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Introduction

This thesis is devoted to the study of asymptotic properties of transient random walks
(Xn)n∈N0 in different interrelated context. This includes the investigation of the asymp-
totic behaviour of return transition probabilities as well as the derivation of several limit
theorems, which we will describe below. For this purpose, we apply different mathematical
techniques from probability theory (random walks), structure theory (algebra, geometry,
and graph theory) and analysis (potential theory). The main technique in our proofs con-
sists of a strong use of generating functions, which are power series in one or several
variables, where the coefficients are of particular interest for the underlying problem under
consideration. These coefficients are often specific probabilities but may also be some other
quantities whose asymptotic behaviour we want to study.

In the following we want to give an informal outline of this thesis by describing the different
questions which are investigated. The corresponding research articles can be found in the
appendix of this thesis and we refer to them as Publications A, B, C and D.

First, we consider nearest neighbour random walks on free products of lattices of the
form Zd1 ∗ . . . ∗ Zdr . These randoms walks arise as a convex combination of random walks
on the single factors Zdi . In this setting we will describe the asymptotic behaviour of
the n-step return probabilities P[Xn = x | X0 = x], x ∈ Zd1 ∗ . . . ∗ Zdr , as n tends
to infinity. More generally, we consider free products of finitely generated groups whose
Green functions admit an expansion at their radii of convergence with algebraic-logarithmic
terms as singular terms up to sufficiently large order. A complete specification of all different
asymptotic behaviours of the form %nn−λ logκ n (here, % denotes the spectral radius of the
underlying random walk) is given in Publication B, including an exact description of the
phase transitions.

Second, for finitely generated groups Γ1, . . . ,Γr, we will investigate branching random walks
on the free product Γ = Γ1∗. . .∗Γr. A branching random walk is a growing cloud of particles
on the Cayley graph of Γ which has the following evolution: we start with one particle at
some given vertex. At each instant of time each particle produces randomly some offspring,
and all particle make one step according to an underlying random walk on Γ. In the weak
survival phase (that is, if the mean of offspring particles is between 1 and 1/%, where % is
the spectral radius of the underlying random walk on Γ) the particle cloud will vacate each
finite set of vertices and the particle cloud moves towards the geometric boundary of the
graph. Our aim is to measure the size of the part of the geometric boundary which is hit
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INTRODUCTION

by the cloud of particles. This size is measured by use of the box-counting dimension (also
called Minkowski dimension) and the Hausdorff dimension of the geometric boundary of
the whole graph and the corresponding dimensions of the (random) part of the boundary
towards which the cloud of particles converges. Publication C studies these dimensions and
answers several other related interesting questions, which completes the picture.

Third, we study the asymptotic entropy of random walks on free products of graphs and
regular languages, that is, we investigate the limit − 1

n
E[log πn(Xn)] and show that this

limit exists, where πn is the distribution of Xn. Moreover, we are interested in the question
whether the asymptotic entropy varies real-analytically in terms of probability measures of
constant support. While existence of entropy for random walks on groups follows directly
from Kingman’s subadditive ergodic theorem, existence for non-group invariant random
walks is not guaranteed a priori due to lack of subadditivity. This problem was the starting
point for the investigation of the question whether the entropy exists for (non-group invari-
ant) random walks on free products of graphs and on regular languages, and if so to show
its real-analytic behaviour. These problems are solved in Publication A for random walks
on free products of graphs and in Publication D for random walks on regular languages.

The plan of this thesis is as follows: in Chapter 1 we will give an introduction to random
walks and generating functions, and we will motivate their use. In Section 1.3 we give a
short introduction to free products of graphs and groups which form the underlying struc-
ture of the random walks considered in Publications A, B and C. In particular, we will give
an overview on important research articles which deal in a substantial way with generating
functions in this context. The structure of Chapters 2, 3 and 4 is as follows: we formulate
the main problems, summarize the most important results of Publications A, B, C and D,
explain briefly the strong use of generating function techniques in the proofs, and give a de-
tailed outline of important research articles in the corresponding context. Chapter 2 states
the main results of Publication B about the asymptotic behaviour of return probabilities
for random walks on free products of lattices and groups, while Chapter 3 gives an overview
on branching random walks and the above mentioned related questions concerning bound-
ary dimensions (Publication C). Chapter 4 gives an introduction to asymptotic entropy
and presents the main results for random walks on free products of graphs (Publication A)
and on regular languages (Publication D).

2



Chapter 1

Random Walks, Generating
Functions and Free Products

1.1 Random Walks

A random walk is a time-homogeneous Markov chain (Xn)n∈N0 on a finite or countable
state space S equipped with a transition matrix P =

(
p(x, y)

)
x,y∈S (also called transition

operator) such that P[Xn+1 = y|Xn = x] = p(x, y) for all x, y ∈ S and n ∈ N0. Recall
that a random walk is called transient if the random walk returns to any starting point
x ∈ S after finite time with a probability strictly less than 1 and the random walk is called
irreducible if, for all x, y ∈ S, the random walk starting at x can visit y after finite time
with positive probability. Throughout this thesis we will consider transient and (in most
cases) irreducible random walks only. In particular, we assume S to be infinite. Recall
that a random walk on a group Γ is given by a probability measure µ on Γ such that
p(x, y) = µ(x−1y) for all x, y ∈ Γ.

Random walks are of big structure theoretical relevance: from the probabilistic point of view
one considers random walks which are adapted to different algebraic or geometric structures
and one wants to investigate the impact of the structure on the random walk’s behaviour.
Typical questions concern the asymptotic behaviour of return transition probabilities (see
Chapter 2) or the asymptotic speed or asymptotic entropy (see Chapter 4). Vice versa, from
the geometric point of view random walks can be used for investigation of the geometric
structure of the underlying state space. For a better visualisation, we may always think of
random walks on graphs. For more information on this interplay, we refer to Woess [57],
which serves as a basic reference throughout this thesis and the attached Publications A-D
in the appendix.
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CHAPTER 1. RANDOM WALKS, GENERATING FUNCTIONS & FREE PRODUCTS

1.2 Generating Functions

In this section we motivate the use of generating functions which play an important role
in asymptotic analysis and probability. They form a powerful tool for the investigation of
different problems from various fields of mathematics. This thesis is devoted to applica-
tions of generating function techniques to problems related to the asymptotic behaviour
of random walks. In the context of random walks generating functions are often power
series whose coefficients are some specific transition probabilities. In the following we want
to give a short introduction to some important generating functions and motivate their
use. For this purpose, we use for the n-step transition probabilities of (Xn)n∈N0 the notion
p(n)(x, y) := P[Xn = y | X0 = x] for x, y ∈ S. One of the generating functions of main
interest is the well-known Green function which is defined as

G(x, y|z) :=
∑

n≥0

p(n)(x, y) zn, z ∈ C.

If (Xn)n∈N0 is irreducible then the Green functions G(·, ·|z) have a common radius of
convergence R ≥ 1. Typical questions concern the asymptotic behaviour of the transi-
tion probabilities p(n)(x, y) as n → ∞. In many cases one gets a power law of the form
p(nδ)(x, x) ∼ C%nδnd, d ∈ R, C > 0, where % := lim supn→∞ p

(n)(x, x)1/n = 1/R is the spec-
tral radius of the transition operator P of (Xn)n∈N0 and δ := gcd{m ∈ N | p(m)(x, x) > 0}
is the period of the random walk (see e.g. [57] for further explanations). This gives a first
important motivation for the use of generating functions. In the following chapters we will
present more details and applications.

Another important class of generating functions is given by first visit generating functions
defined as

F (x, y|z) :=
∑

n≥0

P[Xn = y,∀m < n : Xm 6= y | X0 = x] zn,

which are closely related to Green functions: by conditioning on the first visit to y we get
the following essential equation:

G(x, y|z) = F (x, y|z) ·G(y, y|z).

This interaction between different classes of generating functions is very typical also in
other context. In order to analyze some generating function M(z) of interest one uses very
often a strategy as follows: one considers “simpler” generating functions M1(z), . . . ,Mk(z),
which are somehow in relation with M(z), and tries to establish some system of equations
in the unknown variables M1(z), . . . ,Mk(z). Then one solves this system and the solutions
M1(z), . . . ,Mk(z) allow a better description of M(z) or even give rise to a formula for
M(z), from which one can deduce the aimed results. In particular, this strategy is used in
different ways in all the Publications A-D in the appendix. We also refer to the next section
where we explain in more detail this interrelation of the involved generating functions in
the setting of free products. At this point let us mention the survey article of Woess [58]
which outlines the use of generating functions in the study of random walks.
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CHAPTER 1. RANDOM WALKS, GENERATING FUNCTIONS & FREE PRODUCTS

We also want to point out the link between generating functions and boundary theory.
The Martin boundary of random walks is defined via Martin kernels of the form K(x, y) :=
G(x, y|1)/G(o, x|1), where o ∈ S is some reference point. In order to define the elements
of the Martin boundary one lets y tend to infinity and considers the pointwise limits (in
the variable x) of the Martin kernels. For more details on Martin boundary we refer e.g.
to Woess [55, 57].

Applications of generating function techniques are not necessarily restricted to generating
functions with some transition probabilities as coefficients. They also play an important
role in combinatorics when one wants to deduce the asymptotic behaviour of the growth
of some quantities. For instance, let (mn)n∈N be a sequence of some quantities of interest
and define the generating function N(z) =

∑
n≥1mnz

n. Then – if the underlying structure
allows this – one can follow the same strategy and analysis as explained above in order to
deduce the asymptotic behaviour of mn as n→∞.

Furthermore, sometimes it is convenient to deal with double generating functions, which
are power series in two variables y, z ∈ C of the form V (y, z) =

∑
m,n≥0 vm,ny

mzn. In
particular, in Publications A and C we use double generating functions.

1.3 Free Products of Graphs

In this section we give a brief introduction to free products of graphs which form the
underlying structure of the random walks considered in Publications A, B and C. Free
products play an important role in graph and group theory. Stalling’s Splitting Theorem
states that the Cayley graph of a finitely generated group Γ has more than one (geometric)
end if and only if Γ admits a non-trivial decomposition as a free product by amalgamation
or an HNN-extension over a finite subgroup. Free products are special cases of amalgamated
free products (see e.g. Gilch [24] for definition and examples) and still allow calculations
in many situations, while these calculations are getting much more difficult on one-ended
non-amenable graphs.

We want to recall the definition of free products. Let 2 ≤ r ∈ N and suppose we are given
rooted graphs Gi = (Vi, oi) for each i ∈ {1, . . . , r}, where Vi is the vertex set of Gi and
oi some distinguished vertex. We call oi the root of Gi and we write ∼i for the adjacency
relation on Gi. We set V ×i := Vi \ {oi}. Define

V :=
{
x1 . . . xn

∣∣∣n ∈ N, xi ∈
r⋃

l=1

V ×l , xj ∈ V ×m ⇒ xj+1 /∈ V ×m
}
∪
{
o
}
, (1.1)

which is the set of all finite words with letters in
⋃r
l=1 V

×
l such that no two consecutive

letters come from the same V ×i and where o denotes the empty word. We have a partial
composition law on V : if w1 = x1 . . . xm, w2 = y1 . . . yn ∈ V with xm ∈ V ×i and y1 /∈ V ×i
then the concatenation w1w2 is again an element of V . Additionally, we set w1oj := w1 for
j 6= i, oiw2 := w2 and wo := w =: ow.
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CHAPTER 1. RANDOM WALKS, GENERATING FUNCTIONS & FREE PRODUCTS

We now define a natural adjacency relation ∼ on V as follows: if ui ∼i vi for ui, vi ∈ Vi
and if w ∈ V does not end with a letter in V ×i , then wui ∼ wvi.

The free product of G1, . . . , Gr is now given by G := G1∗ . . .∗Gr := (V, o) together with the
adjacency relation ∼. For better visualisation, we explain its graph structure: take copies
of G1, . . . , Gr and glue them together at their roots oi, which becomes o; inductively, at
each vertex w = x1 . . . xm with xm ∈ V ×i attach at w copies of the graphs Gj, j 6= i, where
each oj is identified with w. This leads to a cactus-like structure of G, see Figure 1.1.

(a) K2 ∗K3 (b) K2 ∗K4 (c) K3 ∗K4

Figure 1.1: Examples for free products of complete graphs Kn.

Suppose now we are given random walks on Gi governed by transition matrices Pi =(
pi(xi, yi)

)
xi,yi∈Vi , where the entries pi(xi, yi) denote the single-step transition probabilities.

We now lift the random walks Pi on the graphs Gi to random walks on G governed by
transition matrices P̄i =

(
p̄i(u, v)

)
u,v∈V : if ui, vi ∈ Vi and w ∈ V such that the last letter

of w does not belong to Vi, then we set p̄i(wui, wvi) := pi(ui, vi). Let be α1, . . . , αr ∈ (0, 1)
with

∑r
i=1 αi = 1. A natural way to define a random walk on G is then given by defining

the convex combination P := α1P̄1 + . . .+ αrP̄r, which becomes the transition operator of
the random walk on G.

A special case is the free product of groups : let Γ1, . . . ,Γr be finitely generated groups.
Then a (typical) Cayley graph of Γ = Γ1 ∗ . . . ∗ Γr is just the free product of the Cayley
graphs of the single groups Γi with respect to some given (symmetric) generating sets
of the Γi’s. The random walk on Γi is then given by a distribution µi on Γi such that
pi(xi, yi) = µi(x

−1
i yi) for xi, yi ∈ Γi.

The cactus-like structure of free products allows to deduce information about generating
functions associated with the free product from the corresponding generating functions
on the single factors Gi. The techniques which we use for rewriting probability gener-
ating functions on free products in terms of the corresponding generating functions on
the single factors of the free product were introduced independently and simultaneously
by Cartwright and Soardi [9], Woess [56], Voiculescu [53], and McLaughlin [47]. In the
following we want to describe this technique in more detail.

Denote by Gi(ui, vi|z) the Green functions on Gi with ui, vi ∈ Vi and we write G(u, v|z),
u, v ∈ V , for the Green functions associated with the random walk on G governed by P .
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CHAPTER 1. RANDOM WALKS, GENERATING FUNCTIONS & FREE PRODUCTS

Analogously, we write F (u, v|z) and Fi(ui, vi|z) for the first visit generating functions on
the free product and on the single factors Gi. A crucial fact is now that one can rewrite
some Green functions on G in terms of Green functions on Gi: in [56] a formula for the
Green function on G is derived by solving a system of algebraic equations. In particular, this
leads to the following important interrelation: for each i ∈ {1, . . . , r}, there is a function
ζi(z), z ∈ C, such that for all ui, vi ∈ Vi and each w ∈ V with last letter not in V ×i

F (wui, wvi|z) = Fi
(
ui, vi

∣∣ζi(z)
)
; (1.2)

see also Woess [57, Proposition 9.18c]. Furthermore, we have

αizG(wui, wvi|z) = Gi

(
ui, vi

∣∣ζi(z)
)
ζi(z); (1.3)

see [57, Equation (9.20)]. The last equation establishes an important link between Green
functions of the free product and Green functions on the single factors. This in turn allows
us to deduce information for the asymptotic behaviour of the random walk on G from the
asymptotic behaviour of the random walks on the single factors Gi.

