i ≥ 2; the path in W
corresponding to γ is then defined by

α(γ) :=
[
e, α(e1), α(e1)α(e2), . . . ,

m∏

i=1

α(ei)
]
, α(γ) :=

[
e, α(e1), α(e1)α(e2), . . .

]
respectively.

For γ ∈ P, we define α∗(γ) :=
∏m

i=1 α(ei).

Definition 2.3. An automatic structure for (W,S) is a finite, directed graph A = (V,E, s∗)
along with a labelling α : E → S such that:
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1. No edge in E ends at s∗.

2. For v ∈ V \ {s∗}, there is a path in A from s∗ to v.

3. For every path γ ∈ P in A, the path α(γ) is a geodesic in W .

4. The mapping α∗ : P → W is surjective.

The graph A is called a finite state automaton. We speak of a strongly automatic structure if
α∗ defines a bijection between P and W .

It is easy to check that the Cannon automaton A(W,S), equipped with the natural labelling
induced from the labels on the edges, is an automatic structure for (W,S) with s∗ = T (e). We
may obtain a strongly automatic structure A = A(W,S) from A(W,S) by choosing a lexico-
graphic order of the cone types; see [9, Section 2.5] and Appendix A for details.

The strongly automatic structure A allows us to define cones CA and cone types TA as follows.
For given w ∈ W and a path γw ∈ P in A with α∗(γw) = w, we write CA(w) for the set of all
elements of W which are represented by paths in A with γw as prefix, that is,

CA(w) := {u ∈ W | ∃γ ∈ P : α∗(γ) = u, γ goes through w}.

We call CA(w) the cone with respect to A rooted at w, which is well defined since the path γw
is uniquely determined. We say that w is the root of the cone CA(w). Moreover, we can define
cone types with respect to A as TA(w) := w−1CA(w). Note that the cones C(w) and CA(w) are
not necessarily equal. The important property is now that CA(u) ∩ CA(v) = ∅ if u 6= v and
d(e, u) = d(e, v). Thus two cones with respect to A are either disjoint or nested in each other
(CA(u) ⊆ CA(v) or CA(v) ⊆ CA(u)). Obviously, we still have only finitely many cone types with
respect to A. From now on, when we speak of cones and cone types we always think of the cones
and types with respect to the strongly automatic structure A unless stated otherwise. For sake
of brevity we write C(w) := CA(w) and T (w) := TA(w).

A cone type T′ is accessible from the cone type T if there is a path from T to T′ in the
(directed) graph A. In this case we write T → T′. A cone type T is called recurrent if T → T,
and otherwise it is called transient. The set of recurrent vertices induces a (directed) subgraph
AR of A. We call the automaton A strongly connected if each recurrent cone type is accessible
from any other recurrent cone type in the subgraph AR, that is, the subgraph AR consists of
one connected component. We will sometimes identify AR with its vertex set.

Recurrence and accessibility of cone types with respect to the Cannon automaton A is defined
analogously to A. By [13, Theorem 3.2], the subgraph AR of A is strongly connected. Moreover,
we have:

Theorem 2.4. Let (W,S) be an irreducible Fuchsian Coxeter system. The strongly automatic
structure A for (W,S) is strongly connected.

Proof. We provide the proof in Appendix A.

A first consequence of this theorem is that there is some K ∈ N such that W \BK(e) contains
only elements of recurrent cone types.

We give further useful definitions related to cones and cone types. The (inner) boundary of
a cone C(w) of (W,S) is

∂C(w) := {u ∈ C(w) | ∃v ∈ W \ C(w) : d(u, v) = 1}.
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∂L1
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Figure 1: Illustrations of the cone C(w) and its different boundaries.

More generally, if L ≥ 1, the L-boundary of a cone C(w) of (W,S) is defined to be

∂LC(w) := {u ∈ C(w) | ∃v ∈ W \ C(w) : d(u, v) ≤ L}.

We call IntLC(w) := C(w)\∂LC(w) the L-interior of C(w). See also Figure 1. The L-boundary
of a cone type T(w) of (W,S) with respect to A is defined by

∂LT(w) := {u ∈ T(w) | ∃v ∈ W \T(w) : d(u, v) ≤ L},

and the L-interior of the cone type T(w) is IntLT(w) := T(w) \ ∂LT(w).
Using planarity of the Cayley graph of (W,S) we have the following important description

for the boundary of a cone C(w), see Häıssinsky, Mathieu and Müller [16, Lemma 2.4] and
compare with [13, Lemma 5.1].

Lemma 2.5. Let u ∈ W \ {e}. Then the boundary ∂C(u) is contained in the union of two
geodesic rays in W starting at u which can also be described by rays in A.

We recall the well-known crucial fact that geodesics in a hyperbolic group either stay within
bounded distance of each other or diverge exponentially. More precisely, there exists some
exponential divergence function e : N0 → R such that the following holds. Let u, v1, v2 ∈ W
and γ1 a geodesic from u to v1 and γ2 a geodesic from u to v2. We denote by γi(n) the point
on γi at distance n ∈ N0 to u. Then, for all r,R ∈ N0 with R + r ≤ min{d(u, v1), d(u, v2)} and
d(γ1(R), γ2(R)) ≥ e(0), every path η starting in γ1(R+ r), visiting only vertices in W \BR+r(u)
and ending in γ2(R + r) has length of at least e(r), see also Figure 2. In particular, two
geodesics that have been at least e(0) apart can never intersect again. Furthermore, for each
cone of recurrent type the two geodesics which describe its boundary diverge exponentially. This
follows from exponential growth of (W,S) which yields that AR is not a circle.

2.5 Isotropic random walks on regular buildings

We will henceforth write (∆, δ) for a thick regular building of type (W,S), where (W,S) is
an irreducible Fuchsian Coxeter system. A (time-homogeneous) random walk (Xn)n≥0 on the
set ∆ of chambers of the building (∆, δ) is isotropic if the single-step transition probabilities
p(x, y) := P[Xn+1 = y | Xn = x] of the walk satisfy

p(x, y) = p(x′, y′) whenever δ(x, y) = δ(x′, y′).
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u

v1

v2

> e(0)

BR+r(u)

γ1(R)

γ2(R)

γ1(R + r)

γ2(R + r)

η

Figure 2: Geodesics diverge exponentially: length of path η is bigger than e(r).

In other words, the probability of jumping from chamber x to chamber y in one step depends only
on the Weyl distance δ(x, y). Thus an isotropic random walk is determined by the probabilities

pw := P[X1 ∈ ∆w(o) | X0 = o], so that p(x, y) = pw/qw if δ(x, y) = w.

We will typically stipulate X0 = o (the fixed base chamber), and we will always assume that
(Xn)n≥0 is irreducible. Since ∆ is thick, by [13, Lemma 4.2] the irreducible isotropic random
walk (Xn)n≥0 on ∆ is necessarily aperiodic.

For each n ≥ 0 the n-step transition probabilities are denoted by

p(n)(x, y) := P[Xn = y | X0 = x] and p(n)w := P[Xn ∈ ∆w(o) | X0 = o].

Then p(n)(x, y) = p
(n)
w /qw whenever δ(x, y) = w. For x, y ∈ ∆, the Green function is then given

by

G(x, y) :=
∑

n≥0

p(n)(x, y).

By irreducibility, the spectral radius of (Xn)n≥0 is given by

̺(P ) := lim sup
n→∞

p(n)(x, y),

and this value does not depend on the pair x, y ∈ ∆, and by [13, Corollary 4.9] we have ̺(P ) < 1.
This implies transience of (Xn)n≥0.

We will assume that (Xn)n≥0 has bounded range, that is, there is a minimal number L0 ≥ 0
such that

pw 6= 0 implies that ℓ(w) ≤ L0. (2.4)

We set ε0 := min{pw/qw | w ∈ W,pw > 0}. Thus ε0 > 0.
Let πn be the distribution of Xn. The asymptotic entropy of the random walk (Xn)n≥0 is

given by

h := lim
n→∞

−
1

n
E[log πn(Xn)],
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if the limit exists. The main goal of this article is to prove that this limit exists, and to give
formulae for it.