Finally, we want to give an overview on some research articles which are closely related to
this interplay of generating functions on the free product and on the single factors. Lalley
[39] investigated infinite algebraic systems of generating functions of infinite free products
of finite graphs, where he derived local limit theorems analogous to [56]. For random walks
on free products by amalgamation over a finite normal subgroup Cartwright and Soardi
[9] derived a formula for the Green function on the amalgamated free product in terms of
Green functions on the single factors, which is essentially the same as in Woess [56]. In
Gilch [23] different formulas for the rate of escape (also called drift or speed) were derived
by strong use of generating function techniques. We will give further literature background
in the following chapters.
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Chapter 2

Asymptotics of Return Probabilities

The analysis of asymptotic properties of irreducible random walks involves, in particular,
the interesting question of the behaviour of n-step return probabilities p(n)(x, x) as n→∞.
Recall that the spectral radius % = limn→∞ p(nδ)(x, x)1/nδ = 1/R describes the exponential
asymptotic of the return probabilities, where R is the common radius of the Green functions
G(·, ·|z) and δ the period of the random walk; see e.g. [57]. Now one is interested in
describing the asymptotic behaviour of p(nδ)(x, x) even more precisely by determining the
leading sub-exponential term: in many cases one gets that

p(nδ)(x, x) ∼ C · %nδ · nα (2.1)

for some suitable constants C > 0 and α ∈ R. For symmetric random walks on groups,
Gerl [20] conjectured that the power α is a group invariant. Cartwright’s astonishing result
[8] disproved this conjecture by giving an example of two symmetric random walks on
the free product Zd ∗ Zd with d ≥ 5, where each random walk satisfies a law as in (2.1)
but with different exponents α. This led to the question of L. Saloff-Coste whether the
range of different asymptotic behaviour could still be wider than in the cases considered
by Cartwright. This is related with the work of Chatterji, Pittet and Saloff-Coste [11].

Let us summarize some results about the asymptotic behaviour of return transition prob-
abilities related to free products and similar structures. Work in this direction has been
done since the 1970’s by, amongst others, Gerl, Sawyer, Woess, Cartwright, Soardi and
Lalley, see e.g. [9, 21, 37, 50, 56]. For finite range random walks on free groups, the n-step
return probabilities behave asymptotically like C%nn−3/2 with % < 1; see [21, 37]. In Gerl
[20] and Woess [54, 56] free products of finite groups are considered, where finite range
random walks obey also a %nn−3/2-law. Picardello and Woess [49] derived the asymptotic
behaviour of n-step transition probabilities of random walks on amalgamated free products
of compact groups. Lalley [38] calculated the asymptotics for random walks on strings in
dependence on positive-recurrence, null-recurrence and transience.

Saloff-Coste’s question was the starting point for the investigation of the asymptotic be-
haviour of return probabilities of nearest neighbour random walks on free products of the

8



CHAPTER 2. ASYMPTOTICS OF RETURN PROBABILITIES

form Zd1 ∗ . . . ∗ Zdr , where r ≥ 2 and d1, . . . , dr ∈ N. More generally, we studied arbitrary
irreducible random walks on free products of groups Γ = Γ1 ∗ . . . ∗ Γr, where the Green
functions Gi(xi, yi|z) on the single factors Γi admit a decomposition of the form

Gi(xi, yi|z) = fi(z) + gi(z) · (Ri − z)qi logki(Ri − z) (2.2)

in a neighbourhood of z = Ri, where Ri is the radius of convergence of Gi(·, ·|z) and
where fi(z) and gi(z) are analytic functions with g(Ri) 6= 0, qi ∈ R and ki ∈ N0. Here,
we call (Ri − z)qi logki(Ri − z) the leading singular term. We note that [B] allows still
more general decompositions; see [B, Equation (2.2)]. A decomposition as in (2.2) is given
for nearest neighbour random walks on Zdi ; see [57] for simple random walk on Zdi and
[B, Proposition 6.1] for arbitrary nearest neighbour random walks. In [B] it is shown that
there are only up to r+ 1 different asymptotic types for the return probabilities of random
walks on free products, which gives a complete answer to Saloff-Coste’s question in the
case of free products of lattices:

Theorem 2.1. (see [B, Theorem 1.1])

Let 2 ≤ r ∈ N and d1, . . . , dr ∈ N. For each i ∈ {1, . . . , r}, consider a probability measure

µi on Zdi with supp(µi) = {±e(i)
j | 1 ≤ j ≤ di}, where e

(i)
j is the j-th unit vector in Zdi. For

any α1, . . . , αr > 0 with
∑r

i=1 αi = 1, let µ :=
∑r

i=1 αiµi govern an (irreducible) random
walk on the free product Zd1 ∗ . . .∗Zdr starting at e, where e denotes the identity of the free
product. Denote by % the spectral radius of the random walk governed by µ.

Then the return probabilities p(2n)(e, e) behave asymptotically either like C · %2n · n−di/2 for
i ∈ {1, . . . , r} or like C ·%2n ·n−3/2 for some constant C = Cµ depending on µ. Moreover, if
all exponents di are different and min{d1, . . . , dr} ≥ 5 then exactly r+1 different asymptotic
behaviours may occur by choosing the random walk adequately.

Let us note that, for random walks on Zd ∗ Zd with d ≥ 5, [8] gave examples for the two
possible behaviours of type n−d/2 and n−3/2. In [57, Proposition 17.13] Cartwright’s result
is explained that simple random walk obeys a %2nn−d/2 law; compare also with Cartwright
and Soardi [10].

We even investigated more general laws of the form C%−nδn−λ logκ n (with % being the
spectral radius), which led to the following theorem:

Theorem 2.2. (see [B, Theorems 3.1 and 4.1])

Let Γ1,Γ2 be finitely generated groups equipped with random walk transition operators P1

and P2, whose Green functions G1(x1, y1|z) and G2(x2, y2|z) admit a decomposition of
the form (2.2) or as in [B, (2.2)]. Let be α ∈ (0, 1) and define the transition operator
P := αP 1 +(1−α)P 2 on Γ1 ∗Γ2, where % denotes its spectral radius and δ its period. Then
one of the following different asymptotic behaviours must hold for the random walk on the
free product Γ1 ∗ Γ2 governed by P :

C%δnn−λ1 logκ1 n or C%δnn−λ2 logκ2 n or C%δnn−3/2.

The values of λ1, λ2, κ1, κ2 can be calculated from the values of q1, q2, k1, k2 in (2.2).

9



CHAPTER 2. ASYMPTOTICS OF RETURN PROBABILITIES

Moreover, the proof of this theorem gives a complete phase transition analysis: it is pre-
cisely formulated where the phase transitions occur and which of the types may occur.
Unfortunately, we are not able to present concrete examples with κi > 0; however, the
decomposition of the form (2.2) or as in [B, (2.2)] leads also to higher asymptotic orders
where the logarithmic term does not vanish; compare with [B, Section 8].

The proof of Theorem 2.2 involves a strong use of generating functions which we sketch
in the following. The main technique for deriving these asymptotic behaviours consists of
an interaction between the Green functions on Γ1 ∗ . . . ∗ Γr and the Green functions on
the single factors Γi: we plug the expansion given by (2.2) into the formula (1.3) and, by
careful analysis, we determine the leading singular algebraic-logarithmic term in the Green
function G(e, e|z) of the random walk on the free product. We find out that G(e, e|z) has
again a form as in (2.2), where the leading singular term is either inherited from one of
the factors Γ1, . . . ,Γr or which is a square root term.

Having identified the leading singular term of the Green function on the free product we
can deduce the asymptotic behaviour of p(n)(x, x) with the help of the well-known method
of Darboux, which is a standard method for deriving asymptotics. At this point we want
to recall Darboux’s method. First, the Riemann-Lebesgue Lemma states that if a power
series H(z) =

∑
n≥0 hnz

n has radius of convergence RH and if H(z) is k-times continuously

differentiable on its circle of convergence, then hnR
n
Hn

k → 0 as n→∞. Thus, one proceeds
as follows: identify all singularities on the circle of convergence and subtract parts of the
expansion near them such that the remaining part is sufficiently often differentiable on
the circle. The asymptotics of the coefficients hn arise then from the expansions of the
leading singular term (and maybe the next higher order singular terms) in the expansion
of H(z) in a neighbourhood of z = RH .; we refer to Olver [48, Chap. 8, §9.2] and to
Flajolet and Segdewick [17] for the asymptotics of the coefficients in the expansions of
standard algebraic-logarithmic singular terms. We remark that another (modern) tool to
handle singular expansions is Singularity Analysis, which was developed by Flajolet and
Odlyzko [16]. However, Darboux’s method seems to be more accessible for an application
in our setting.
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Chapter 3

Asymptotic Behaviour of Branching
Random Walks

3.1 Branching Random Walks

Consider a graph G equipped with an irreducible random walk transition operator P and
some distribution ν on N0 with mean λ > 1. A branching random walk (BRW) on G is a
growing cloud of particles that move on G in discrete time as follows. The process starts
with one single particle at some vertex of G. At each instant of time every particle produces
some offspring according to ν and each descendant makes one step in G according to P .
Movements and branching of the particles are independent from each other.

Branching random walks are of particular interest at the intersection of abstract mathemat-
ics with physics and biology (e.g., bacteria spread out and infect neighbour cells). We give
a short overview on the qualitative behaviour of BRWs. Since λ > 1 the BRW will survive
with positive probability; see e.g. Harris [29]. A first natural question is to ask whether the
BRW eventually fills up the whole graph, that is, whether every finite set of vertices will
eventually be occupied or free of particles. For BRW on Cayley graphs of non-amenable
groups one observes the following phase transition, where R denotes the common radius of
convergence of the Green functions associated with P : if λ ≤ R (weak survival phase) then
every finite set of vertices will eventually be free of particles (see Benjamini and Peres [5]
for λ < R and Gantert and Müller [19] for λ = R); if λ > R (strong survival phase) then
each vertex will be eventually visited with probability 1 (see [5]). In the first case the trace
of the BRW, which consists of all vertices and edges which are visited by the BRW, is a
proper subgraph of the Cayley graph of G; see Benjamini and Müller [4].

Further important work in the context of BRW was done by Benjamini and Peres [5, 6],
where they give another powerful description of BRWs by tree-indexed random walks. In
[4] exponential volume growth of the trace of symmetric (that is, P is symmetric) BRWs
on non-amenable Cayley graphs is proved. BRWs are strongly connected with percolation
on graphs. For BRWs on free groups and regular trees it turns out that the law of the trace
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of a BRW is the law of an infinite cluster of some invariant percolation; see Benjamini,
Lyons and Schramm [3] and [4].

Finally, let us remark that BRWs have also been studied in the continuous-time setting,
see e.g. Harris [29, Chapter V] for Markov branching processes in continuous time and
Athreya and Ney [1, Chapter VI] for branching Brownian motion in Euclidean space.
Lalley and Sellke [40] studied the phase transition for branching Brownian motion on the
hyperbolic disc and Karpelevich, Pechersky and Suhov [35] generalized these results to
higher-dimensional Lobachevsky spaces.

3.2 Branching Random Walks on Free Products of

Groups

In view of Publication C of this thesis we consider now branching random walks on the
Cayley graphs of free products of groups Γ = Γ1 ∗ . . . ∗ Γr, where Γ1, . . . ,Γr are finitely
generated groups. We are interested in the weak survival phase λ ∈ (1, R], that is, the
cloud of particles moves towards the boundary Ω of the free product and each finite set of
vertices will be finally vacated. The limit set Λ of the BRW is the random subset of the
boundary Ω that consists of all ends in Ω, where the BRW accumulates. Typical ways of
measuring the size of boundaries are by use of the box-counting dimension BD(M) (also
known as the Minkowski dimension) or the Hausdorff dimension HD(M) for M ⊂ Ω. Note
that existence of the box-counting dimension is not guaranteed a priori. Since the formal
definitions of these boundaries and dimensions are not necessary in order to state the main
results, we omit an exact definition at this point and refer to [C, page 8].

The starting point for [C] was the work of Hueter and Lalley [31], who studied BRWs on
homogeneous trees in the phase 1 < λ ≤ R. In particular, they gave a formula for the
Hausdorff dimension HD(Λ) and showed that the Hausdorff dimension is at most half of
the size of the Hausdorff dimension of Ω. Publication C extends these results to BRWs on
free products of groups Γ = Γ1∗ . . .∗Γr and free products by amalgamation of finite groups
(for a definition, see e.g. [C, Section 3.3]). In order to be able to state the main result we
need some definitions: let F (e, x|z) be the first-visit generating function on the free product
Γ, where e denotes the identity element of Γ and x ∈ Γ. Denote by |x| the word length of
x in the sense of the definition in (1.1). Define the double generating function

F+
i (λ|z) :=

∑

x∈Γi\{ei}
F (e, x|λ)z|x| =

∑

xi∈Γi\{ei}
Fi(ei, xi|ζi(λ))z|x|,

where we use (1.2) in the second equation with Fi(·, ·|z) being the first visit generating
function on Γi and ei being the identity in Γi. Now we can formulate our main result:

12
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Theorem 3.1. (see [C, Theorem 3.5])

Suppose that ν has a finite second moment. Then the box-counting dimension BD(Λ) exists
and equals the Hausdorff dimension HD(Λ). Moreover, BD(Λ) = HD(Λ) = − log z∗/ log 2,
where z∗ is the smallest real positive number with

r∑

i=1

F+
i (λ|z)

1 + F+
i (λ|z)

= 1.

We remark that the above theorem is a reformulation of [C, Theorem 3.5] with α = 1
2
,

where α ∈ (0, 1) is a scaling constant used in the definition of the dimensions. Moreover,
an analogous result to Theorem 3.1 is shown for the whole boundary Ω of the free product,
see [C, Theorem 3.8]. For the case of BRWs on free products by amalgamation of finite
groups we obtain a similar result, see [C, Corollary 3.18].

The behaviour of HD(Λ) when varying λ (in particular, when λ ↗ R) is explained
in [C, Theorem 3.10], which leads to the following qualitative picture of the mapping
λ 7→ HD(Λ):

1.005 1.010 1.015 1.020

0.1

0.2

0.3

0.4

0.5

Figure 3.1: Hausdorff dimension HD(Λ) of a BRW on (Z/3Z) ∗ (Z/2Z) in dependence of λ
on the x-axis; the discontinuity is at λ = R, and HD(Λ) = HD(Ω) for λ > R.

In order to establish the formula for HD(Λ) in Theorem 3.1 we make once again a strong
use of generating function techniques as explained in Section 1.3: we consider the double
generating function F(λ|z) :=

∑
x∈Γ F (e, x|λ)z|x| on the free product, which we rewrite in

terms of the corresponding double generating functions F+
i (λ|z) on the single factors:

F(λ|z) =
1

1−∑r
i=1

F+
i (λ|z)

1+F+
i (λ|z)

;

see [C, (4.1)]. This equation is the essential key in order to find out the radius of convergence
of F(λ|z) (for given λ), from which we can deduce the Hausdorff dimension of Λ. Let us
remark that the form of the last equation is characteristic for free products: analogous
equations have been established in [23] for the calculation of the asymptotic drift of random
walks on free products and in Gilch and Müller [25] for the calculation of the connective
constant of self-avoiding walks on free products.
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Chapter 4

Asymptotic Entropy of Random
Walks

4.1 Random Walks and Asymptotic Entropy

Consider a transient Markov chain (Xn)n∈N0 on some infinite state space S and denote
by πn the distribution of Xn. We are interested whether the sequence − 1

n
E[log πn(Xn)]

converges, and if so to compute its limit h. If the limit exists it is called the asymptotic
entropy of (Xn)n∈N0 , which was introduced by Avez [2] for transient random walks on
groups. This question is studied for random walks on different structures: Publication A
answers this question for random walks on free products of graphs while Publication D
gives an answer for random walks on regular languages.

We outline some background on this topic. For random walks on groups, existence of the
asymptotic entropy follows from Kingman’s subadditive ergodic theorem (see Kingman
[36]) due to subadditivity of the sequence (− log πn(Xn))n∈N0 . In particular, the sequence
− 1
n

log πn(Xn) converges almost surely to the asymptotic entropy h. However, for non-
group invariant random walks existence of the entropy is not guaranteed a priori. In the
particular (non-group invariant) cases of free products of graphs and regular languages
we have no general subadditivity and only a partial composition law for two words of the
free product or regular language; hence, Kingman’s theorem can not be applied. For more
information about entropy of random walks on groups we refer to Kaimanovich and Vershik
[32], Derriennic [13] and Kaimanovich and Woess [33].

An important link between drift and harmonic analysis was obtained by Varopoulos [52]
who proved that for symmetric finite range random walks on groups the existence of non-
trivial bounded harmonic functions is equivalent to a non-zero rate of escape. This result
was generalized by Karlsson and Ledrappier [34] to symmetric random walks with finite
first moment of the step lengths. This leads to a link between the rate of escape and the
entropy of random walks, compare e.g. with [32] and Erschler [14].

14
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Erschler and Kaimanovich [15] asked whether drift and entropy of random walks on groups
with finite range vary real-analytically in terms of probability measures of constant support
in the following sense: let µ be a finitely supported probability measure on a group Γ0,
whose support supp(µ) generates Γ0 as a semigroup. That is, we can write µ = (µ(s))s∈S
with some finite S ⊂ Γ0. Then the asymptotic entropy depends on the parameters (µ(s))s∈S
and we ask whether the entropy mapping µ 7→ h = h(µ) is real-analytic. This question can
be generalized to non-group invariant random walks, when the transition operator depends
on a finite number of parameters only.

The main goals in Publications A and D are to prove that the asymptotic entropy of the
underlying random walks exists and to prove its real-analytic behaviour. Compare also with
Ledrappier [41], who simultaneously proved this property for finite-range random walks on
free groups.

We collect some further recent results on analyticity of drift and entropy. Analyticity of the
drift of random walks on free products follows from the formula in Gilch [23]. Ledrappier
[42] showed that drift and entropy of finitely supported random walks on hyperbolic groups
are Lipschitz. Häıssinksy, Mathieu and Müller [27] showed that the rate of escape of random
walks on surface groups varies real-analytically. Mathieu [46] proved that the asymptotic
entropy of random walks on nonelementary hyperbolic groups is differentiable. The very
recent excellent work of Gouëzel [26] shows that drift and entropy of random walks on
hyperbolic groups vary real-analytically. See also Ledrappier and Gilch [22], which is a
survey article about regularity of drift and entropy of some random walks.

Finally, we note that the technique of the proofs in Publication A and D was motivated
by Benjamini and Peres [6], who showed that, for finite-range random walks on groups,
the asymptotic entropy equals the rate of escape with respect to the Green distance which
is given by limn→∞− 1

n
logG(e,Xn|1); Blachère, Häıssinsky and Mathieu [7] extended the

results of [6] to random walks with finite first moment of the step lengths.

4.2 Asymptotic Entropy of Random Walks on Free

Products of Graphs

Let G1, . . . , Gr be rooted graphs with finite or countable sets of vertices and edges. We now
consider a transient random walk on the free product G = G1 ∗ . . . ∗ Gr. We assume that
the random walk is uniformly irreducible (for a definition, see e.g. [A, (2.1)]. Denote by R
the common radius of convergence of the Green functions G(·, ·|z) of the random walk on
the free product. Then we have:

Theorem 4.1. (see [A, Theorem 3.8])

Assume R > 1. Then the asymptotic entropy h = limn→∞− 1
n
E[log πn(Xn)] exists, is strictly

positive and equals the rate of escape with respect to the Green distance.
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This generalizes the result of [6] and [7] to a non-group invariant setting. The proof of
Theorem 4.1 consists of proving existence of the rate of escape with respect to the Green
distance and then showing that this limit equals the entropy. Hence, a strong use of gen-
erating functions leads to the proposed result by studying the evolution of G(o,Xn|1) as
n→∞.

A formula for the entropy in terms of generating functions on the single factors Gi is given
in [A, Theorem 3.8]. Another equivalent formula for h is derived in [A, Corollary 4.2] with
the help of double generating functions and an application of a theorem of Sawyer and
Steger [51, Theorem 2.2]. For the special case of free products of groups, a third formula is
given in [A, Theorem 5.1], from which the real-analytic behaviour of the entropy in terms
of probability measures of constant support is derived:

Corollary 4.2. (see [A, Corollary 5.2])

For transient finite-range random walks on free products of groups, the asymptotic entropy
varies real-analytically in terms of probability measures of constant support.

Observe that the last corollary holds also for free products of infinite groups which are
not necessarily hyperbolic. We remark that the formula for the entropy given in Mairesse
and Mathéus [43] for random walks on free products of finite groups depends also real-
analytically on transition probabilities with fixed support. Furthermore, we proved that
h = lim infn→∞− 1

n
log πn(Xn) almost surely (see [A, Corollary 3.9]) and that− 1

n
log πn(Xn)

converges also in L1 to h (see [A, Corollary 3.11]).

4.3 Random Walks on Regular Languages

Let A be a finite alphabet and denote by A∗ the set of all finite words over the alphabet
A, where we write o for the empty word. Furthermore, let (Xn)n∈N0 be a transient Markov
chain on A∗ with X0 = o such that at each instant of time the last K ∈ N letters of the
current word may be replaced by 2K other letters and the transition probabilities depend
only on the last K letters of the current word and the replacing letters. That is, the random
walk depends on a finite number of parameters which describe these single-step transitions.
Denote by L ⊆ A∗ the set of all finite words which can be reached from o with positive
probability. Then L forms a regular language, that is, whose words are accepted by a finite-
state automaton. For further information on regular languages, we refer to Hopcraft and
Ullman [30].

Random walks on strings or regular languages have been studied in many cases. The most
important ones (in our context), amongst others, are the works of Malyshev [44, 45], Gairat,
Malyshev, Menshikov and Pelikh [18] and Lalley [38]. In [18] the Perron-Frobenius theory
was applied in order to state criteria for positive-recurrence, null-recurrence and transience.
Moreover, Malyshev proved stabilization laws concerning existence of the stationary dis-
tribution and speed in the transient case and convergence of conditional distributions in
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the ergodic case. Yambartsev and Zamyatin [60] proved a stabilization law for random
walks on two semi-infinite strings over a finite alphabet. Lalley [38] also studied random
walks on regular languages: he used generating functions in order to deduce the asymp-
totic behaviour of return probabilities p(n)(o, o) in dependence of the recurrence/transience
behaviour of the random walk. He showed that the return probabilities must obey one of
three possible power laws. In particular, [38] introduced several other generating functions
which are also useful for our purpose. The key fact at this point is that one can calculate
these generating functions by establishing and solving a system of quadratic equations
which interconnects these generating functions. Lalley’s work was the starting point for
the investigation of existence of the drift in [24], which in turn was the starting point for
Publication D. The main result of D is the following theorem:

Theorem 4.3. (see [D, Theorem 2.5 and Corollary 2.8])

Consider a transient random walk (Xn)n∈N0 on a regular language, which satisfies Assump-
tions 2.1 and 2.4 in [D]. Then the asymptotic entropy h of (Xn)n∈N0 exists and varies real-
analytically in terms of probability measures of constant support. Moreover, the asymptotic
entropy equals the rate of escape with respect to the Green distance.

As in the proof of Theorem 4.1, one first proves that the rate of escape with respect to the
Green distance exists and then shows that it equals the asymptotic entropy. This involves
once again a strong use of generating functions.

A formula for the entropy is given in [D, Theorem 2.5]: it identifies the asymptotic entropy
via the Shannon entropy (i.e., the asymptotic entropy of a stationary process in the sense
of Shannon; see e.g. Cover and Thomas [12]) of a hidden Markov chain with an underlying
ergodic Markov chain. Similar to [A] we have that h = lim infn→∞− 1

n
log πn(Xn) almost

surely and that − 1
n

log πn(Xn) converges in L1 to h; see [D, Corollary 2.7].

Another main goal of the paper was not only to show existence of the asymptotic entropy
and to deduce formulas for it, but also to show that it varies real-analytically. To this end
we cut the random walk into pieces with the help of the concept of cones, a concept which
is often used when studying random walks on graphs. It turns out that the pieces of the
random walk between the final entries into the different cones form an ergodic Markov chain
from which we deduce a hidden Markov chain. The big task is to prove that the involved
entropy of this hidden Markov chain varies real-analytically in terms of the entries of the
transition matrix of the underlying finite Markov chain. This property can be shown with
the result of Han and Marcus [28], who showed that the entropy of a hidden Markov
chain varies real-analytically if the transition matrix of the underlying finite Markov chain
satisfies some properties. The main task in Publication D is to make a tricky, laborious
recoding of an involved finite ergodic Markov chain (that is, the stochastic process arising
from the random walk on L by cutting it into pieces with the help of cones) such that the
recoded finite Markov chain leads to the same hidden Markov chain in distribution but
additonally satisfying the assumptions of the theorem of Han and Marcus. This leads to
the following result:
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Theorem 4.4. (see [D, Theorem 2.6])

Consider a transient random walk on a regular language satisfying Assumptions 2.1 and
2.4 in [D]. Then the asymptotic entropy h varies real-analytically in terms of probability
measures of constant support.

Finally, let us remark that the results in Publication D are by no means direct generaliza-
tions of Ledrappier [41], who proved the real-analytic behaviour of the entropy for random
walks on free groups. First, the approaches are different: while [41] identifies the asymp-
totic entropy as the boundary entropy, Publication D identifies the asymptotic entropy
as the Shannon entropy of a hidden Markov chain. Second, the results in Publication D
adapt to the situation of virtually free groups, which are generalisations of free groups, but
the range of applications is considerably wider (e.g., context-free graphs); we refer to [D,
Section 2.2.3] for further comments. See also Woess [59], where a similar concept of cones
has been used independently.
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Abstract

Suppose we are given the free product V of a finite family of finite or countable sets. We consider
a transient random walk on the free product arising naturally from a convex combination of ran-
dom walks on the free factors. We prove the existence of the asymptotic entropy and present
three different, equivalent formulas, which are derived by three different techniques. In partic-
ular, we will show that the entropy is the rate of escape with respect to the Greenian metric.
Moreover, we link asymptotic entropy with the rate of escape and volume growth resulting in
two inequalities.
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1 Introduction

Suppose we are given a finite family of finite or countable sets V1, . . . , Vr with distinguished vertices
oi ∈ Vi for i ∈ {1, . . . , r}. The free product of the sets Vi is given by V := V1∗. . .∗Vr , the set of all finite
words of the form x1 . . . xn such that each letter is an element of

⋃r
i=1 Vi \ {oi} and two consecutive

letters arise not from the same Vi . We consider a transient Markov chain (Xn)n∈N0
on V starting at

the empty word o, which arises from a convex combination of transition probabilities on the sets Vi .
Denote by πn the distribution of Xn. We are interested in whether the sequence E[− logπn(Xn)]/n
converges, and if so, to compute this constant. If the limit exists, it is called the asymptotic entropy.
In this paper, we study this question for random walks on general free products. In particular, we
will derive three different formulas for the entropy by using three different techniques.

Let us outline some results about random walks on free products: for free products of finite groups,
Mairesse and Mathéus [21] computed an explicit formula for the rate of escape and asymptotic
entropy by solving a finite system of polynomial equations. Their result remains valid in the case
of free products of infinite groups, but one needs then to solve an infinite system of polynomial
equations. Gilch [11] computed two different formulas for the rate of escape with respect to the
word length of random walks on free products of graphs by different techniques, and also a third
formula for free products of (not necessarily finite) groups. The techniques of [11] are adapted to
the present setting. Asymptotic behaviour of return probabilities of random walks on free products
has also been studied in many ways; e.g. Gerl and Woess [10], [28], Sawyer [24], Cartwright and
Soardi [5], and Lalley [18], Candellero and Gilch [4].

Our proof of existence of the entropy envolves generating functions techniques. The techniques we
use for rewriting probability generating functions in terms of functions on the factors of the free
product were introduced independently and simultaneously by Cartwright and Soardi [5], Woess
[28], Voiculescu [27] and McLaughlin [22]. In particular, we will see that asymptotic entropy is
the rate of escape with respect to a distance function in terms of Green functions. While it is well-
known by Kingman’s subadditive ergodic theorem (see Kingman [17]) that entropy (introduced by
Avez [1]) exists for random walks on groups whenever E[− logπ1(X1)]<∞, existence for random
walks on other structures is not known a priori. We are not able to apply Kingman’s theorem in our
present setting, since we have no (general) subadditivity and we have only a partial composition
law for two elements of the free product. For more details about entropy of random walks on groups
we refer to Kaimanovich and Vershik [14] and Derriennic [7].