It is sufficient to prove our results under the assumption that ps > 0 for all s ∈ S. To see
this, note that by [13, Lemma 4.3.2] there is an M ≥ 1 such that the M -step walk (XnM )n≥0

satisfies p
(M)
s > 0 for all s ∈ S, and by the bounded range assumption proving existence of the

limit limn→∞− 1
nME

[
log πnM (XnM )

]
implies that − 1

nE
[
log πn(Xn)

]
converges to the same limit

due to

πnM(XnM ) · εk0 ≤ πnM+k(XnM+k) ≤
1

εM−k
0

π(n+1)M (X(n+1)M ) a.s. for k ∈ {0, 1, . . . ,M}.

Thus, without loss of generality we will assume throughout the paper due to (2.4) that

p(x, y) ≥ ε0 > 0 whenever d(x, y) = 1. (2.5)

Another fundamental statistic of the random walk (Xn)n≥0 is the rate of escape or drift
which is given by

v := lim
n→∞

d(o,Xn)

n
. (2.6)

This limit exists almost surely and is constant, see [13, Theorem 1.1]. The rate of escape with
respect to the Green distance is given by

lim
n→∞

−
1

n
logG(o,Xn),

if the limit exists. In Corollary 4.4 we show that this limit exists and equals the asymptotic
entropy h.

2.6 Retracted walk

The main tool for our proof of existence of the asymptotic entropy of the random walk (Xn)n≥0 on
(∆, δ) is to look at the image Xn := ρ(Xn) of the random walk under the retraction ρ : ∆ → W .
In [13, Proposition 4.5] we have shown that the stochastic process (Xn)n≥0 on W is in fact a
random walk on W , which we call the retracted walk. We denote analogously the single-step
transition probabilities by p(u, v) and the n-step transition probabilities by p(n)(u, v), and we
will use the notation Pu[ · ] := P[ · |X0 = u]. However we note that the retracted walk is not W -
invariant. That is, p(wu,wv) 6= p(u, v) in general. But we have the following weaker invariance
property which roughly says that the transition probabilities of the retracted walk in two cones
of the same type are the same:

Proposition 2.6. Let T be a cone type of (W,S) with respect to the strongly automatic structure
A and w1, w2 ∈ W with T (w1) = T (w2) = T. Then

p(w1u,w1v) = p(w2u,w2v) for all u ∈ T and all v ∈ IntL0T = T \ ∂L0T.

Proof. The proof follows directly from [13, Proposition 4.7], where these equations were shown
for the cones with respect to the Cannon automaton A; the equations also hold for the cones with
respect to the strongly automatic structure A since CA(w) ⊆ CW (w) and also IntL0CA(w) ⊆
IntL0CW (w).

The following important property is proven analogously to [13, Lemma 5.8] by noting that
there are only finitely many cone types.
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Lemma 2.7. There exists a constant pesc > 0 such that for all w ∈ W

Pw[Xn ∈ C(w) for all n ≥ 0] ≥ pesc.

Let P :=
(
p(u, v)

)
u,v∈W

be the transition operator of the retracted walk, and let ̺(P ) :=

lim supn→∞ p(n)(u, v)1/n be the spectral radius of P , which is independent of the specific choice
of u and v. Then ̺(P ) = ̺(P ) < 1 due to [13, Proposition 4.6]. Since d(o,Xn) = ℓ(δ(o,Xn)) =
ℓ(ρ(Xn)) = d(e,Xn), we also have v = limn→∞

1
nℓ(Xn), with v as in (2.6).

Analogously to the random walk (Xn)n≥0 on (∆, δ) let πn be the distribution of Xn. The
asymptotic entropy of the retracted walk (Xn)n≥0 is then given by

h := lim
n→∞

−
1

n
E[log πn(Xn)],

if the limit exists.

3 Asymptotic entropy of the retracted walk

In this section we derive a formula for the asymptotic entropy of the retracted walk (see Theo-
rem 3.16 together with (3.13)). We begin by introducing some generating functions and notation
in Subsection 3.1. In Subsection 3.2 we will construct nested sequences of coverings of W by
cones such that we can track the retracted random walk’s way to infinity. In Subsections 3.3,
3.4 and 3.5 we will use this construction of coverings by cones in order to deduce existence and
formulae for the asymptotic entropy of the retracted walk (Xn)n≥0.

3.1 Generating functions

In this section we define some useful generating functions and some related notation. For
u, v ∈ W , z ∈ C, the Green function of the retracted walk is defined as

G(u, v|z) :=
∑

n≥0

p(n)(u, v) · zn

and the last visit generating function is given by

L(u, v|z) :=
∑

n≥0

Pu

[
Xn = v,∀m ∈ {1, . . . , n} : Xm 6= u

]
· zn.

We will write G(u, v) := G(u, v|1). By conditioning on the last visit to u, a fundamental relation
between these functions is given by

G(u, v|z) = G(u, u|z) · L(u, v|z). (3.1)

Since (Xn)n≥0 is irreducible and has spectral radius strictly smaller than 1 the Green functions
have a common radius of convergence R > 1. From [13, Proposition 5.11] it follows that there
is some λ ∈ (0, 1) and some C > 0 such that for all u, v ∈ W

G(u, v) ≤ C · λd(u,v). (3.2)

For v,w ∈ W , the Green distance is defined as dG(v,w) := − log G(v,w)

G(v,v)
and we write

ℓG(w) := dG(e, w).
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We will show that the limit

lim
n→∞

ℓG(Xn)

n

exists almost surely, and equals the asymptotic entropy h (see Theorem 3.16). This limit is
called the rate of escape with respect to the Green distance of the retracted walk.

3.2 Cone covering and last entry times of cones

In order to trace the retracted walk’s path to infinity we define inductively a sequence of nested
cones. For this purpose, we use the strongly automatic structure A for (W,S), which implies
a partial order � on the group elements, i.e., u � v if and only if C(u) ⊆ C(v) for u, v ∈ W .
At this point we will make use of the fact that AR is strongly connected; see Theorem 2.4.
Furthermore, we use the fact that the subgraph AR is not a circle, i.e., it contains at least one
vertex of outdegree of at least 2 (otherwise W would not have exponential growth).

Recall that the Cayley graph of (W,S) is a δ-hyperbolic space and hence triangles are δ-
thin. Note that in this context the “δ” differs from the “δ” denoting the Weyl distance function.
Define1

L1 := max{e(0), L0, δ} + 1.

Lemma 3.1. Let w ∈ W and v ∈ Int3L1C(w). Then C(v) ∩ ∂L1C(w) = ∅.

Proof. Let u ∈ ∂C(w) and u′ ∈ C(v), and consider the following geodesic triangle: let γ be a
geodesic from w to u, γ′ be a geodesic from w to u′ passing through v, and γ̃ be a geodesic from
u to u′. Let p ∈ γ′ such that p /∈ C(v) and d(p, v) = 2L1. As p is not in the δ-neighborhood of γ
(recall that L1 > δ and v ∈ Int3L1C(w)) there exists some point p̃ ∈ γ̃ such that d(p, p̃) ≤ δ < L1.
Since u′ ∈ C(v) we get d(p̃, u′) > L1 ≥ δ and hence d(u, u′) > L1.

Proposition 3.2. For every T ∈ AR there exists a set Cov(T) := {u1, u2, . . .} ⊂ W such that,
for all w ∈ W with T (w) = T, the following properties hold:

1. wui ∈ Int3L1C(w) for all i ∈ N,

2. C(wui) ⊆ IntL1C(w) for all i ∈ N,

3. C(wui) ∩ C(wuj) = ∅ for i 6= j,

4. {T (wu1), T (wu2), . . .} = AR,

5. C(w) \
⋃

i≥1C(wui) ⊂ ∂3L1C(w) ∪ BL(w) for some constant L = L(T),

6. Cov(T) ∩ Bn(e) grows linearly in n.

Proof. Let be T ∈ AR and w ∈ W with T (w) = T. We enumerate the elements in AR

by T1,T2, . . . ,Tk where k = |AR|. There is some N ∈ N large enough such that there are
w1, w

′ ∈ Int3L1C(w) with w1 6= w′ and d(w,w1) = d(w,w′) = N and T(w1) = T1. We then
have C(w1) ∩ C(w′) = ∅, and we have found a cone of type T1, set u1 := w−1w1 and add u1
to Cov(T). In the same way we search for a cone of type T2 in C(w′) and find u2 that we add
to our covering Cov(T). This procedure is again repeated k − 2 times such that the covering
Cov(T) contains all possible cone types, see property 4. We now “fill” up the covering in order
to ensure property 5. For n ∈ N, set Sn(w) := {w0 ∈ W | d(w,w0) = n}. We start with

1The divergence function e(·) can be chosen such that e(0) = δ, hence one could also set L1 := max{L0, δ}+1.
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n = L := max{|u1|, . . . , |uk|}: for each w̄ ∈ Sn(w) ∩ Int3L1C(w) such that w̄ /∈ C(wu) for all
u ∈ Cov(T) we add the element w−1w̄ to the covering Cov(T). Inductively this is repeated for
all n > L. The resulting covering Cov(T) verifies properties 1, 3, and 5. Property 2 holds due
to Lemma 3.1 and since wui ∈ Int3L1C(w). Property 6 is a consequence of the planarity of the
Cayley graph. For n sufficiently large any u′ ∈ Cov(T)∩Bn(e) has to be of the form u′ = ũs with
ũ ∈ ∂3L1C(w) ∩Bn−1(w) and s ∈ S. Now, since ∂3L1C(w) ∩Bn−1(w) grows linearly property 6
follows.

For each T ∈ AR we now fix a covering Cov(T) satisfying the five properties in Proposi-
tion 3.2. We write Cov(w) := wCov(T) = {wu | u ∈ Cov(T)} for w ∈ W with T (w) = T.

We now define a covering of W by induction. Let be K ∈ N such that W \ BK(e) contains
only recurrent cone types. Define M0 := BK+1(e) \ BK(e) and set Cov0 :=

⋃
w∈M0

Cov(w).
Note that we have that the cones C(w), w ∈ Cov0, are pairwise disjoint. Furthermore,
AR = {T (w) | w ∈ Cov0}. Given the set Covn for some n ∈ N, we define inductively

Covn+1 :=
⋃

w∈Covn

Cov(w).

We set Cov :=
⋃

n≥0Covn. The next lemma states that the elements of Cov are (in a certain
sense) dense in W .

Lemma 3.3. 1. There exists some K ∈ N such that for every w0 ∈ W and all w ∈ C(w0)
there exists some v ∈ Cov ∩C(w0) with d(w, v) ≤ K.

2. There exists an integer K1 ∈ N such that the following holds: if w0 ∈ Covk, k ≥ 1, and
w ∈ ∂L0Int3L1C(w0) then there exists v ∈ Covk+2 ∩C(w0) such that v can be reached from
w by a path inside IntL1C(w0) of length at most K1.

Proof. Let L be the maximal constant from the proof of Proposition 3.2 (when varying through
recurrent cone types). We consider three cases in order to prove the first assertion.
Case 1: If w ∈ C(w0) ∩ BL(w0) then d(w,Cov) ≤ d(w,w0) ≤ L.
Case 2: If w ∈ C(w0) \ BL(w0) and w /∈

⋃
v∈Cov(w0)

C(v) then w ∈ ∂3L1C(w0). Thus, there
is some ŵ ∈ ∂C(w0) \ BL(w0) with d(w, ŵ) ≤ 6L1. Consider the cone C(ŵ) with boundary
geodesics γ1 and γ2. One of these geodesics, say γ1 = [ŵ, ŵg1, ŵg2, . . . ], intersects Int3L1C(w0).
Now, there exists some ŵgiT (ŵ)

∈ γ1 of minimal index iT (ŵ) such that ŵgiT (ŵ)
∈ Int3L1C(w0), and

this index iT (ŵ) depends only on the cone type T (ŵ) and not on ŵ itself. Since we have a strongly
automatic structure, we must have ŵgiT (ŵ)

∈ Cov, which yields d(w, ŵgiT (x̂)
) ≤ 6L1 + iT (ŵ).

Since we have only finitely many one types we get the claim also in this case, and we may set
K := max{L, 6L1 + iT | T ∈ AR}.
Case 3: If w ∈

⋃
v∈Cov(w0)

C(v) and d(w0, w) > L then we choose w′ ∈ Cov(w0) with w ∈ C(w′)

and we exchange w0 by w′, and we iterate the proof from the beginning until d(w0, w) ≤ L
(case 1) or w /∈

⋃
v∈Cov(w0)

C(v) (case 2). This proves part 1.
For the proof of part 2 we first consider the case that w ∈ ∂L0Int3L1C(w0) \ BL(w0). From

the proof of part (i) follows that there is some v0 ∈ Covk+1 ⊆ Int3L1C(w0) such that w ∈ C(v0).
Since C(v0) ⊆ IntL1C(w0) and L0 ≤ L1 we must have that w ∈ ∂3L1C(v0). Also from the proof
of part 1 follows the following: if d(w, v0) ≤ L then there is a path from w to Covk+2 ∩ C(v0)
via v0 which lies in C(v0) ⊆ IntL1C(w0) and has a length less or equal to 2L; if d(w, v0) > L
then there is a path from w to Covk+2 ∩ C(v0) via ∂C(v0) which lies in IntL1C(w0) and has
a length less or equal to K. That is, we have shown that Covk+2 can be reached from w on
a path running entirely through IntL1C(w0) of length at most max{2L,K}. The remaining
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w0
w0u

Xek
= w0uyXn

Figure 3: Illustration of the last exit time ek, where Rk = w0u ∈ Covk.

case w ∈ ∂L0Int3L1C(w0) ∩ BL(w0) constitutes finitely many cases and therefore choosing K1

sufficiently large proves part 2.

The motivation for the construction of the nested coverings Covn is that it allows us to trace
the retracted walk’s way to infinity: the limit point X∞ at “infinity” of the retracted walk is
in 1-to-1-relation with a sequence of nested cones (defined by the coverings) that are visited all
but finitely many times. To make this more precise, we use the notation of last entry times: for
k ≥ 0 the k-th last entry time is given by

ek := inf
{
m ∈ N

∣∣ ∃w ∈ Covk : Xm ∈ Int3L1C(w),∀n ≥ m : Xn ∈ IntL1C(w)
}
.

See also Figure 3. Furthermore, we define Rk := w if Xek
∈ C(w) with w ∈ Covk. In other

words, Rk is the root of the cone whose L1-interior is finally entered by the retracted random
walk (Xn)n≥0 at time ek.

Lemma 3.4. For all k ∈ N the last entry times ek are almost surely finite. Moreover, the
random variables e0 and ek − ek−1 have uniform exponential moments, i.e., there exists some
constants λe,Ke > 0 such that E[exp(λee0)] < Ke and E[exp(λe(ek−ek−1)] < Ke for all k ≥ 1.

Sketch of proof. We give an idea of the proof for k = 0. The proof for k ≥ 1 is similar. For the
technical details we refer to the proof of [13, Theorem 5.5]. Let L be the constant in Proposition
3.2. Since ̺(P ) < 1, there exists some constant C such that

P[Xn ∈ BL(e)] ≤ C̺(P )n,

e.g. see Woess [27, Lemma 8.1]. In other words, the first exit time τ1 of the ball BL(e) has expo-
nential moments. We wait a random time τ2 until the walk visits some point v in ∂L0Int3L1(w)
for some w /∈ BL(e) . The time τ2 has again exponential moments. Arrived there, the walk
has a positive probability of at least pesc of staying in the cone C(v) of the arrival point v, see
Lemma 2.7. If it stays inside this cone we have that e0 ≤ τ1 + τ2. If it does not stay inside the
cone we wait some time τ3 until the walk leaves this cone for the first time. Note here that this
time has uniform (in the position of Xτ1+τ2) exponential moments, see [13, Lemma 5.12]. We
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then let τ4 be the time it takes after τ3 that the walk visits ∂L0Int3L1(w) for some w /∈ BL(e)
and so on. The argument is now repeated until the first successful attempt to stay in one cone
forever. Since all the random variables τi have (uniform) exponential moments and a geometric
sum of random variables with exponential moments has exponential moments, it follows hat e0
has exponential moments.