An important link between drifts and harmonic analysis was obtained by Varopoulos [26]. He proved
that for symmetric finite range random walks on groups the existence of non-trivial bounded har-
monic functions is equivalent to a non-zero rate of escape. Karlsson and Ledrappier [16] generalized
this result to symmetric random walks with finite first moment of the step lengths. This leads to a
link between the rate of escape and the entropy of random walks, compare e.g. with Kaimanovich
and Vershik [14] and Erschler [8]. Erschler and Kaimanovich [9] asked if drift and entropy of ran-
dom walks on groups vary continuously on the probability measure, which governs the random
walk. We prove real-analyticity of the entropy when varying the probabilty measure of constant
support; compare also with the recent work of Ledrappier [19], who simultaneously proved this
property for finite-range random walks on free groups.

Apart from the proof of existence of the asymptotic entropy h = limn→∞E[− logπn(Xn)]/n (The-
orem 3.7), we will calculate explicit formulas for the entropy (see Theorems 3.7, 3.8, 5.1 and
Corollary 4.2) and we will show that the entropy is non-zero. The technique of our proof of exis-
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tence of the entropy was motivated by Benjamini and Peres [2], where it is shown that for random
walks on groups the entropy equals the rate of escape w.r.t. the Greenian distance; compare also
with Blachère, Haïssinsky and Mathieu [3]. We are also able to show that, for random walks on
free products of graphs, the asymptotic entropy equals just the rate of escape w.r.t. the Greenian
distance (see Corollary 3.3 in view of Theorem 3.7). Moreover, we prove convergence in probability
and convergence in L1 (if the non-zero single transition probabilities are bounded away from 0) of
the sequence − 1

n
logπn(Xn) to h (see Corollary 3.11), and we show also that h can be computed

along almost every sample path as the limes inferior of the aforementioned sequence (Corollary
3.9). In the case of random walks on discrete groups, Kingman’s subadditive ergodic theorem pro-
vides both the almost sure convergence and the convergence in L1 to the asymptotic entropy; in the
case of general free products there is neither a global composition law for elements of the free prod-
uct nor subadditivity. Thus, in the latter case we have to introduce and investigate new processes.
The question of almost sure convergence of − 1

n
logπn(Xn) to some constant h, however, remains

open. Similar results concerning existence and formulas for the entropy are proved in Gilch and
Müller [12] for random walks on directed covers of graphs. The reasoning of our proofs follows the
argumentation in [12]: we will show that the entropy equals the rate of escape w.r.t. some special
length function, and we deduce the proposed properties analogously. In the present case of free
products of graphs, the reasoning is getting more complicated due to the more complex structure of
free products in contrast to directed covers, although the main results about existence and conver-
gence types are very similar. We will point out these difficulties and main differences to [12] at the
end of Section 3.2. Finally, we will link entropy with the rate of escape and the growth rate of the
free product, resulting in two inequalities (Corollary 6.4).

The plan of the paper is as follows: in Section 2 we define the random walk on the free product
and the associated generating functions. In Section 3 we prove existence of the asymptotic entropy
and give also an explicit formula for it. Another formula is derived in Section 4 with the help of
double generating functions and a theorem of Sawyer and Steger [25]. In Section 5 we use another
technique to compute a third explicit formula for the entropy of random walks on free products of
(not necessarily finite) groups. Section 6 links entropy with the rate of escape and the growth rate
of the free product. Sample computations are presented in Section 7.

2 Random Walks on Free Products

2.1 Free Products and Random Walks

Let I := {1, . . . , r} ⊆ N, where r ≥ 2. For each i ∈ I , consider a random walk with transition matrix
Pi on a finite or countable state space Vi . W.l.o.g. we assume that the sets Vi are pairwise disjoint
and we exclude the case r = 2= |V1|= |V2| (see below for further explanation). The corresponding
single and n-step transition probabilities are denoted by pi(x , y) and p(n)i (x , y), where x , y ∈ Vi . For
every i ∈ I , we select an element oi of Vi as the “root”. To help visualize this, we think of graphsXi
with vertex sets Vi and roots oi such that there is an oriented edge x → y if and only if pi(x , y)> 0.
Thus, we have a natural graph metric on the set Vi . Furthermore, we shall assume that for every
i ∈ I and every x ∈ Vi there is some nx ∈ N such that p(nx )

i (oi , x) > 0. For sake of simplicity we
assume pi(x , x) = 0 for every i ∈ I and x ∈ Vi . Moreover, we assume that the random walks on Vi
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are uniformly irreducible, that is, there are ε(i)0 > 0 and Ki ∈ N such that for all x , y ∈ Vi

pi(x , y)> 0 ⇒ p(k)i (x , y)≥ ε(i)0 for some k ≤ Ki . (2.1)

We set K := maxi∈I Ki and ε0 := mini∈I ε
(i)
0 . For instance, this property is satisfied for nearest

neighbour random walks on Cayley graphs of finitely generated groups, which are governed by
probability measures on the groups.

Let V×i := Vi \ {oi} for every i ∈ I and let V×∗ :=
⋃

i∈I V×i . The free product is given by

V := V1 ∗ . . . ∗ Vr

=
n

x1 x2 . . . xn

��� n ∈ N, x j ∈ V×∗ , x j ∈ V×k ⇒ x j+1 /∈ V×k
o
∪
n

o
o

. (2.2)

The elements of V are “words” with letters, also called blocks, from the sets V×i such that no two
consecutive letters come from the same Vi . The empty word o describes the root of V . If u =
u1 . . . um ∈ V and v = v1 . . . vn ∈ V with um ∈ Vi and v1 /∈ Vi then uv stands for their concatenation
as words. This is only a partial composition law, which makes defining the asymptotic entropy more
complicated than in the case of free products of groups. In particular, we set uoi := u for all i ∈ I
and ou := u. Note that Vi ⊆ V and oi as a word in V is identified with o. The block length of a word
u = u1 . . . um is given by ‖u‖ := m. Additionally, we set ‖o‖ := 0. The type τ(u) of u is defined to
be i if um ∈ V×i ; we set τ(o) := 0. Finally, ũ denotes the last letter um of u. The set V can again be
interpreted as the vertex set of a graph X , which is constructed as follows: take copies of X1, . . .Xr
and glue them together at their roots to one single common root, which becomes o; inductively, at
each vertex v1 . . . vk with vk ∈ Vi attach a copy of every X j , j 6= i, and so on. Thus, we have also a
natural graph metric associated to the elements in V .

The next step is the construction of a new Markov chain on the free product. For this purpose, we lift
Pi to a transition matrix P̄i on V : if x ∈ V with τ(x) 6= i and v, w ∈ Vi , then p̄i(x v, xw) := pi(v, w).
Otherwise we set p̄i(x , y) := 0. We choose 0 < α1, . . . ,αr ∈ R with

∑
i∈I αi = 1. Then we obtain a

new transition matrix on V given by
P =

∑
i∈I
αi P̄i .

The random walk on V starting at o, which is governed by P, is described by the sequence of random
variables (Xn)n∈N0

. For x , y ∈ V , the associated single and n-step transition probabilities are denoted
by p(x , y) and p(n)(x , y). Thus, P governs a nearest neighbour random walk on the graphX , where
P arises from a convex combination of the nearest neighbour random walks on the graphs Xi .

Theorem 3.3 in [11] shows existence (including a formula) of a positive number `0 such that `0 =
limn→∞ ‖Xn‖/n almost surely. The number `0 is called the rate of escape w.r.t. the block length.
Denote by πn the distribution of Xn. If there is a real number h such that

h= lim
n→∞

1

n
E
�− logπn(Xn)

�
,

then h is called the asymptotic entropy of the process (Xn)n∈N0
; we write N0 := N \ {0}. If the sets

Vi are groups and the random walks Pi are governed by probability measures µi , existence of the
asymptotic entropy rate is well-known, and in this case we even have h= limn→∞− 1

n
logπn(Xn)

almost surely; see Derriennic [7] and Kaimanovich and Vershik [14]. We prove existence of h in the
case of general free products.
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2.2 Generating Functions

Our main tool will be the usage of generating functions, which we introduce now. The Green func-
tions related to Pi and P are given by

Gi(x i , yi|z) :=
∑
n≥0

p(n)i (x i , yi) z
n and G(x , y|z) :=

∑
n≥0

p(n)(x , y) zn,

where z ∈ C, x i , yi ∈ Vi and x , y ∈ V . At this point we make the basic assumption that the radius
of convergence R of G(·, ·|z) is strictly bigger than 1. This implies transience of our random walk on
V . Thus, we may exclude the case r = 2 = |V1| = |V2|, because we get recurrence in this case. For
instance, if all Pi govern reversible Markov chains, then R> 1; see [29, Theorem 10.3]. Furthermore,
it is easy to see that R> 1 holds also if there is some i ∈ I such that p(n)i (oi , oi) = 0 for all n ∈ N.

The first visit generating functions related to Pi and P are given by

Fi(x i , yi|z) :=
∑
n≥0

P
�

Y (i)n = yi ,∀m≤ n− 1 : Y (i)m 6= yi | Y (i)0 = x i
�

zn and

F(x , y|z) :=
∑
n≥0

P
�

Xn = y,∀m≤ n− 1 : Xm 6= y | X0 = x
�

zn,

where
�
Y (i)n

�
n∈N0

describes a random walk on Vi governed by Pi . The stopping time of the first
return to o is defined as To := inf{m≥ 1 | Xm = o}. For i ∈ I , define

H i(z) :=
∑
n≥1

P[To = n, X1 /∈ V×i ] z
n and ξi(z) :=

αiz

1−H i(z)
.

We write also ξi := ξi(1), ξmin := mini∈I ξi and ξmax := maxi∈I ξi . Observe that ξi < 1; see [11,
Lemma 2.3]. We have F(x i , yi|z) = Fi

�
x i , yi|ξi(z)

�
for all x i , yi ∈ Vi; see Woess [29, Prop. 9.18c].

Thus,

ξi(z) :=
αiz

1−∑ j∈I\{i}
∑

s∈Vj
α j p j(o j , s)zF j

�
s, o j

��ξ j(z)
� .

For x i ∈ Vi and x ∈ V , define the stopping times T (i)x i
:= inf{m ≥ 1 | Y (i)m = x i} and Tx := inf{m ≥

1 | Xm = x}, which take both values in N∪{∞}. Then the last visit generating functions related to Pi
and P are defined as

Li(x i , yi|z) :=
∑
n≥0

P
�

Y (i)n = yi , T (i)x i
> n | Y (i)0 = x i

�
zn,

L(x , y|z) :=
∑
n≥0

P
�

Xn = y, Tx > n | X0 = x
�

zn.

If x = x1 . . . xn, y = x1 . . . xn xn+1 ∈ V with τ(xn+1) = i then

L(x , y|z) = Li
�
oi , xn+1

��ξi(z)
�
; (2.3)

this equation is proved completely analogously to [29, Prop. 9.18c]. If all paths from x ∈ V to
w ∈ V have to pass through y ∈ V , then

L(x , w|z) = L(x , y|z) · L(y, w|z);

80

PUBLICATION A. ASYMPTOTIC ENTROPY OF RAND. WALKS ON FREE PROD.

29



this can be easily checked by conditioning on the last visit of y when walking from x to w. We have
the following important equations, which follow by conditioning on the last visits of x i and x , the
first visits of yi and y respectively:

Gi(x i , yi|z) = Gi(x i , x i|z) · Li(x i , yi|z) = Fi(x i , yi|z) · Gi(yi , yi|z),
G(x , y|z) = G(x , x |z) · L(x , y|z) = F(x , y|z) · G(y, y|z). (2.4)

Observe that the generating functions F(·, ·|z) and L(·, ·|z) have also radii of convergence strictl
bigger than 1.

3 The Asymptotic Entropy

3.1 Rate of Escape w.r.t. specific Length Function

In this subsection we prove existence of the rate of escape with respect to a specific length function.
From this we will deduce existence and a formula for the asymptotic entropy in the upcoming
subsection.

We assign to each element x i ∈ Vi the “length”

li(x i) :=− log L(o, x i|1) =− log Li(oi , x i|ξi).

We extend it to a length function on V by assigning to v1 . . . vn ∈ V the length

l(v1 . . . vn) :=
n∑

i=1

lτ(vi)(vi) =−
n∑

i=1

log L(o, vi|1) =− log L(o, v1 . . . vn|1).

Observe that the lengths can also be negative. E.g., this can be interpreted as height differences.
The aim of this subsection is to show existence of a number ` ∈ R such that the quotient l(Xn)/n
tends to ` almost surely as n→∞. We call ` the rate of escape w.r.t. the length function l(·).
We follow now the reasoning of [11, Section 3]. Denote by X (k)n the projection of Xn to the first k
letters. We define the k-th exit time as

ek :=min
�

m ∈ N0

�� ∀n≥ m : X (k)n is constant
	
.

Moreover, we define Wk := Xek
, τk := τ(Wk) and k(n) := max{k ∈ N0 | ek ≤ n}. We remark that

‖Xn‖ →∞ as n→∞, and consequently ek <∞ almost surely for every k ∈ N; see [11, Prop. 2.5].
Recall that eWk is just the laster letter of the random word Xek

. The process (τk)k∈N is Markovian
and has transition probabilities

q̂(i, j) =
α j

αi

ξi

ξ j

1− ξ j

1− ξi

� 1

(1− ξ j)G j(o j , o j|ξ j)
− 1
�

for i 6= j and q̂(i, i) = 0; see [11, Lemma 3.4]. This process is positive recurrent with invariant
probability measure

ν(i) = C−1 · αi(1− ξi)
ξi

�
1− (1− ξi)Gi(oi , oi|ξi)

�
,

where C :=
∑
i∈I

αi(1− ξi)
ξi

�
1− (1− ξi)Gi(oi , oi|ξi)

�
;
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see [11, Section 3]. Furthermore, the rate of escape w.r.t. the block length exists almost surely and
is given by the almost sure constant limit

`0 = lim
n→∞

‖Xn‖
n
= lim

k→∞
k

ek
=

1
∑

i, j∈I ,i 6= j ν(i)α j
1−ξ j

1−ξi
γ′i, j(1)

(see [11, Theorem 3.3]), where

γi, j(z) :=
1

αi

ξi(z)
ξ j(z)

� 1�
1− ξ j(z)

�
G j
�
o j , o j

��ξ j(z)
� − 1

�
.

Lemma 3.1. The process
� eWk,τk

�
k∈N is Markovian and has transition probabilities

q
�
(g, i), (h, j)

�
=




α j

αi

ξi

ξ j

1−ξ j

1−ξi
L j(o j , h|ξ j), if i 6= j,

0, if i = j.

Furthermore, the process is positive recurrent with invariant probability measure

π(g, i) =
∑
j∈I
ν( j)q

�
(∗, j), (g, i)

�
.

Remark: Observe that the transition probabilities q
�
(g, i), (h, j)

�
of
� eWk,τk

�
k∈N do not depend on

g. Therefore, we will write sometimes an asterisk instead of g.

Proof. By [11, Section 3], the process
� eWk,ek − ek−1,τk

�
k∈N is Markovian and has transition prob-

abilities

q̃
�
(g, m, i), (h, n, j)

�
=





1−ξ j

1−ξi

∑
s∈Vj

k(n−1)
i (s)p(s, h), if i 6= j,

0, if i = j,

where k(n)i (s) := P
�

Xn = s,∀l ≤ n : X l /∈ V×i |X0 = o] for s ∈ V×∗ \ Vi . Thus,
�ÝWk,τk

�
k∈N is also

Markovian and has the following transition probabilities if i 6= j:

q
�
(g, i), (h, j)

�
=

∑
n≥1

q̃
�
(g,∗, i), (h, n, j)

�
=

1− ξ j

1− ξi

∑
s∈Vj

∑
n≥1

k(n−1)
i (s)p(s, h)

=
1− ξ j

1− ξi

∑
s∈Vj

L j(o j , s|ξ j)

1− H̄i(1)
p(s, h) =

α j

αi

ξi

ξ j

1− ξ j

1− ξi
L j(o j , h|ξ j).

In the third equality we conditioned on the last visit of o before finally walking from o to s and
we remark that h ∈ V×j . A straight-forward computation shows that π is the invariant probability
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measure of
� eWk,τk

�
k∈N, where we writeA :=

�
(g, i)

�� i ∈ I , g ∈ V×i
	
:

∑
(g,i)∈A

π(g, i) · q�(g, i), (h, j)
�
=

∑
(g,i)∈A

∑
k∈I
ν(k) · q�(∗, k), (g, i)

� · q�(∗, i), (h, j)
�

=
∑
i∈I

q
�
(∗, i), (h, j)

�∑
k∈I
ν(k)

∑

g∈V×i

q
�
(∗, k), (g, i)

�

=
∑
i∈I

q
�
(∗, i), (h, j)

�∑
k∈I
ν(k) · q̂(k, i)

=
∑
i∈I

q
�
(∗, i), (h, j)

� · ν(i) = π(h, j).

Now we are able to prove the following:

Proposition 3.2. There is a number ` ∈ R such that

`= lim
n→∞

l(Xn)
n

almost surely.

Proof. Define h : A → R by h(g, j) := l(g). Then
∑k
λ=1 h

� eWλ,τλ
�
=
∑k
λ=1 l

� eWλ

�
= l(Wk). An

application of the ergodic theorem for positive recurrent Markov chains yields

l(Wk)
k
=

1

k

k∑
λ=1

h
� eWλ,τλ

� n→∞−−−→ Ch :=

∫
h dπ,

if the integral on the right hand side exists. We now show that this property holds. Observe that the
values G j(o j , g|ξ j) are uniformly bounded from above for all (g, j) ∈A :

G j(o j , g|ξ j) =
∑
n≥0

p(n)j (o j , g)ξn
j ≤

1

1− ξ j
≤ 1

1− ξmax
.

For g ∈ V×∗ , denote by |g| the smallest n ∈ N such that p(n)
τ(g)(oτ(g), g) > 0. Uniform irreducibility

of the random walk Pi on Vi implies that there are some ε0 > 0 and K ∈ N such that for all j ∈ I ,
x j , y j ∈ Vj with p j(x j , y j) > 0 we have p(k)j (x j , y j) ≥ ε0 for some k ≤ K . Thus, for (g, j) ∈ A we
have

G j(o j , g|ξ j)≥ ε|g|0 ξ
|g|·K
j ≥ �ε0 ξ

K
min

�|g|.
Observe that the inequality |g| ·

��log
�
ε0 ξ

K
min

��� < log1/(1− ξmax) holds if and only if |g| < log(1−
ξmax)/ log(ε0 ξ

K
min). Define the sets

M1 :=
n

g ∈ V×∗
��� |g| ≥ log(1− ξmax)

log(ε0 ξ
K
min)

o
, M2 :=

n
g ∈ V×∗

��� |g|< log(1− ξmax)

log(ε0 ξ
K
min)

o
.
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Recall Equation (2.4). We can now prove existence of
∫

h dπ:

∫
|h| dπ =

∑
(g, j)∈A

��log L j(o j , g|ξ j)
�� ·π(g, j)

≤
∑

(g, j)∈A

��log G j(o j , g|ξ j)
�� ·π(g, j) +

∑
(g, j)∈A

��log G j(o j , o j|ξ j)
�� ·π(g, j)

≤
∑

(g, j)∈A :g∈M1

��log G j(o j , g|ξ j)
�� ·π(g, j)

+
∑

(g, j)∈A :g∈M2

��log G j(o j , g|ξ j)
�� ·π(g, j) +max

j∈I
log G j(o j , o j|ξ j)

≤
∑

(g, j)∈A :g∈M1

��log(ε0ξ
K
min)

|g|| ·π(g, j)

+
∑

(g, j)∈A :g∈M2

��log(1− ξmax)
�� ·π(g, j) +max

j∈I
log G j(o j , o j|ξ j)

≤
∑

(g, j)∈A :g∈M1

��log(ε0ξ
K
min)| · |g| ·π(g, j)

+
��log(1− ξmax)

��+max
j∈I

log G j(o j , o j|ξ j)<∞,

since
∑
(g, j)∈A |g| ·π(g, j) <∞; see [11, Proof of Prop. 3.2]. From this follows that l(Wk)/k tends

to Ch almost surely. The next step is to show that

l(Xn)− l(Wk(n))

n
n→∞−−−→ 0 almost surely. (3.1)

To prove this, assume now that we have the representations Wk(n) = g1 g2 . . . gk(n) and Xn =
g1 g2 . . . gk(n) . . . g‖Xn‖. Define M :=max

�| log(ε0 ξ
K
min)|, | log(1− ξmax)|

	
. Then:

��l(Xn)− l(Wk(n))
�� =

����−
‖Xn‖∑

i=k(n)+1

log Lτ(gi)
�
oτ(gi), gi | ξτ(gi)

�����

≤
‖Xn‖∑

i=k(n)+1

���� log
Gτ(gi)

�
oτ(gi), gi | ξτ(gi)

�

Gτ(gi)
�
oτ(gi), oτ(gi) | ξτ(gi)

�
����

≤
‖Xn‖∑

i=k(n)+1:gi∈M1

�� log Gτ(gi)
�
oτ(gi), gi | ξτ(gi)

���

+
‖Xn‖∑

i=k(n)+1:gi∈M2

�� log Gτ(gi)
�
oτ(gi), gi | ξτ(gi)

���

+
�‖Xn‖− k(n)

� ·
�� log(1− ξmax)

��
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≤
‖Xn‖∑

i=k(n)+1:gi∈M1

�� log(ε0 ξ
K
min)

|gi |
��

+
‖Xn‖∑

i=k(n)+1:gi∈M2

�� log(1− ξmax)
��+ �‖Xn‖− k(n)

� ·
�� log(1− ξmax)

��

≤
‖Xn‖∑

i=k(n)+1:gi∈M1

|gi| ·M +
‖Xn‖∑

i=k(n)+1:gi∈M2

M +
�‖Xn‖− k(n)

� ·M

≤ 3 ·M · (n− ek(n)).

Dividing the last inequality by n and letting n→∞ provides analogously to Nagnibeda and Woess
[23, Section 5] that limn→∞

�
l(Xn)− l(Wk(n))

�
/n = 0 almost surely. Recall also that k/ek → `0 and

ek(n)/n→ 1 almost surely; compare [23, Proof of Theorem D] and [11, Prop. 3.2, Thm. 3.3]. Now
we can conclude:

l(Xn)
n
=

l(Xn)− l(Wk(n))

n
+

l(Wk(n))

k(n)
k(n)
ek(n)

ek(n)

n
n→∞−−−→ Ch · `0 almost surely. (3.2)

We now compute the constant Ch from the last proposition explicitly:

Ch =
∑

(g, j)∈A
l(g) ·

∑
i∈I
ν(i) · q�(∗, i), (g, j)

�

=
∑

i, j∈I ,
i 6= j

∑

g∈V×j

− log L j(o j , g|ξ j)ν(i)
α j

αi

ξi

ξ j

1− ξ j

1− ξi
L j(o j , g|ξ j). (3.3)

We conclude this subsection with the following observation:

Corollary 3.3. The rate of escape ` is non-negative and it is the rate of escape w.r.t. the Greenian
metric, which is given by dGreen(x , y) :=− log F(x , y|1). That is,

`= lim
n→∞−

1

n
log F(e, Xn|1)≥ 0.

Proof. By (2.4), we get

`= lim
n→∞−

1

n
log F(e, Xn|1)−

1

n
log G(Xn, Xn|1) +

1

n
log G(o, o|1).

Since F(e, Xn|1) ≤ 1 it remains to show that G(x , x |1) is uniformly bounded in x ∈ V : for v, w ∈ V ,
the first visit generating function is defined as

U(v, w|z) =
∑
n≥1

P
�

Xn = w,∀m ∈ {1, . . . , n− 1} : Xm 6= w | X0 = v
�

zn. (3.4)

Therefore,

G(x , x |z) =
∑
n≥0

U(x , x |z)n = 1

1− U(x , x |z) .
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Since U(x , x |z) < 1 for all z ∈ [1, R), U(x , x |0) = 0 and U(x , x |z) is continuous, stricly increasing
and strictly convex, we must have U(x , x |1) ≤ 1

R
, that is, 1 ≤ G(x , x |1) ≤ �1− 1

R

�−1. This finishes
the proof.

3.2 Asymptotic Entropy

In this subsection we will prove that ` equals the asymptotic entropy, and we will give explicit
formulas for it. The technique of the proof which we will give was motivated by Benjamini and
Peres [2], where it is shown that the asymptotic entropy of random walks on discrete groups equals
the rate of escape w.r.t. the Greenian distance. The proof follows the same reasoning as in Gilch and
Müller [12].

Recall that we made the assumption that the spectral radius of (Xn)n∈N0
is strictly smaller than 1,

that is, the Green function G(o, o|z) has radius of convergence R> 1. Moreover, the functions ξi(z),
i ∈ I , have radius of convergence bigger than 1. Recall that ξi = ξi(1) < 1 for every i ∈ I . Thus,
we can choose % ∈ (1, R) such that ξi(%) < 1 for all i ∈ I . We now need the following three
technical lemmas:

Lemma 3.4. For all m, n ∈ N0,

p(m)(o, Xn)≤ G(o, o|%) ·
� 1

1−maxi∈I ξi(%)

�n ·%−m.

Proof. Denote by C% the circle with radius % in the complex plane centered at 0. A straightforward
computation shows for m ∈ N0:

1

2πi

∮

C%
zm dz

z
=

(
1, if m= 0,

0, if m 6= 0.

Let be x = x1 . . . x t ∈ V . An application of Fubini’s Theorem yields

1

2πi

∮

C%
G(o, x |z) z−m dz

z
=

1

2πi

∮

C%

∑
k≥0

p(k)(o, x)zk z−m dz

z

=
1

2πi

∑
k≥0

p(k)(o, x)

∮

C%
zk−m dz

z
= p(m)(o, x).

Since G(o, x |z) is analytic on C%, we have |G(o, x |z)| ≤ G(o, x |%) for all |z|= %. Thus,

p(m)(o, x)≤ 1

2π
·%−m−1 · G(o, x |%) · 2π% = G(o, x |%) ·%−m.

Iterated applications of equations (2.3) and (2.4) provide

G(o, x |%) = G(o, o|%)
‖x‖∏
k=1

Lτ(xk)
�
oτ(xk), xk|ξi(%)

�≤ G(o, o|%)
� 1

1−maxi∈I ξi(%)

�‖x‖
.

Since ‖Xn‖ ≤ n, we obtain

p(m)(e, Xn)≤ G(o, o|%) ·
� 1

1−maxi∈I ξi(%)

�n ·%−m.
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Lemma 3.5. Let (An)n∈N, (an)n∈N, (bn)n∈N be sequences of strictly positive numbers with An = an+ bn.
Assume that limn→∞− 1

n
log An = c ∈ [0,∞) and that limn→∞ bn/q

n = 0 for all q ∈ (0, 1). Then
limn→∞− 1

n
log an = c.

Proof. Under the made assumptions it can not be that lim infn→∞ an/q
n = 0 for every q ∈ (0, 1).

Indeed, assume that this would hold. Choose any q > 0. Then there is a subseqence (ank
)k∈N with

ank
/qnk → 0. Moreover, there is Nq ∈ N such that ank

, bnk
< qnk/2 for all k ≥ Nq. But this implies

− 1

nk
log(ank

+ bnk
)≥− 1

nk
log(qnk) =− log q.

The last inequality holds for every q > 0, yielding that limsupn→∞− 1
n

log An =∞, a contradiction.

Thus, there is some N ∈ N such that bn < an for all n≥ N . We get for all n≥ N :

−1

n
log(an+ bn) ≤ −1

n
log(an) =−

1

n
log
�1

2
an+

1

2
an

�

≤ −1

n
log
�1

2
an+

1

2
bn

�
≤−1

n
log

1

2
− 1

n
log(an+ bn).

Taking limits yields that− 1
n

log(an) tends to c, since the leftmost and rightmost side of this inequality
chain tend to c.

For the next lemma recall the definition of K from (2.1).

Lemma 3.6. For n ∈ N, consider the function fn : V → R defined by

fn(x) :=

(
− 1

n
log
∑Kn2

m=0 p(m)(o, x), if p(n)(o, x)> 0,

0, otherwise.

Then there are constants d and D such that d ≤ fn(x)≤ D for all n ∈ N and x ∈ V .

Proof. Assume that p(n)(o, x) > 0. Recall from the proof of Corollary 3.3 that we have G(x , x |1) ≤�
1− 1

R

�−1. Therefore,

Kn2∑
m=0

p(m)(o, x)≤ G(o, x |1)≤ F(o, x |1) · G(x , x |1)≤ 1

1− 1
R

,

that is

fn(x)≥−
1

n
log

1

1− 1
R

.