We define a new process (Wk)k≥0 on the state space Z := AR ×
⋃

T∈AR
Cov(T) × W as

follows: the case k = 0 plays a special role and we just set

W0 :=
(
T (R0),R0,R

−1
0 Xe0

)
;

for k ≥ 1, we set

Wk :=
(
T (Rk),R

−1
k−1Rk,R

−1
k Xek

)
.

If Wk = (T, u, y) then there is some w0 ∈ Covk−1 such that u ∈ Cov(w0) with T (w0u) = T and
Xek

= w0uy; see Figure 3.
The random variable W0 takes values in a set W0 := supp(W0) ⊆ AR ×W ×W , and the

random variables Wk, k ≥ 1, take values in a set W =
⋃

k≥1 supp(Wk) ⊆ Z. Thus, the sequence

(Wk)k≥1 is a stochastic process on W, which is induced by (Xn)n≥0.
Observe that there is a 1-1-correspondence of the sequences W0, . . . ,Wk and Xe0 , . . . ,Xek

:
obviously, for any given realisation of Xe0 , . . . ,Xek

we obtain unique values for W0, . . . ,Wk;
vice versa, for given values of W0 = (T0, u0, y0), . . . ,Wk = (Tk, uk, yk) we can successively
describe which subcone is entered one after the other one including the information which of
the elements in W are the last entry time points, namely

Rk =

k∏

i=0

ui, Xek
= Rkyk.

We define further generating functions: let be w1 = (T1, u1, y1),w2 = (T2, u2, y2) ∈ W such
that P[Wk = w1,Wk+1 = w2] > 0 for some k ∈ N. Choose any w0 ∈ W with T (w0) = T1 and
define

Ĝ(w1,w2) :=
∑

n≥1

Pw0y1

[
∀m ≤ n : Xm ∈ IntL1C(w0),

Xn−1 /∈ Int3L1C(w0u2),Xn = w0u2y2

]
.

In words, the summands describe the probability that one walks from some w0y1 to some w0u2y2
in the following way: one starts at w0y1 ∈ Int3L1C(w0), walks then inside IntL1C(w0) to some
w0u2y2 ∈ Int3L1C(w0u2) ⊂ IntL1C(w0) such that the step before arriving at w0u2y2 is outside
the 3L1-interior of the cone C(w0u2). The values Ĝ(w1,w2) are well-defined since only paths
inside the L1-interior of a cone of typeT1 are considered, implying that the occuring probabilities
depend only on the cone type T1 and not on the specific choice of w0, see Proposition 2.6.

Let w = (T, u, y) ∈ W ∪ W0 and choose w0 ∈ W such that T (w0) = T. Recall that
w0y ∈ Int3L1C(w0) and therefore C(w0y) ⊆ IntL1C(w0). Define

ξ(w) := Pw0y

[
∀n ≥ 0 : Xn ∈ IntL1C(w0)

]

= 1−
∑

n≥1

Pw0y

[
Xn ∈ W \ IntL1C(w0),∀m < n : Xn ∈ IntL1C(w0)

]
.

In other words, ξ(w) is the probability that the L1-interior of the cone C(w0) will never be
exited when starting at w0y. Observe that the definition of ξ(w) is independent of the specific
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choice of w0 since we only consider paths inside the L1-interior of the cone C(w0) (and the first
step into the L1-boundary of the cone). An important fact is that the values ξ(w) are uniformly
positive:

Lemma 3.5. There is a constant C0 > 0 such that ξ(w) ≥ C0 for all w ∈ W ∪W0.

Proof. Let w = (T, u, y) ∈ W∪W0 and w0 ∈ W with T (w0) = T. Recall that w0y ∈ Int3L1C(w0)
yielding C(w0y) ⊆ IntL1C(w0). The claim follows now immediately from Lemma 2.7.

In the proof of the last lemma we use the fact that Xek
∈ Int3L1C(Rk). This explains why

we force Xek
to be in Int3L1C(Rk) and not only in IntL1C(Rk).

Lemma 3.6. The stochastic process (Wk)k≥1 on the state space W is an irreducible, ergodic
Markov chain with transition probabilities

q(w1,w2) =
ξ(w2)

ξ(w1)
Ĝ
(
w1,w2

)
,

where w1,w2 ∈ W with P[Wk = w1,Wk+1 = w2] > 0 for some k ∈ N.

Proof. Let be w1, . . . ,wk+1 ∈ W with P[W1 = w1, . . . ,Wk+1 = wk+1] > 0. For any given
w0 = (T, u, y) ∈ W0, we define

Ĝ(e,w0) :=
∑

n≥1

P
[
Xn−1 /∈ Int3L1C(u),Xn = uy

]
.

Write wi = (xi, ui, yi) and set v0 := u0y0 and vj := u0u1 . . . ujyj for j ≥ 1. Then by definition

of Ĝ(·, ·) and ξ(·) and due to the 1-1-relation of W0, . . . ,Wk and Xe0 , . . . ,Xek
we get:

P
[
W1 = w1, . . . ,Wk = wk

]

=
∑

w0∈W0

P
[
W0 = w0,W1 = w1, . . . ,Wk = wk

]

=
∑

w0∈W0

P
[
Xe0 = v0,Xe1 = v1, . . . ,Xek

= vk
]

=
∑

w0∈W0

P




Xe0−1 /∈ Int3L1C(u0),Xe0 = u0y0,

∀j ∈ {1, . . . , k}∀nj ≥ ej−1 : Xnj
∈ IntL1C(u0 . . . uj−1),

Xej−1 /∈ Int3L1C(u0 . . . uj),Xej
= u0u1 . . . ujyj,

∀n ≥ ek : Xn ∈ IntL1C(u0 . . . uk)




=
∑

w0∈W0

Ĝ(e,w0) · Ĝ(w0,w1) · Ĝ(w1,w2) · . . . · Ĝ(wk,wk) · ξ(wk).

The last equation arises by splitting up the paths in the event [Xe0 = x0, . . . ,Xek
= xk

]
with

respect to their part between Xej−1 and Xej
, which is described by Ĝ(wj−1,wj). Hence,

P
[
Wk+1 = wk+1

∣∣W1 = w1, . . . ,Wk = wk

]
=

ξ(wk+1)

ξ(wk)
Ĝ(wk,wk+1).

Irreducibility follows from the construction of the coverings that each covering has subcones of
all types together with (2.5).

In order to show ergodicity of the process we prove positive recurrence and aperiodicity.
First, we show that the process is positive recurrent. Due to irreducibility it is sufficient to show
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that w = (T, u, y) ∈ W with |u| ≤ L can be reached from any w0 = (T0, u0, y0) ∈ W in four
steps with positive probability bounded away from zero. For this purpose, take any k ∈ N and
x0 ∈ Covk with T (x0) = T0. Then x0y0 ∈ ∂L0Int3L1C(x0) and, by Lemma 3.3, there is some
x2 ∈ Covk+2 ∩ C(x0), which can be reached from x0y0 on a path inside IntL1C(x0) of length
at most K1. Take any u3 ∈ Cov(T (x2)) such that ℓ(u3) ≤ L and u ∈ Cov(T (x2u3)). Then
one can walk from x0y0 via x2, x2u3 and x2u3u to x2u3uy on a path inside IntL1C(x0). This

yields P[W4 = w | |W0 = w0] ≥ ε
K1+2L+ℓ(y)
0 , which proves positive recurrence of (Wk)k∈N by a

standard geometric distribution argument.
Aperiodicity is obtained as follows: if we start at some w ∈ W then we can come back to

w in four steps with positive probability. Take any ŵ ∈ W with q(w, ŵ) > 0. Analogously,
starting at ŵ we can reach w in four steps with positive probability, yielding that we can also
reach w with positive probability in five steps when starting at w. This yields aperiodicity, and
thus ergodicity.

3.3 Entropy of a hidden Markov chain related to the last entry time process

In this subsection we introduce a hidden Markov chain and consider its asymptotic entropy,
which will be linked with the entropy of (Xn)n≥0 in the next subsection.