For the upper bound, observe that, by uniform irreducibility, x ∈ V with p(n)(o, x) > 0 can be
reached from o in Nx ≤ K · |x | ≤ Kn steps with a probability of at least ε|x |0 , where ε0 > 0 from (2.1)

is independent from x . Thus, at least one of the summands in
∑Kn2

m=0 p(m)(o, x) has a value greater

or equal to ε|x |0 ≥ εn
0 . Thus, fn(x)≤− logε0.

Now we can state and prove our first main result:
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Theorem 3.7. Assume R> 1. Then the asymptotic entropy exists and is given by

h= `0 ·
∑

g∈V×∗

l(g)π
�

g,τ(g)
�
= `.

Proof. By (2.4) we can rewrite ` as

`= lim
n→∞−

1

n
log L(o, Xn|1) = lim

n→∞−
1

n
log

G(o, Xn|1)
G(o, o|1) = lim

n→∞−
1

n
log G(o, Xn|1).

Since
G(o, Xn|1) =

∑
m≥0

p(m)(o, Xn)≥ p(n)(o, Xn) = πn(Xn),

we have

lim inf
n→∞ −

1

n
logπn(Xn)≥ `. (3.5)

The next aim is to prove limsupn→∞− 1
n
E
�

logπn(Xn)
�≤ `. We now apply Lemma 3.5 by setting

An :=
∑
m≥0

p(m)(o, Xn), an :=
Kn2∑
m=0

p(m)(o, Xn) and bn :=
∑

m≥Kn2+1

p(m)(o, Xn).

By Lemma 3.4,

bn ≤
∑

m≥Kn2+1

G(o, o|%)
%m ·

� 1

1−maxi∈I ξi(%)

�n
= G(o, o|%) ·

� 1

1−maxi∈I ξi(%)

�n · %
−Kn2−1

1−%−1 .

Therefore, bn decays faster than any geometric sequence. Applying Lemma 3.5 yields

`= lim
n→∞−

1

n
log

Kn2∑
m=0

p(m)(o, Xn) almost surely.

By Lemma 3.6, we may apply the Dominated Convergence Theorem and get:

` =

∫
lim

n→∞−
1

n
log

Kn2∑
m=0

p(m)(o, Xn) dP

= lim
n→∞

∫
−1

n
log

Kn2∑
m=0

p(m)(o, Xn) dP

= lim
n→∞−

1

n

∑
x∈V

p(n)(o, x) log
Kn2∑
m=0

p(m)(o, x).

Recall that Shannon’s Inequality gives

−
∑
x∈V

p(n)(o, x) logµ(x)≥−
∑
x∈V

p(n)(o, x) log p(n)(o, x)
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for every finitely supported probability measure µ on V . We apply now this inequality by setting

µ(x) := 1
Kn2+1

∑Kn2

m=0 p(m)(o, x):

` ≥ limsup
n→∞

1

n

∑
x∈V

p(n)(o, x) log(Kn2+ 1)− 1

n

∑
x∈V

p(n)(o, x) log p(n)(o, x)

= limsup
n→∞

−1

n

∫
logπn(Xn) dP.

Now we can conclude with Fatou’s Lemma:

`≤
∫

lim inf
n→∞

− logπn(Xn)
n

dP ≤ lim inf
n→∞

∫ − logπn(Xn)
n

dP

≤ lim sup
n→∞

∫ − logπn(Xn)
n

dP≤ `. (3.6)

Thus, limn→∞− 1
n
E
�

logπn(Xn)
�

exists and the limit equals `. The rest follows from (3.2) and
(3.3).

We now give another formula for the asymptotic entropy which shows that it is strictly positive.

Theorem 3.8. Assume R> 1. Then the asymptotic entropy is given by

h= `0 ·
∑

g,h∈V×∗

−π�g,τ(g)
�

q
�
(g,τ(g)), (h,τ(h))

�
log q

�
(g,τ(g)), (h,τ(h))

�
> 0.

Remarks: Observe that the sum on the right hand side of Theorem 3.8 equals the entropy rate (for
positive recurrent Markov chains) of

� eWk,τk
�

k∈N, which is defined by the almost sure constant limit

hQ := lim
n→∞−

1

n
logµn

�
( eW1,τ1), . . . , ( eWn,τn)

�
,

where µn
�
(g1,τ1), . . . , (gn,τn)

�
is the joint distribution of

�
( eW1,τ1), . . . , ( eWn,τn)

�
. That is, h =

` · hQ. For more details, we refer e.g. to Cover and Thomas [6, Chapter 4].

At this point it is essential that we have defined the length function l(·) with the help of the functions
L(x , y|z) and not by the Greenian metric.

Proof. For a moment let be x = x1 . . . xn ∈ V . Then:

l(x) = − log
n∏

j=1

Lτ(x j)
�
oτ(x j), x j|ξτ(x j)

�

= − log
n∏

j=2

ατ(x j)

ατ(x j−1)

ξτ(x j−1)

ξτ(x j)

1− ξτ(x j)

1− ξτ(x j−1)
Lτ(x j)

�
oτ(x j), x j|ξτ(x j)

�

− log Lτ(x1)
�
oτ(x1), x1|ξτ(x1)

�
+ log

ξτ(x1)ατ(xn) (1− ξτ(xn))

ατ(x1) ξτ(xn) (1− ξτ(x1))

= − log
n∏

j=2

q
�
(x j−1,τ(x j−1)), (x j ,τ(x j))

�

− log Lτ(x1)
�
oτ(x1), x1|ξτ(x1)

�
+ log

ξτ(x1)ατ(xn) (1− ξτ(xn))

ατ(x1) ξτ(xn) (1− ξτ(x1))
.(3.7)
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We now replace x by Xek
in the last equation: since l(Xn)/n tends to h almost surely, the subsequence�

l(Xek
)/ek

�
k∈N converges also to h. Since mini∈I ξi > 0 and maxi∈I ξi < 1, we get

1

ek
log
ξτ(x1)ατ(xk) (1− ξτ(xk))

ατ(x1) ξτ(xk) (1− ξτ(x1))
k→∞−−−→ 0 almost surely,

where x1 := Xe1
and xk := eWk = eXek

. By positive recurrence of
� eWk,τk

�
k∈N, an application of the

ergodic theorem yields

−1

k
log

k∏
j=2

q
�
( eW j−1,τ j−1), ( eW j ,τ j)

�

n→∞−−−→ h′ :=−
∑

g,h∈V×∗ ;
τ(g)6=τ(h)

π
�

g,τ(g)
�

q
�
(g,τ(g)), (h,τ(h)

�
log q

�
(g,τ(g)), (h,τ(h)

�
> 0 a.s.,

whenever h′ <∞. Obviously, for every x1 ∈ V×∗

lim
k→∞
− 1

ek
log Lτ(x1)

�
oτ(x1), x1|ξτ(x1)

�
= 0 almost surely.

Since limk→∞ k/ek = `0 we get

h= lim
k→∞

l
�
Xek

�

ek
= lim

k→∞
l
�
Xek

�

k

k

ek
= h′ · `0,

whenever h′ <∞. In particular, h> 0 since `0 > 0 by [11, Section 4].

It remains to show that it cannot be that h′ =∞. For this purpose, assume now h′ =∞. Define for
N ∈ N the function hN :

�
V×∗
�2→ R by

hN (g, h) := N ∧ �− log q
�
(g,τ(g)), (h,τ(h))

�
.

Then

−1

k

k∑
j=2

log hN
�eXe j−1

, eXe j

�

k→∞−−−→ h′N :=−
∑

g,h∈V×∗ ,
τ(g)6=τ(h)

π
�

g,τ(g)
�

q
�
(g,τ(g)), (h,τ(h))

�
log hN (g, h) almost surely.

Observe that h′N → ∞ as N → ∞. Since hN (g, h) ≤ − log q
�
(g,τ(g)), (h,τ(h))

�
and h′ = ∞ by

assumption there is for every M ∈ R and almost every trajectory of
� eWk

�
k∈N an almost surely finite

random time Tq ∈ N such that for all k ≥ Tq

− 1

k

k∑
j=2

log q
�
( eW j−1,τ j−1), ( eW j ,τ j)

�
> M . (3.8)
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On the other hand side there is for every M > 0, every small ε > 0 and almost every trajectory an
almost surely finite random time TL such that for all k ≥ TL

− 1

ek

k∑
j=1

log Lτ(Xe j
)
�
oτ(Xe j

), eXe j
|ξτ(Xe j

)
� ∈ (h− ε, h+ ε) and

− 1

ek

k∑
j=2

log q
�
(eXe j−1

,τ j−1), (eXe j
,τ j)

�

= − k

ek

1

k

k∑
j=2

log q
�
(eXe j−1

,τ j−1), (eXe j
,τ j)

�
> `0 ·M .

Furthermore, since mini∈I ξi > 0 and maxi∈I ξi < 1 there is an almost surely finite random time
Tε ≥ TL such that for all k ≥ Tε and all x1 = Xe1

and xk = eXek

− 1

ek
log
ξτ(x1)ατ(xk) (1− ξτ(xk))

ατ(x1) ξτ(xk) (1− ξτ(x1))
∈ (−ε,ε) and

1

ek
log Lτ(x1)

�
oτ(x1), x1|ξτ(x1)

� ∈ (−ε,ε).

Choose now M > (h+3ε)/`0. Then we get the desired contradiction, when we substitute in equality
(3.7) the vertex x by Xek

with k ≥ Tε, divide by ek on both sides and see that the left side is in
(h−ε, h+ε) and the rightmost side is bigger than h+ε. This finishes the proof of Theorem 3.8.

Corollary 3.9. Assume R> 1. Then we have for almost every path of the random walk (Xn)n∈N0

h= lim inf
n→∞ −

logπn(Xn)
n

.

Proof. Recall Inequality (3.5). Integrating both sides of this inequality yields together with the
inequality chain (3.6) that ∫

lim inf
n→∞ −

logπn(Xn)
n

− h dP= 0,

providing that h= lim infn→∞− 1
n

logπn(Xn) for almost every realisation of the random walk.

The following lemma gives some properties concerning general measure theory:

Lemma 3.10. Let (Zn)n∈N0
be a sequence of non-negative random variables and 0< c ∈ R. Suppose

that lim infn→∞ Zn ≥ c almost surely and limn→∞E[Zn] = c. Then the following holds:

1. Zn
P−→ c, that is, Zn converges in probability to c.

2. If Zn is uniformly bounded then Zn
L1−→ c, that is,

∫ ��Zn− c
��dP→ 0 as n→∞.
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Proof. First, we prove convergence in probability of (Zn)n∈N0
. For every δ1 > 0, there is some index

Nδ1
such that for all n≥ Nδ1 ∫

Zn dP ∈ (c−δ1, c+δ1).

Furthermore, due to the above made assumptions on (Zn)n∈N0
there is for every δ2 > 0 some index

Nδ2
such that for all n≥ Nδ2

P[Zn > c−δ1]> 1−δ2. (3.9)

Since c = limn→∞
∫

Zn dP it must be that for every arbitrary but fixed ε > 0, every δ1 < ε and for
all n big enough

P
�

Zn > c−δ1
� · (c−δ1) + P

�
Zn > c+ ε

� · (ε+δ1)≤
∫

Zn dP≤ c+δ1,

or equivalently,

P
�

Zn > c+ ε
�≤ c+δ1− P

�
Zn > c−δ1

� · (c−δ1)
ε+δ1

.

Letting δ2→ 0 we get

limsup
n→∞
P
�

Zn > c+ ε
�≤ 2δ1

ε+δ1
.

Since we can choose δ1 arbitrarily small we get

P
�

Zn > c+ ε
� n→∞−−−→ 0 for all ε > 0.

This yields convergence in probability of Zn to c.

In order to prove the second part of the lemma we define for any small ε > 0 and n ∈ N the events

An,ε :=
�|Zn− c| ≤ ε� and Bn,ε :=

�|Zn− c|> ε�.

For arbitrary but fixed ε > 0, convergence in probability of Zn to c gives an integer Nε ∈ N such
that P[Bn,ε] < ε for all n ≥ Nε. Since 0 ≤ Zn ≤ M is assumed to be uniformly bounded, we get for
n≥ Nε: ∫

|Zn− c| dP=
∫

An,ε

|Zn− c| dP+
∫

Bn,ε

|Zn− c| dP≤ ε+ ε (M + c)
ε→0−−→ 0.

Thus, we have proved the second part of the lemma.

We can apply the last lemma immediately to our setting:

Corollary 3.11. Assume R> 1. Then we have the following types of convergence:

1. Convergence in probability:

−1

n
logπn(Xn)

P−→ h.

2. Assume that there is c0 > 0 such that p(x , y)≥ c0 whenever p(x , y)> 0. Then:

−1

n
logπn(Xn)

L1−→ h.
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Proof. Setting Zn = − 1
n

logπn(Xn) and applying Lemma 3.10 yields the claim. Note that the as-

sumption p(x , y)≥ c0 yields 0≤ − logπn(Xn)
n

≤− log c0.

The assumption of the second part of the last corollary is obviously satisfied if we consider free
products of finite graphs.

The reasoning in our proofs for existence of the entropy and its different properties (in particular,
the reasoning in Section 3.2) is very similar to the argumentation in [12]. However, the structure of
free products of graphs is more complicated than in the case of directed covers as considered in [12].
We outline the main differences to the reasoning in the aforementionend article. First, in [12] a very
similar rate of escape (compare [12, Theorem 3.8] with Proposition 3.2) is considered, which arises
from a length function induced by last visit generating functions. While the proof of existence of the
rate of escape in [12] is easy to check, we have to make more effort in the case of free products,
since − log Li(oi , x |1) is not necessarily bounded for x ∈ Vi . Additionally, one has to study the
various ingridients of the proof more carefully, since non-trivial loops are possible in our setting in
contrast to random walks on trees. Secondly, in [12] the invariant measure π

�
g,τ(g)

�
of our proof

collapses to ν
�
τ(g)

�
, that is, in [12] one has to study the sequence

�
τ(Wk)

�
k∈N, while in our setting

we have to study the more complex sequence
� eWk,τ(Wk)

�
k∈N; compare [12, proof of Theorem 3.8]

with Lemma 3.1 and Proposition 3.2.

4 A Formula via Double Generating Functions

In this section we derive another formula for the asymptotic entropy. The main tool is the following
theorem of Sawyer and Steger [25, Theorem 2.2]:

Theorem 4.1 (Sawyer and Steger). Let (Yn)n∈N0
be a sequence of real-valued random variables such

that, for some δ > 0,

E
�∑

n≥0

exp(−rYn− sn)
�
=

C(r, s)
g(r, s)

for 0< r, s < δ,

where C(r, s) and g(r, s) are analytic for |r|, |s| < δ and C(0,0) 6= 0. Denote by g ′r and g ′s the partial
derivatives of g with respect to r and s. Then

Yn

n
n→∞−−−→ g ′r(0, 0)

g ′s(0,0)
almost surely.

Setting z = e−s and Yn :=− log L(o, Xn|1) the expectation in Theorem 4.1 becomes

E (r, z) =
∑
x∈V

∑
n≥0

p(n)(o, x)L(o, x |1)rzn =
∑
x∈V

G(o, x |z)L(o, x |1)r .

We define for i ∈ I , r, z ∈ C:

L (r, z) := 1+
∑
n≥1

∑
x1...xn∈V\{o}

n∏
j=1

Lτ(x j)
�
oτ(x j), x j|ξτ(x j)(z)

� · Lτ(x j)
�
oτ(x j), x j|ξτ(x j)

�r ,

L+i (r, z) :=
∑

x∈V×i

Li
�
oi , x |ξi(z)

�
Li(oi , x |ξi)

r .
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Finally, Li(r, z) is defined by

L+i (r, z) ·
�

1+
∑
n≥2

∑

x2...xn∈V×\{o},
τ(x2)6=i

n∏
j=2

Lτ(x j)
�
oτ(x j), x j|ξτ(x j)(z)

� · Lτ(x j)
�
oτ(x j), x j|ξτ(x j)

�r
�

.

With these definitions we have L (r, z) = 1+
∑

i∈I Li(r, z) and E (r, z) = G(o, o|z) · L (r, z). Simple
computations analogously to [11, Lemma 4.2, Corollary 4.3] yield

E (r, z) =
G(o, o|z)

1−L ∗(r, z)
, where L ∗(r, z) =

∑
i∈I

L+i (r, z)

1+L+i (r, z)
.

We now define C(r, z) := G(o, o|z) and g(r, z) := 1−L ∗(r, z) and apply Theorem 4.1 by differenti-
ating g(r, z) and evaluating the derivatives at (0,1):

∂ g(r, z)
∂ r

����
r=0,z=1

= −
∑
i∈I

∑
x∈V×i

Li(oi , x |ξi) · log Li(oi , x |ξi)
�
1+
∑

x∈V×i
Li(oi , x |ξi)

�2

= −
∑
i∈I

Gi(oi , oi|ξi) · (1− ξi)
2 ·
∑

x∈V×i

Gi(oi , x |ξi) log Li(oi , x |ξi)

= −
∑
i∈I

Gi(oi , oi|ξi) · (1− ξi)
2 ·

·
�∑

x∈Vi

Gi(oi , x |ξi) log Gi(oi , x |ξi)−
log Gi(oi , oi|ξi)

1− ξi

�
,

∂ g(r, z)
∂ s

����
r=0,s=0

=
∑
i∈I

∂

∂ z

�
1− �1− ξi(z)

�
Gi
�
oi , oi|ξi(z)

�����
z=1

=
∑
i∈I
ξ′i(1) ·

�
Gi(oi , oi|ξi)− (1− ξi)G

′
i(oi , oi|ξi)

�
.

Corollary 4.2. Assume R> 1. Then the entropy can be rewritten as

h=
∂ g(r,z)
∂ r
(0, 1)

∂ g(r,z)
∂ s
(0, 1)

.

�

5 Entropy of Random Walks on Free Products of Groups

In this section let each Vi be a finitely generated group Γi with identity ei = oi . W.l.o.g. we assume
that the Vi ’s are pairwise disjoint. The free product is again a group with concatenation (followed
by iterated cancellations and contractions) as group operation. We write Γ×i := Γi \ {ei}. Suppose
we are given a probability measure µi on Γi \ {ei} for every i ∈ I governing a random walk on Γi ,
that is, pi(x , y) = µi(x−1 y) for all x , y ∈ Γi . Let (αi)i∈I be a family of strictly positive real numbers
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with
∑

i∈I αi = 1. Then the random walk on the free product Γ := Γ1 ∗ · · · ∗ Γr is defined by the
transition probabilities p(x , y) = µ(x−1 y), where

µ(w) =

(
αiµi(w), if w ∈ Γ×i ,

0, otherwise.

Analogously, µ(n) denotes the n-th convolution power of µ. The random walk on Γ starting at the
identity e of Γ is again denoted by the sequence (Xn)n∈N0

. In particular, the radius of convergence
of the associated Green function is strictly bigger than 1; see [29, Theorem 10.10, Corollary 12.5].
In the case of free products of groups it is well-known that the entropy exists and can be written as

h= lim
n→∞

− logπn(Xn)
n

= lim
n→∞

− log F(e, Xn|1)
n

;

see Derriennic [7], Kaimanovich and Vershik [14] and Blachère, Haïssinsky and Mathieu [3]. For
free products of finite groups, Mairesse and Mathéus [21] give an explicit formula for h, which
remains also valid for free products of countable groups, but in the latter case one needs the solution
of an infinite system of polynomial equations. In the following we will derive another formula for
the entropy, which holds also for free products of infinite groups.

We set l(g1 . . . gn) := − log F(e, g1 . . . gn|1). Observe that transitivity yields F(g, gh|1) = F(e, h|1).
Thus,

l(g1 . . . gn) =− log
n∏

j=1

F(g1 . . . g j−1, g1 . . . g j|1) =−
n∑

j=1

log F(e, g j|1).

First, we rewrite the following expectations as

El(Xn) =
∑
i∈I

∑
g∈Γi

αiµi(g)
∑
h∈Γ

l(h)µ(n)(h),

El(Xn+1) =
∑
i∈I

∑
g∈Γi

αiµi(g)
∑
h∈Γ

l(gh)µ(n)(h).

Thus,

El(Xn+1)−El(Xn) =
∑
i∈I

∑
g∈Γi

αiµi(g)

∫ �
l(gh)− l(h)

�
dµ(n)(h)

=
∑
i∈I

∑
g∈Γi

αiµi(g)

∫
− log

F(e, gXn|1)
F(e, Xn|1)

dµ(n). (5.1)

Recall that ‖Xn‖ →∞ almost surely. That is, Xn converges almost surely to a random infinite word

X∞ of the form x1 x2 . . . ∈
�⋃r

i=1Γ
×
i

�N
, where two consecutive letters are not from the same Γ×i .

Denote by X (1)∞ the first letter of X∞. Let be g ∈ Γ×i . For n ≥ e1, the integrand in (5.1) is constant:
if τ
�
X (1)∞

� 6= i then

log
F(e, gXn|1)
F(e, Xn|1)

= log F(e, g),

and if τ
�
X (1)∞

�
= i then

log
F(e, gXn|1)
F(e, Xn|1)

= log
F
�
e, gX (1)∞

��1�

F
�
e, X (1)∞

��1�
.
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By [11, Section 5], for i ∈ I and g ∈ Γ×i ,

%(i) := P[X (1)∞ ∈ Γi] = 1− (1− ξi)Gi(oi , oi|ξi) and

P[X (1)∞ = g] = F(oi , g|ξi) (1− ξi)Gi(oi , oi|ξi) = (1− ξi)Gi(oi , g|ξi).

Recall that F(e, g|1) = Fi(oi , g|ξi) for each g ∈ Γi . We get:

Theorem 5.1. Whenever hi := −∑g∈Γi
µi(g) logµi(g) <∞ for all i ∈ I , that is, when all random

walks on the factors Γi have finite single-step entropy, then the asymptotic entropy h of the random
walk on Γ is given by

h=−
∑
i∈I

∑
g∈Γi

αiµi(g)
h�

1−%(i)� log Fi(oi , g|ξi) + (1− ξi)Gi(oi , oi|ξi)F (g)
i

,

where

F (g) :=
∑

g ′∈Γ×i
Fi(oi , g ′|ξi) log

Fi(oi , g g ′|ξi)
Fi(oi , g ′|ξi)

for g ∈ Γi . (5.2)

Proof. Consider the sequence El(Xn+1)−El(Xn). If this sequence converges, its limit must equal h.
By the above made considerations we get

El(Xn+1)−El(Xn)

n→∞−−−→ −
∑
i∈I

∑
g∈Γi

µ(g)
�
(1−%(i)) log Fi(oi , g|ξi) +

∑

g ′∈Γ×i
P[X (1)∞ = g ′] log

Fi(oi , g g ′|ξi)
Fi(oi , g ′|ξi)

�
,

if the sum on the right hand side is finite. We have now established the proposed formula, but it
remains to verify finiteness of the sum above. This follows from the following observations:

Claim A: −∑i∈I
∑

g∈Γi
αiµi(g)(1−%(i)) log Fi(oi , g|ξi) is finite.

Observe that Fi(oi , g|ξi)≥ µi(g)ξi for g ∈ supp(µi). Thus,

0<−
∑
g∈Γi

µi(g) log Fi(oi , g|ξi)≤−
∑
g∈Γi

µi(g) log
�
µi(g)ξi

�
= hi − logξi .

This proves Claim A.

Claim B:
∑

i∈I
∑

g∈Γi
αiµi(g)(1− ξi)

∑
g ′∈Γ×i Gi(oi , g ′|ξi)

���log Fi(oi ,g g ′|ξi)
Fi(oi ,g ′|ξi)

��� is finite.

Observe that Fi(oi , g g ′|ξi)/Fi(oi , g ′|ξi) = Gi(oi , g g ′|ξi)/Gi(oi , g ′|ξi). Obviously,

µ
(n)
i (g

′)ξn
i ≤ Gi(oi , g ′|ξi)≤

1

1− ξi
for every n ∈ N and g ′ ∈ Γi .
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For g ∈ Γ set N(g) :=
�

n ∈ N0

��µ(n)(g)> 0
	
. Then:

0 <
∑

g ′∈Γ×i
P[X (1)∞ = g ′] ·

�� log Gi(oi , g ′|ξi)
��

=
∑

g ′∈Γ×i
(1− ξi) · Gi(oi , g ′|ξi) ·

�� log Gi(oi , g ′|ξi)
��

=
∑

g ′∈Γ×i
(1− ξi) ·

∑
n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·
�� log Gi(oi , g ′|ξi)

��

≤
∑

g ′∈Γ×i
(1− ξi) ·

∑
n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·max

�− log
�
µ
(n)
i (g

′)ξn
i

�
,− log(1− ξi)

	

≤ (1− ξi) ·
∑

n∈N(g ′)
nξn

i ·
−1

n

∑
g ′∈Γi

µ
(n)
i (g

′) logµ(n)i (g
′)

︸ ︷︷ ︸
(∗)

−(1− ξi) logξi

∑
n≥1

nξn
i

−(1− ξi) log(1− ξi)
∑
n≥1

ξn
i .

Recall that hi < ∞ together with Kingman’s subadditive ergodic theorem implies existence of a
constant Hi ≥ 0 with

lim
n→∞−

1

n

∑
g∈Γi

µ
(n)
i (g) logµ(n)i (g) = Hi . (5.3)

Thus, if n ∈ N is large enough, the sum (∗) is in the interval (Hi − ε, Hi + ε) for any arbitrarily small
ε > 0. That is, the sum (∗) is uniformly bounded for all n ∈ N. From this follows that the rightmost
side of the last inequality chain is finite.

Furthermore, we have for each g ∈ Γi with µ(n)i (g)> 0:

0 <
∑

g ′∈Γ×i
P[X (1)∞ = g ′] ·

�� log Gi(oi , g g ′|ξi)
��

=
∑

g ′∈Γ×i
(1− ξi) · Gi(oi , g ′|ξi) ·

��log Gi(oi , g g ′|ξi)
��

=
∑

g ′∈Γ×i
(1− ξi) ·

∑
n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·
��log Gi(oi , g g ′|ξi)

��

≤
∑

g ′∈Γ×i
(1− ξi) ·

∑
n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·max

�− log
�
µi(g)µ

(n)
i (g

′)ξn+1
i

�
,− log(1− ξi)

	

≤ −(1− ξi) ·
∑

n∈N(g ′)
ξn

i ·
∑
g ′∈Γi

µ
(n)
i (g

′) logµ(n)i (g
′)− (1− ξi) · logξi ·

∑
n≥1

(n+ 1)ξn
i

− logµi(g)− log(1− ξi).
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If we sum up over all g with µ(g)> 0, we get:

−
∑
i∈I

∑
g∈Γi

αiµi(g)(1− ξi)
∑

n∈N(g ′)
ξn

i

∑
g ′∈Γi

µ
(n)
i (g

′) logµ(n)i (g
′)

︸ ︷︷ ︸
(I)

−
∑
i∈I

∑
g∈Γi

αiµi(g)(1− ξi) logξi

∑
n≥1

(n+ 1)ξn
i

︸ ︷︷ ︸
(I I)

−
∑
i∈I
αi

∑
g∈Γi

µi(g) logµi(g)

︸ ︷︷ ︸
(I I I)

−
∑
i∈I
αi log(1− ξi)

︸ ︷︷ ︸
<∞

.

Convergence of (I) follows from (5.3), (I I) converges since ξi < 1 and (I I I) is convergent by
assumption hi <∞. This finishes the proof of Claim B, and thus the proof of the theorem.

Erschler and Kaimanovich [9] asked if drift and entropy of random walks on groups depend contin-
uously on the probability measure, which governs the random walk. Ledrappier [19] proves in his
recent, simultaneous paper that drift and entropy of finite-range random walks on free groups vary
analytically with the probability measure of constant support. By Theorem 5.1, we are even able to
show continuity for free products of finitely generated groups, but restricted to nearest neighbour
random walks with fixed set of generators.

Corollary 5.2. Let Γi be generated as a semigroup by Si . Denote byPi the set of probability measures µi
on Si with µi(x i)> 0 for all x i ∈ Si . Furthermore, we writeA := {(α1, . . . ,αr) | αi > 0,

∑
i∈I αi = 1}.

Then the entropy function

h :A ×P1× · · · ×Pr → R : (α1, . . . ,αr ,µ1, . . . ,µr) 7→ h(α1, . . . ,αr ,µ1, . . . ,µr)

is real-analytic.

Proof. The claim follows directly with the formula given in Theorem 5.1: the involved generating
functions Fi(oi , g|z) and Gi(oi , oi|z) are analytic when varying the probability measure of constant
support, and the values ξi can also be rewritten as

ξi =
∑

k1,...,kr ,l1,1,...,lr,|Sr |≥1

x(k1, . . . , kr , l1,1, . . . , lr,|Sr |)
∏
i∈I
α

ki
i

|Si |∏
j=1

µi(x i, j)
li, j ,

where Si = {x i,1, . . . , x i,|Si |}. This yields the claim.