We define the function Φ : (W ∪W0)×W → AR ×AR ×
⋃

T∈AR
Cov(T) by

Φ
(
(T1, u1, y1), (T2, u2, y2)

)
:=
(
T1,T2, u2

)
.

This leads to the hidden Markov chain (Yk)k≥1 defined by

Yk := Φ(Wk−1,Wk).

The random variables Yk, k ∈ N, give information about the random walk’s way to infinity;
they describe which cones of the covering are finally entered without keeping the information of
the exact last entry points of the cones. Given the value of T1 we know the relative position of
the next subcone described by (T2, u2). While (Wk−1,Wk)k≥1 is a Markov chain, the process
(Yk)k≥1 is in general not Markovian.

Recall that the Markov process (Wk)k≥1 is positive recurrent, and therefore there exists a
stationary probability measure ν. Thus, (Wk)k≥1 is asymptotically mean stationary and so is
the hidden Markov chain (Yk)k≥1.

We introduce an additional random variable Y0: if W0 = (T, u, y) ∈ W0 then we set
Y0 := u. In other words, Y0 describes the root R0 of the cone associated with the initial last
entry point Xe0 , without keeping the information of the exact location of Xe0 ∈ C(R0). This
information of Y0 is, in addition to the values of Y1,Y2, . . . , needed for tracking the random
walk’s route to infinity, since Y1 = (T0,T1, u1) determines only the type T0 of C(R0) ∈ Cov0,
but there may be several different cones of type T0 in Cov0.

A generalized version of the famous Shannon-McMillan-Breiman theorem states that then
there exists a non-negative constant H(Y) ∈ [0,∞] such that

H(Y) = lim
n→∞

−
1

n
logP

[
Y0 = y0, . . . ,Yn = yn

]
(3.3)

for almost every realisation (y0, y1, . . . ) of the process (Yk)k≥1; see Algoet and Cover [2, Theo-
rem 4].

The number H(Y) is called the asymptotic entropy of the process (Yk)k≥1. We will see later
that H(Y) is finite and prove now that H(Y) is strictly positive.
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Lemma 3.7. H(Y) > 0.

Proof. Take any w1,w2 ∈ W with P[W1 = w1,W2 = w2] > 0. The values w1,w2 determine the
value of Y2 uniquely. Since W grows exponentially, the subgraph AR is not a circle. Therefore,
the construction of coverings ensures that there are at least two elements w′,w′′ ∈ W with
q(w2,w

′) > 0, q(w2,w
′′) > 0 and Φ(w2,w

′) 6= Φ(w2,w
′′). Then:

P
[
Y3 = Φ(w2,w

′)
∣∣W1 = w1,W2 = w2

]
≥ q(w2,w

′) > 0,

P
[
Y3 = Φ(w2,w

′′)
∣∣W1 = w1,W2 = w2

]
≥ q(w2,w

′′) > 0.

Thus, P (w′ | w1,w2) := P
[
Y3 = Φ(w2,w

′)
∣∣W1 = w1,W2 = w2)

]
< 1.

Recall that the conditional entropy of discrete random variables A1 and A2 on a state space
S0 is defined as

H(A2 | A1) := −
∑

a1,a2∈S0

P[A1 = a1, A2 = a2] log P
[
A2 = a2 | A1 = a1

]

and analogously for more variables. From Cover and Thomas [7, Theorem 4.5.1] follows then

H(Y) ≥ H
(
Y3

∣∣W1,W2,Y2

)

≥ ν(w1)q(w1,w2)P (w′ | w1,w2) · log P (w′ | w1,w2) > 0,

where ν is the invariant probability measure of (Wk)k≥1. This yields the claim.

3.4 Rate of escape with respect to the Green distance

We define a new “length function” such that H(Y) becomes the rate of escape with respect to
this length function. Let be w0 ∈ W and consider the cone C(w0) rooted at w0. We define

l(w0) := − log
∑

v∈∂L0
Int3L1

C(w0)

G(e, v).

The next lemma shows that l(x0) is well-defined.

Lemma 3.8. Let be w0 ∈ W . Then
∑

v∈∂L0
Int3L1

C(w0)

G(e, v) < ∞.

Proof. We use the fact that the boundary of a cone only grows linearly (see Lemma 2.5) and
that

∂L0Int3L1C(w0) ∩ Bn(w0) ⊆
⋃

u∈∂C(w0)∩Bn+3L1+L0
(w0)

B3L1+L0(u). (3.4)

Using the fact that the Green functions decay exponentially (see (3.2)) we get that
∑

v∈∂L0
Int3L1

C(w0)

G(e, v) ≤ C ·
∑

v∈∂L0
Int3L1

C(w0)

λd(e,v)

= C ·
∑

v∈∂L0
Int3L1

C(w0)

λd(e,w0)+d(w0,v)

≤ 2C|B3L1+L0(e)|λ
d(e,w0)

∑

n≥0

(n+ 3L1 + L0)λ
n < ∞.
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We introduce some further notation and generating functions. For any T ∈ AR, we write
v ∈ ∂L0Int3L1C(T) if, for any (or equivalently, for all) w ∈ W with T (w) = T, we have
wv ∈ ∂L0Int3L1C(w). For any T ∈ AR and v ∈ ∂L0Int3L1T, define

G̃(v, ∂L0Int3L1T) :=
∑

n≥0

Pwv

[
Xn ∈ ∂L0Int3L1C(w),∀m < n : Xm ∈ IntL1C(w)

]
,

where w ∈ W with T (w) = T. This definition is independent from the specific choice of w since
we consider only paths inside the L1-interior of a cone of type T. Similar to Lemma 3.8 one
shows that the values G̃(v, ∂L0Int3L1T) are uniformly bounded.

Lemma 3.9. There is some constant C̃ > 0 such that G̃(v, ∂L0Int3L1T) < C̃ for all T ∈ AR

and v ∈ ∂L0Int3L1T.

Proposition 3.10.

lim
k→∞

l(Rk)

k
= H(Y) almost surely.

Proof. Consider a realization of the random walk (Xn)n≥0, where the instances of Wk are given
by (Tk, uk, vk). We set rj := u0 . . . uj for j ≥ 0. Thus, C(rj) is the cone associated with Xej

,

i.e., Xej
is in ∂L0Int3L1C(rj).

Each path from e to Xek
must successively pass through the boundaries ∂L0Int3L1C(rj) for

every j = 0, . . . , k. By conditioning on the last entry points of these paths and using the fact
that G̃(vk, ∂L0Int3L1Tk) is uniformly bounded we get for almost every realisation (r0, r1, . . . ) of
(Rk)k≥0 (which are implied by the realizations (Tk, uk, vk) of Wk) that l(rk) equals

∑

v̄0,v̄1,...,v̄k∈W :
v̄i∈∂L0

Int3L1
C(ri)

Ĝ
(
e, (T0, u0, v̄0)

) k∏

j=1

Ĝ
(
(Tj−1, uj−1, v̄j−1), (Tj , uj , v̄j)

)
· G̃(v̄k, ∂L0Int3L1Tk).

We note that, by definition, we have P[W0 = w0] = Ĝ(e,w0)ξ(w0) for w0 ∈ W0. Recall that
1 ≥ ξ(w) ≥ C0 > 0 for all w ∈ W by Lemma 3.5. Together with Lemma 3.9 we get the following
convergence for almost every realization (rk)k≥0 of (Rk)k≥0:

lim
k→∞

l(rk)

k

= lim
k→∞

−
1

k
log

∑

v̄0,v̄1,...,v̄k∈W :
v̄i∈∂L0

Int3L1
C(ri)

Ĝ
(
e, (T0, u0, v̄0)

)
ξ(T0, u0, v̄0) ·

·
k∏

j=1

ξ(Tj, uj , v̄j)

ξ(Tj−1, uj−1, v̄j−1)
Ĝ
(
(Tj−1, uj−1, v̄j−1), (Tj , uj , v̄j)

)

= lim
k→∞

−
1

k
log

∑

v̄0,v̄1,...,v̄k∈W :
v̄i∈∂L0

Int3L1
C(ri)

P[W0 = (T0, u0, v̄0)]

k∏

j=1

q
(
(Tj−1, uj−1, v̄j−1), (Tj , uj , v̄j)

)

= lim
k→∞

−
1

k
logP

[
Y0 = u0,Y1 = (T0,T1, u1), . . . ,Yk = (Tk−1,Tk, uk)

]
= H(Y).
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We write Eν if we replace the original initial distribution of W1 by ν. An application of
the ergodic theorem for positive recurrent Markov chains together with Lemma 3.4 yields the
following lemma.

Lemma 3.11.
ek

k

k→∞
−−−→ Eν [e2 − e1] < ∞ almost surely.

We will see that it is sufficient to consider only the last entry times of the retracted walk in
order to prove existence of the asymptotic entropy. For this purpose we use the following lemma
that is a consequence of the fact that

(
d(Rk,Xek

)
)
k≥1

is a functional of the ergodic Markov

chain (Wk)k≥1.

Lemma 3.12.
d(Rk,Xek

)

k

k→∞
−−−→ 0 almost surely.

Due to (2.6) and ℓ(Xek
) = ℓ(Xek

) we have

lim
k→∞

d(e,Xek
)

ek
= lim

k→∞

d(e,Xek
)

k

k

ek
= v almost surely. (3.5)

Since d(e,Rk) =
∑k

i=0 d(Ri−1,Ri) =
∑k

i=0 |ui|, where R−1 := e and Wi = (Ti, ui, yi), another
application of the ergodic theorem yields almost surely d(e,Rk)/k → Eν [d(R2,R1)] as k → ∞.
With Lemmata 3.11 and 3.12 and using (3.5) we can now express the drift v of (Xn)n≥0 as

v =
Eν [d(R2,R1)]

Eν[e2 − e1]
. (3.6)

In the next step we express H(Y) in terms of the Green distance.

Proposition 3.13.

ℓG(Xek
)

k
k→∞
−−−→ H(Y) almost surely.

Proof. On the one hand side we have that

exp(−ℓG(Xek
)) =

G(e,Xek
)

G(e, e)
≤

∑

v∈∂L0
Int3L1

C(Rk)

G(e, v)

G(e, e)
= exp(−l(Rk)). (3.7)

On the other hand side we have

G(e,Rk) · ε
d(Rk ,Xek

)
0 ≤ G(e,Xek

); (3.8)

recall that ε0 > 0 is the minimal single-step transition probability of the random walk (Xn)n≥0.
As in the proof of Lemma 3.8 we have that ∂L0Int3L1C(Rk) ∩ Bn(Rk) grows linearly in n.

Recall Ancona’s Inequality (see e.g. [27, Theorem 27.12]): there is some C > 0 such that

G(u, v) ≤ C̃ ·G(u,w) ·G(w, v)

21



for all u, v, w ∈ W with w being on a geodesic from u to v. Since Rk is on a geodesic from e to
any w ∈ C(Rk), we get with (3.2) and (3.4):

exp(−l(Rk)) =
∑

w∈∂L0
Int3L1

C(Rk)

G(e, w)

G(e, e)
(3.9)

≤
C̃

G(e, e)
·

∑

w∈∂L0
Int3L1

C(Rk)

G(e,Rk)G(Rk, y)

≤
C̃ ·G(e,Rk)

G(e, e)

∑

w∈∂L0
Int3L1

C(Rk)

C · λd(Rk ,w)

≤
C̃C

ε
d(Rk ,Xek

)

0

·
G(e,Rk)

G(e, e)
· ε

d(Rk ,Xek
)

0 ·
∑

n≥0

2(n + 3L1 + L0)|B3L1+L0(e)|λ
n

≤
C̃C

ε
d(Rk ,Xek

)
0

G(e,Xek
)

G(e, e)
· |B3L1+L0(e)| ·

(
6L1 + 2L0

1− λ
+

2λ

(1− λ)2

)
., (3.10)

The last inequality follows from (3.8). Together with Proposition 3.10 and Lemma 3.12 we get
the claim since (3.7) and (3.10) allow to compare l(Rk) with ℓG(Xek

).

Now we can prove existence of the rate of escape with respect to the Green distance of the
retracted walk:

Theorem 3.14. We have

ℓG(Xn)

n

k→∞
−−−→

H(Y)

Eν [e2 − e1]
:= hG > 0. almost surely,

Proof. For n ∈ N, define
k(n) := max{k ∈ N | ek ≤ n}. (3.11)

With this notation we have

lim
n→∞

ℓG(Xn)

n
= lim

n→∞

ℓG(Xn)− ℓG(Xek(n)
)

n
+

ℓG(Xek(n)
)

k(n)

k(n)

ek(n)

ek(n)

n
.

By Proposition 3.13, ℓG(Xek(n)
)/k(n) tends almost surely to H(Y). By Lemma 3.11, ek(n)/k(n)

tends almost surely to Eν [e2 − e1] as n → ∞. Since

1 ≤
n

ek(n)
≤

ek(n)+1

ek(n)
=

ek(n)+1

k(n) + 1

k(n) + 1

ek(n)

n→∞
−−−→ 1 almost surely

we have limn→∞ ek(n)/n = 1 almost surely.

It remains to investigate the difference ℓG(Xn) − ℓG(Xek(n)
). Obviously, one can walk with

positive probability in n − ek(n) steps from Xek(n)
to Xn and vice versa; this probability is at

least ε
n−ek(n)

0 , where ε0 > 0 is the minimal single-step transition probability of (Xn)n≥0. Hence,
we have the following estimates:

G(e,Xn) · ε
n−ek(n)

0 ≤ G(e,Xek(n)
), G(e,Xek(n)

) · ε
n−ek(n)

0 ≤ G(e,Xn).
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Since limn→∞ ek(n)/n = 1 we get

n− ek(n)

n

n→∞
−−−→ 0 almost surely. (3.12)

Thus, the quotient
(
ℓG(Xn) − ℓG(Xek(n)

)
)
/n tends to zero almost surely. This finishes the

proof.

By (3.6) we can give another formula for hG in terms of the rate of escape v of (Xn)n≥0:

hG =
H(Y) · v

Eν[d(R2,R1)]
. (3.13)

3.5 The entropy of the retracted walk

We follow the reasoning of [14] for the proof of existence of the entropy. First, we remark that
due to irreducibility of the retracted walk and by [13, Proposition 4.6, Corollary 4.9] we have
a unique radius of convergence R > 1 of G(u, v|z) for all u, v ∈ W . In the following let be
r ∈ [1, R) and recall that ε0 is the minimal positive single-step transition probability of the
retracted walk. The following technical lemma that is an adaptation of [14, Lemma 3.6] will be
used in the proof of the next theorem.

Lemma 3.15. For n ∈ N, consider the function fn : W → R defined by

fn(w) :=

{
− 1

n log
∑n2

m=0 p
(m)(e, w), if p(n)(e, w) > 0,

0, otherwise.

Then there are constants d and D such that d ≤ fn(w) ≤ D for all n ∈ N and w ∈ W .

Theorem 3.16. The entropy h exists and equals hG. In particular, the asymptotic entropy is
the rate of escape with respect to the Green distance.

Proof. We can rewrite hG as

hG =

∫
hG dP =

∫
lim
n→∞

1

n
ℓG(Xn) dP =

∫
lim
n→∞

−
1

n
logG

(
e,Xn

∣∣1
)
dP.

Since
G(e,Xn|1) =

∑

m≥0

p(m)(e,Xn) ≥ p(n)(e,Xn) = πn(Xn),

we have

hG ≤

∫
lim inf
n→∞

−
1

n
log πn

(
Xn

)
dP. (3.14)

The next aim is to prove lim supn→∞− 1
nE
[
log πn(Xn)

]
≤ hG. We decompose

∑
m≥0 p

(m)(e,Xn)
as

n2∑

m=0

p(m)(e,Xn) and bn :=
∑

m≥n2+1

p(m)(e,Xn).

Let us control the sequence (bn)n≥1. There exists a constant A such that, for any N ∈ N,

∑

w∈BN (e)

p(m)(e, w) ≤ |S|NANR−m,
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see [27, Lemma 8.1]. Hence, there exists a constant C1 such that for all m,n ∈ N0 we have

p(m)(e,Xn) ≤
∑

w∈BnL0
(e)

p(m)(e, w) ≤ Cn
1 · R−m almost surely.

Hence,

bn ≤
∑

m≥n2+1

Cn
1 ·R−m = Cn

1 ·
R−n2−1

1−R−1
.

Therefore, bn decays faster than any geometric sequence and hence

hG = lim
n→∞

−
1

n
log

n2∑

m=0

p(m)
(
e,Xn

)
almost surely.

By Lemma 3.15, we may apply the dominated convergence theorem and get:

hG =

∫
hG dP =

∫
lim
n→∞

−
1

n
log

n2∑

m=0

p(m)(e,Xn) dP

= lim
n→∞

∫
−
1

n
log

n2∑

m=0

p(m)(e,Xn) dP

= lim
n→∞

−
1

n

∑

w∈W

p(n)(e, w) log

n2∑

m=0

p(m)(e, w).

Non-negativity of the Kullback-Leibler divergence (also called Shannon’s inequality in this con-
text) gives

−
∑

w∈W

p(n)(e, w) log µ(w) ≥ −
∑

w∈W

p(n)(e, w) log p(n)(e, w)

for every finitely supported probability measure µ on W . We apply now this inequality to the
probability measure µ0 defined by

µ0(w) :=
1

n2 + 1

n2∑

m=0

p(m)(e, w) for w ∈ W :

hG ≥ lim sup
n→∞

(
−
1

n

∑

w∈W

p(n)(e, w) log(n2 + 1)−
1

n

∑

w∈W

p(n)(e, w) log p(n)(e, w)

)

= lim sup
n→∞

−
1

n

∫
log πn(Xn) dP.

Now we can conclude with Fatou’s Lemma and (3.14):

hG ≤

∫
lim inf
n→∞

−
1

n
log πn(Xn)dP ≤ lim inf

n→∞

∫
−
1

n
log πn(Xn)dP

≤ lim sup
n→∞

∫
−
1

n
log πn(Xn)dP ≤ hG. (3.15)

Thus, h = limn→∞− 1
nE
[
log πn(Xn)

]
exists and the limit equals hG. It follows immediately

from Theorem 3.14 that h is also the rate of escape with respect to the Green distance.
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Remark 3.17. The results of Forghani [10] are somehow in the same spirit as Theorem 3.16.
It is shown there that the asymptotic entropy of transformed random walks (by stopping times)
equals the product of the original entropy and the expectation of the corresponding stopping
times.

Furthermore:

Corollary 3.18. We have the following types of convergence:

1.

h = lim inf
n→∞

−
1

n
log πn(Xn) almost surely.

2.

−
1

n
log πn(Xn)

L1−→ h.

Proof. The proofs are analogous to the proofs in [14, Corollary 3.9, Lemma 3.10].

4 Asymptotic entropy of the random walk on the building

In this section we deduce existence and a formula for the asymptotic entropy of the random
walk on the building from the entropy of the retracted walk. The following lemma establishes
an important link between transition probabilities of both random walks:

Lemma 4.1. For all x ∈ ∆, n ≥ 1:

p(n)
(
e, ρ(x)

)
= p(n)(o, x)qρ(x)

Proof. Recall that p(n)(o, x) = p
(n)
w /qw, where w = δ(o, x). According to [13, Proposition 4.5]

(applied to Pn) we have

p(n)
(
e, ρ(x)

)
=
∑

w∈W

aeρ(x),wq
−1
w pw,

where aeρ(x),w := |∆ρ(x)(o) ∩ ∆w(o)| with ∆u(o) = {y ∈ ∆ | δ(o, y) = u} for u ∈ W . If

y ∈ ∆ρ(x)(o)∩∆w(o) then we must have ρ(x) = δ(o, y) = w, and therefore aeρ(x),w = |∆ρ(x)(o)| =
qρ(x). That is,

p(n)
(
e, ρ(x)

)
= qρ(x)q

−1
ρ(x)p

(n)
ρ(x) = p(n)(o, x)qρ(x).

The following result gives the additional asymptotic information when switching from the
retracted walk to the random walk on the building:

Proposition 4.2.

1

n
log qXn

n→∞
−−−→

Eν [log(qR−1
1 R2

)]

Eν [e2 − e1]
:= hq almost surely.

Proof. Recall the definition of k(n) from (3.11) and recall that Rk is the root of the cone
associated with Xek

. In particular, there is a shortest path from o to Xek
passing through Rk.

This yields
log qRk(n)

≤ log qXn
= log qRk(n)

+ log q
R−1

k(n)
Xn

.
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Moreover

log qRk
=

k∑

i=0

log qR−1
i−1Ri

,

where R−1 := e. Then by the ergodic theorem

log qRk

k→∞
−−−→ Eν[log(qR−1

1 R2
)] almost surely.

Furthermore, we have

1 ≤ q
R−1

k(n)
Xn

≤
(
max
s∈S

qs
)d(Rk(n) ,Xn).

By Lemma 3.12 and due to k(n) ≤ n, we have

d(Rk(n),Xek(n)
)

n
=

d(Rk(n),Xek(n)
)

k(n)

k(n)

n

n→∞
−−−→ 0 almost surely. (4.1)

Since 0 ≤ d(Xek(n)
,Xn) ≤ (n − ek(n))L0, we have due to (3.12) that 1

nd(Xek(n)
,Xn) → 0 as

n → ∞ almost surely. This in turn implies together with (4.1) that

d(Rk(n),Xn)

n

n→∞
−−−→ 0 almost surely.

Therefore,
1

n
log qR−1

k(n)
Xn

n→∞
−−−→ 0 almost surely.

Observe that from the proof of Theorem 3.14 follows that k(n)/n → Eν [e2 − e1]
−1 as n → ∞.

Now we can conclude:

lim
n→∞

1

n
log qXn

= lim
n→∞

k(n)

n

1

k(n)
log qRk(n)

=
Eν[log(qR−1

1 R2
)]

Eν [e2 − e1]
.

By (3.6) we can also write

hq =
Eν [log(qR−1

1 R2
)] · v

Eν [d(R2,R1)]
.

Since 0 ≤ 1
n log qXn

≤ maxs∈S qs we also have limn→∞
1
nE
[
log qXn

]
= hq. Now we can conclude:

Theorem 4.3. The asymptotic entropy of the random walk on the building exists and is given
by

h = h+ hq.

Proof. Recall that Lemma 4.1 gives p(n)
(
e,Xn

)
= p(n)(o,Xn)qXn

, implying

−
1

n
E
[
log p(n)

(
e,Xn

)]
= −

1

n
E
[
log p(n)

(
o,Xn

)]
−

1

n
E
[
log qXn

]
.

Together with Theorem 3.16 and Proposition 4.2 we get the proposed claim.

We note that an analogous result to Theorem 4.3 is obtained in Ledrappier and Lim [19,
Theorem 1.1] for volume entropy of a hyperbolic building. These concepts are quite different,
although it is interesting to note the similar forms of the formulae.
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Corollary 4.4. The entropy equals the rate of escape with respect to the Green distance of the
random walk (Xn)n≥0.

Proof. By Lemma 4.1 we get

log
∑

m≥0

p(m)(o,Xn) = log
∑

m≥0

p(m)(e,Xn)

qXn

= logG(e,Xn|1) − log qXn

and the claim follows now with Theorems 3.16 and 4.3.

Immediate consequences of Corollary 3.18 are the following.

Corollary 4.5. We have the following types of convergence:

1.

h = lim inf
n→∞

−
1

n
log πn(Xn) almost surely.

2.

−
1

n
log πn(Xn)

L1−→ h.

A Normal form automata

The aim of this appendix is to prove Theorem 2.4. That is, we show that for each Fuchsian
Coxeter system (W,S) the strongly automatic structure A(W,S) is strongly connected. In this
appendix we refer to A = A(W,S) as the normal form automata for (W,S). Our starting point
is [13, Appendix A], where the Cannon automaton A(W,S) for each Fuchsian Coxeter system
is explicitly constructed.

Proof of Theorem 2.4. It is convenient to divide the set of all Fuchsian Coxeter systems (W,S)
into 4 classes. First consider triangle groups (that is, |S| = 3). Thus S = {s, t, u}, and we write
a = mst, b = mtu, and c = mus. Renaming the generators if necessary we may assume that
a ≥ b ≥ c ≥ 2. Then (W,S) is Fuchsian if and only if one of the following occurs:

• a ≥ b ≥ c ≥ 3 with a 6= 3 (we call these Class I groups).

• a ≥ b ≥ 4 and c = 2 with a > 4 (we call these Class II groups).

• a > 6, b = 3, and c = 2 (we call these Class III groups).

The remaining Fuchsian Coxeter systems are those with |S| ≥ 4. We call these Fuchsian Coxeter
systems of Class IV.

We now construct the normal form of the Cannon automaton for each class (the diagrams
in [13, Appendix A] are useful here). Suppose that (W,S) is a Class I Fuchsian Coxeter system.
It follows from Tits’ solution to the word problem in Coxeter groups [23] that a normal form
automaton for (W,S) is obtained by removing the following three arrows from the Cannon
automaton

tst · · ·︸ ︷︷ ︸
a− 1 terms

→ tst · · ·︸ ︷︷ ︸
a terms

utu · · ·︸ ︷︷ ︸
b− 1 terms

→ utu · · ·︸ ︷︷ ︸
b terms

usu · · ·︸ ︷︷ ︸
c− 1 terms

→ usu · · ·︸ ︷︷ ︸
c terms

This is illustrated below in Figure 4.
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313
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31

21

31

21
31
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Figure 4: Normal form automaton for Class I

The generators are labelled
1, 2, and 3, and the labels
on the edges are indicated by
line styles, with 1 being solid,
2 being dashed, and 3 be-
ing dotted. The cone types
are given by the base element
of a representative cone of
that type. The cone types in
grey are duplicates, and the
reader should instead imag-
ine the arrow pointing to the
corresponding cone type in
black. Furthermore, x =
121 · · · , y = 232 · · · and
z = 131 · · · are the longest
elements of the parabolic
subgroups W12, W23, and
W13 respectively, and the
‘deleted’ arrows (from the
Cannon automaton) are in-
dicated with ⊣.

Similarly, the normal form automaton for a Class II Fuchsian Coxeter system is obtained by
removing the following arrows from the Cannon automaton:

xs
s
−→ x xsu

s
−→ xu yu

u
−→ y yus

u
−→ ys u

s
−→ su

(where x = sts · · · is the longest element of 〈s, t〉 and y = tut · · · is the longest element of 〈t, u〉)
and for Class III we remove the following arrows:

xs
s
−→ x xsu

s
−→ xu xtut

u
−→ xut xtuts

u
−→ xuts xtus

s
−→ xtu ut

u
−→ tut uts

u
−→ tuts u

s
−→ su

(where x = sts · · · is the longest element of 〈s, t〉). The resulting automata are illustrated in the
figures below (for b = 4 in Class II there are some very minor modifications required, and the
reader is referred to [13, Appendix A]).

Finally, for a Class IV Fuchsian Coxeter system with S = {s1, . . . , sn} the normal form
automaton is constructed from the Cannon automaton by removing the arrows

si+1sisi+1 · · ·︸ ︷︷ ︸
mi,i+1 − 1 terms

→ si+1sisi+1 · · ·︸ ︷︷ ︸
mi,i+1 terms

and sns1sn · · ·︸ ︷︷ ︸
m1,n − 1 terms

→ sns1sn · · ·︸ ︷︷ ︸
m1,n terms

for i = 1, . . . , n− 1.
We now show that the normal form automaton for each class is strongly connected. In the

notation of Figure 4 we will simply write w for the cone type T (w).
Consider Class I first. Note that that the cone types ∅, 1, 2 and 3 are obviously not recurrent.

Since m12 = a > 3 there is a cycle in the normal form automaton

c = (12 → 23 → 31 → 12 → 121 → 13 → 32 → 21 → 212 → 23 → 31 → 12)
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Figure 5: Normal form automaton for Class II with a, b > 4 (a even and b odd in this example)
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x121
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x21

x212

x2121

x21212

Figure 6: Normal form automaton for Class III (with a even in this example)

containing all cone types w with ℓ(w) = 2 (it is important here that 121 and 212 are not the
longest words of W12, since m12 > 3). Next we claim that for each cone type w there is a path
γ1 in the normal form automaton to some cone of the form ij (with i 6= j). This is immediate
if w /∈ {x, y, z, x3, y1, z2}, and for these remaining cases we note that (since m12 > 3):

x → x3 → 131 → 12 if m13 > 3

x → x3 → 131 = z → z2 → 121 → 13 if m13 = 3

y → y1 → 212 → 23

z → z2 → 121 → 13

Next, it is clear that for all cone types w other than ∅, 1, 2, 3 there is a path γ2 in the automaton
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from a cone type of the form ij to w. Thus, using c, γ1, and γ2, we see that for each cone
type other than ∅, 1, 2, 3 there is a loop γ from 12 to 12 passing through w. This shows that
each cone type other than ∅, 1, 2, 3 is recurrent, and that the normal form automaton is strongly
connected.

Now consider Class II, and for simplicity consider the case of Figure 5, that is, m12,m23 > 4
with a = m12 even and b = m23 odd (the other cases are similar). It is clear that the cone types
∅, 1, 2, 3, 12, 32 are not recurrent, and we claim that all other cone types are recurrent, and that
the Cannon automaton is strongly connected. To see this, consider the paths:

γ1 = (21 → 212 → · · · → x1 → x13 → 232 → 2323 → 13 → 132 → 121)

γ2 = (121 → 1212 → · · · → x → x3 → x32 → 121)

γ3 = (121 → 23 → 232 → · · · → y → y1 → y12 → 323)

γ4 = (323 → 3232 → · · · → y3 → y31 → 212)

γ5 = (212 → 23 → 13 → 132 → 323 → 3232 → 21).

The concatenation γ = γ1γ2γ3γ4γ5 is a loop visiting all cone types other than ∅, 1, 2, 3, 12, 32,
hence the result.

Now consider Class III, and for simplicity consider the case of Figure 6, that is, a = m12 > 6
even (the case a odd is similar). It is clear that the cone types ∅, 1, 2, 3, 12, 21, 32, 121, 212, 321,
2121 are not recurrent. We claim that all other cone types are recurrent, and that the automaton
is strongly connected. Define the following paths:

γ1 = (232 → 2321 → 23212 → 232121 → 21212 → · · · → x1 → x13 → 232)

γ2 = (232 → 2321 → 23212 → 232121 → 21212 → 23 → 13 → 132 → 1321 → 1212)

γ3 = (1212 → · · · → x21 → x213 → 232)

γ4 = (1212 → · · · → x2 → x23 → x232 → x2321 → 1212)

γ5 = (1212 → · · · → x → x3 → x32 → x321 → x3212 → x32121 → 121212)

γ6 = (121212 → · · · → x → x3 → x32 → x321 → x3212 → 232).

The concatenation γ = γ1γ2γ3γ2γ4γ5γ6 is a loop starting and finishing at 232 and including
every cone type other than ∅, 1, 2, 3, 12, 21, 32, 121, 212, 321, 2121, hence the result.

Finally, consider the groups in Class IV. Let 1, 2, . . . , n be the generators of W , arranged
cyclically around the fundamental chamber. If n ≥ 5, then for each pair (i, i + 1) there is
a generator j with mi,j = ∞ and mi+1,j = ∞, and thus i → j → i+ 1 in the automaton
(see [13, Lemma A.6]). Moreover, for any w ∈ Wi,i+1 we have w → j, and it follows that
every node other than ∅ is recurrent, and moreover that the normal form automaton is strongly
connected. If n = 4 then we may assume that m12 ≥ 3 (for if mij = 2 for all i, j then W is
affine type Ã1 × Ã1, where Ã1 is the infinite dihedral group). Then 21 → 3 and 12 → 4. Thus
1 → 12 → 4 → 2 → 21 → 3 → 1. Again it follows that every node other than ∅ is recurrent,
and that the normal form automaton is strongly connected.
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