Remarks:

1. Corollary 5.2 holds also for the case of free products of finite graphs, if one varies the transition
probabilities continously under the assumption that the sets {(x i , yi) ∈ Vi × Vi | pi(x i , yi)> 0}
remain constant: one has to rewrite ξi as power series in terms of (finitely many) pi(x i , yi)
and gets analyticity with the formula given in Theorem 3.7.
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2. Analyticity holds also for the drift (w.r.t. the block length and w.r.t. the natural graph metric)
of nearest neighbour random walks due to the formulas given in [11, Section 5 and 7].

3. The formula for entropy and drift given in Mairesse and Mathéus [21] for random walks on
free products of finite groups depends also analytically on the transition probabilities.

6 Entropy Inequalities

In this section we consider the case of free products of finite sets V1, . . . , Vr , where Vi has |Vi| vertices.
We want to establish a connection between asymptotic entropy, rate of escape and the volume
growth rate of the free product V . For n ∈ N0, let S0(n) be the set of all words of V of block length
n. The following lemmas give an answer how fast the free product grows.

Lemma 6.1. The sphere growth rate w.r.t. the block length is given by

s0 := lim
n→∞

log |S0(n)|
n

= logλ0,

where λ0 is the Perron-Frobenius eigenvalue of the r× r-matrix D = (di, j)1≤,i, j≤r with di, j = 0 for i = j
and di, j = |Vj| − 1 otherwise.

Proof. Denote by bD the r × r-diagonal matrix, which has entries |V1| − 1, |V2| − 1, . . . , |Vr | − 1 on its
diagonal. Let 1 be the (r × 1)-vector with all entries equal to 1. Thus, we can write

|S0(n)|= 1T bDDn−11.

Let 0< v1 ≤ 1 and v2 ≥ 1 be eigenvectors of D w.r.t. the Perron-Frobenius eigenvalue λ0. Then

|S0(n)| ≥ 1T bDDn−1v1 = C1 ·λn−1
0 ,

|S0(n)| ≤ 1T bDDn−1v2 = C2 ·λn−1
0 ,

where C1, C2 are some constants independent from n. Thus,

log |S0(n)|
n

= log |S0(n)|1/n n→∞−−−→ logλ0.

Recall from the Perron-Frobenius theorem that λ0 ≥
∑r

i=1,i 6= j(|Γi| − 1) for each j ∈ I ; in particular,
λ0 ≥ 1. We also take a look on the natural graph metric and its growth rate. For this purpose, we
define

S1(n) :=
�

x ∈ V
�� p(n)(o, x)> 0,∀m< n : p(m)(o, x) = 0

	
,

that is, the set of all vertices in V which are at distance n to the root o w.r.t. the natural graph metric.

We now construct a new graph, whose adjacency matrix allows us to describe the exponential growth
of S1(n) as n→∞. For this purpose, we visualize the sets V1, . . . , Vr as graphsX1, . . . ,Xr with vertex
sets V1, . . . , Vr equipped with the following edges: for x , y ∈ Vi , there is a directed edge from x to y
if and only if pi(x , y)> 0. Consider now directed spanning trees T1, . . . ,Tr of the graphsX1, . . . ,Xr
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such that the graph distances of vertices in Ti to the root oi remain the same as in Xi . We now
investigate the free product T = T1 ∗· · ·∗Tr , which is again a tree. We make the crucial observation
that T can be seen as the directed cover of a finite directed graph F , where F is defined in the
following way:

1. The vertex set of F is given by {o} ∪⋃i∈I V×i with root o.

2. The edges of F are given as follows: first, we add all edges inherited from one of the trees
T1, . . . ,Tr , where o plays the role of oi for each i ∈ I . Secondly, we add for all i ∈ I and
every x ∈ V×i an edge from x to each y ∈ V×j , j 6= i, whenever there is an edge from oi to y
in T j .

The tree T can be seen as a periodic tree, which is also called a tree with finitely many cone types; for
more details we refer to Lyons [20] and Nagnibeda and Woess [23]. Now we are able to state the
following lemma:

Lemma 6.2. The sphere growth rate w.r.t. the natural graph metric defined by

s1 := lim
n→∞

log |S1(n)|
n

exists. Moreover, we have the equation s1 = logλ1, where λ1 is the Perron-Frobenius eigenvalue of the
adjacency matrix of the graph F.

Proof. Since the graph metric remains invariant under the restriction of V to T and since it is
well-known that the growth rate exists for periodic trees (see Lyons [20, Chapter 3.3]), we have
existence of the limit s1. More precisely, |S1(n)|1/n tends to the Perron-Frobenius eigenvalue of the
adjacency matrix of F as n → ∞. For sake of completeness, we remark that the root of T plays a
special role (as a cone type) but this does not affect the application of the results about directed
covers to our case.

For i ∈ {0,1}, we write Bi(n) =
⋃n

k=0 Si(k). Now we can prove:

Lemma 6.3. The volume growth w.r.t. the block length, w.r.t. the natural graph metric respectively, is
given by

g0 := lim
n→∞

log |B0(n)|
n

= logλ0, g1 := lim
n→∞

log |B1(n)|
n

= logλ1 respectively.

Proof. For ease of better readability, we omit the subindex i ∈ {0,1} in the following, since the
proofs for g0 and g1 are completely analogous. Choose any small ε > 0. Then there is some Kε such
that for all k ≥ Kε

λke−kε ≤ |S(k)| ≤ λkekε.

Write Cε =
∑Kε−1

i=0 |S(i)|. Then for n≥ Kε:

|B(n)|1/n = n

s
n∑

k=0

|S(k)| ≤ n

√√√√Cε +
n∑

k=Kε

λkekε = λeε n

√√√√ Cε
λnenε +

n∑
k=Kε

1

λn−ke(n−k)ε

≤ λeε
n

r
Cε
λnenε + (n− Kε + 1)

n→∞−−−→ λeε.
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In the last inequality we used the fact λ ≥ 1. Since we can choose ε > 0 arbitrarily small, we get
limsupn→∞ |B(n)|1/n ≤ λ. Analogously:

|B(n)|1/n ≥ n

√√√√Cε +
n∑

k=Kε

λke−kε = λ n

√√√√Cε
λn +

n∑
k=Kε

e−kε

λn−k

n→∞−−−→ λe−ε.

That is, limn→∞
1
n

log |B(n)|= logλ.

For i ∈ {0, 1}, define li : V → N0 by l0(x) = ‖x‖ and l1(x) = inf{m ∈ N0 | p(m)(o, x) > 0}. Then
the limits `i = limn→∞ li(Xn)/n exist; see [11, Theorem 3.3, Section 7.II]. Now we can establish a
connection between entropy, rate of escape and volume growth:

Corollary 6.4. h≤ g0 · `0 and h≤ g1 · `1.

Proof. Let be i ∈ {0, 1} and ε > 0. Then there is some Nε ∈ N such that for all n≥ Nε

1− ε ≤ P��x ∈ V | − logπn(x)≥ (h− ε)n, li(x)≤ (`i + ε)n
	�≤ e−(h−ε)n ·

��Bi
�
(`i + ε)n

���.
That is,

(h− ε) + log(1− ε)
n

≤ (`i + ε) ·
log
��Bi
�
(`i + ε)n

���
(`i + ε)n

.

If we let n tend to infinity and make ε arbitrarily small, we get the claim.

Finally, we remark that an analogous inequality for random walks on groups was given by
Guivarc’h [13], and more generally for space- and time-homogeneous Markov chains by Kaima-
novich and Woess [15, Theorem 5.3].

7 Examples

7.1 Free Product of Finite Graphs

Consider the graphs X1 and X2 with the transition probabilities sketched in Figure 7.1. We set
α1 = α2 = 1/2. For the computation of `0 we need the following functions:

F1(g1, o1|z) = z2

2
1

1−z2/2
, F2(h1, o2|z) = z2

2
1

1−z3/2
,

ξ1(z) =
z/2

1− z
2
ξ2(z)

2

2
1

1−ξ2(z)
3/2

, ξ2(z) =
z/2

1− z
2
ξ1(z)

2

2
1

1−ξ1(z)
2/2

.

Simple computations with the help of [11, Section 3] and MATHEMATICA allow us to determine the
rate of escape of the random walk on X1 ∗X2 as `0 = 0.41563. For the computation of the entropy,
we need also the following generating functions:

L1(o1, g1|z) =
z

1− z2/2
, L1(o1, g2|z) =

z2

1− z2/2
, L2(o2, h1|z) =

z

1− z3/2
,

L2(o2, h2|z) =
z2

1− z3/2
, L2(o2, h3|z) =

z3/2

1− z3/2
.

Thus, we get the asymptotic entropy as h= 0.32005.
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Figure 1: Finite graphs X1 and X2

7.2 (Z×Z/2) ∗ (Z×Z/2)
Consider the free product Γ = Γ1 ∗ Γ2 of the infinite groups Γi = Z× (Z/2Z) with αi = 1/2 and
µi
�
(±1, 0)

�
= µi

�
(0, 1)

�
= 1/3 for each i ∈ {1, 2}. We set a := (1,0), b := (1,1), c := (0, 1) and

λ(x , y) := x for (x , y) ∈ Γi . Define

F̂(a|z) :=
∑
n≥1

P
�

Yn = a,∀m< n : λ(Ym)< 1
��Y0 = (0, 0)

�
zn,

F̂(b|z) :=
∑
n≥1

P
�

Yn = b,∀m< n : λ(Ym)< 1
��Y0 = (0, 0)

�
zn,

where (Yn)n∈N0
is a random walk on Z × Z/2 governed by µ1. The above functions satisfy the

following system of equations:

F̂(a|z) = z

3

�
1+ F̂(b|z) + F̂(a|z)2+ F̂(b|z)2

�
,

F̂(b|z) = z

3

�
F̂(a|z) + F̂(a|z)F̂(b|z) + F̂(b|z)F̂(a|z)

�
.

From this system we obtain explicit formulas for F̂(a|z) and F̂(b|z). We write F
�
n, j|z) :=

F1
�
(0, 0), (n, j)|z) for (n, j) ∈ Z×Z/2. To compute the entropy rate we have to solve the following

system of equations:

F(a|z) = z

3

�
1+ F(b|z) + F̂(a|z)F(a|z) + F̂(b|z)F(b|z)

�
,

F(b|z) = z

3

�
F(c|z) + F(a|z) + F̂(a|z)F(b|z) + F̂(b|z)F(a|z)

�
,

F(c|z) = z

3

�
1+ 2 F(b|z)

�
.

Moreover, we need the value ξ1(1) = ξ2(1) = ξ. This value can be computed analogously to [11,
Section 6.2], that is, ξ has to be computed numerically from the equation

ξ

2− 2ξ
= ξG1(ξ) =

ξ

1− 2
3
ξF(a|ξ)− 1

3
ξF(c|ξ) .

Solving this equation with MATHEMATICA yields ξ = 0.55973. To compute the entropy we have to
evaluate the functions F(g|z) at z = ξ for each g ∈ Z×Z2. For even n ∈ N, we have the following
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formulas:

F
�
(±n, 0)|ξ� =

n/2∑
k=0

�
n

2k

�
F̂(b|ξ)2k F̂(a|ξ)n−2k +

n/2−1∑
k=0

�
n

2k+ 1

�
F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1F(c|ξ),

F
�
(±n, 1)|ξ� =

n/2−1∑
k=0

�
n

2k+ 1

�
F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1+

n/2∑
k=0

�
n

2k

�
F̂(b|ξ)2k F̂(a|ξ)n−2kF(c|ξ).

For odd n ∈ N,

F
�
(±n, 0)|ξ� =

(n−1)/2∑
k=0

�
n

2k

�
F̂(b|ξ)2k F̂(a|ξ)n−2k +

(n−1)/2∑
k=0

�
n

2k+ 1

�
F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1F(c|ξ),

F
�
(±n, 1)|ξ� =

(n−1)/2∑
k=0

�
n

2k+ 1

�
F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1+

(n−1)/2∑
k=0

�
n

2k

�
F̂(b|ξ)2k F̂(a|ξ)n−2kF(c|ξ).

Moreover, we define F̂ := P[∃n ∈ N : λ(Xn) = 1]. This probability can be computed by conditioning
on the first step and solving

F̂ =
ξ

3

�
1+ F̂ + F̂2�,

that is, F̂ = 0.24291. Observe that we get the following estimations:

F1(o, g|ξ) ≤ F̂ |λ(g)| for g ∈ Z×Z2,

F1(o, g|ξ) ≥ F̂ |λ(g)|−1 ·min
�

F1(o1, a|ξ), F1(o1, b|ξ)	 for g ∈ �Z×Z2
� \ {(0, 0), c}.

These bounds allow us to cap the sum over all g ′ ∈ Γ×i in (5.2) and to estimate the tails of these
sums. Thus, we can compute the entropy rate numerically as h= 1.14985.
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ABSTRACT: Suppose we are given finitely generated groups �1, . . . , �m equipped with irreducible
random walks. Thereby we assume that the expansions of the corresponding Green functions at their
radii of convergence contain only logarithmic or algebraic terms as singular terms up to sufficiently
large order (except for some degenerate cases). We consider transient random walks on the free
product �1 ∗ . . . ∗ �m and give a complete classification of the possible asymptotic behaviour of the
corresponding n-step return probabilities. They either inherit a law of the form �nδn−λi logκi n from
one of the free factors �i or obey a �nδn−3/2-law, where � < 1 is the corresponding spectral radius
and δ is the period of the random walk. In addition, we determine the full range of the asymptotic
behaviour in the case of nearest neighbour random walks on free products of the form Zd1 ∗ . . .∗Zdm .
Moreover, we characterize the possible phase transitions of the non-exponential types n−λi logκi n in
the case �1 ∗ �2. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 150–181, 2012

Keywords: random walks; free products; return probabilities; asymptotic behaviour; lattices

1. INTRODUCTION

In this article we investigate transient random walks on free products �1 ∗ . . . ∗ �m, where
m ≥ 2 and �1, . . . , �m are finitely generated groups. These random walks arise from convex
combinations of probability measures on the factors �1, . . . , �m. Our aim is to compute the
asymptotic behaviour of the n-step return probabilities on the free product. In a general
setting, one has a typical asymptotic behaviour of the form µ(n)(x) ∼ Cx �nδn−λ, where
µ(n)(x) is the probability of being at x at time n, � is the spectral radius, δ the period of
the random walk, and Cx some constant depending on x. If e is the group identity and
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starting point of the random walk, then µ(n)(e) is called the n-step return probability. Gerl
[8] conjectured that the n-step return probabilities of two symmetric measures on a group
satisfying such a limit law have the same n−λ, that is, λ is a group invariant. Cartwright [2]
came to the astonishing result that for random walks on Zd ∗ Zd with d ≥ 5 there are at
least two possible types of asymptotic behaviour, namely n−3/2 and n−d/2. In relation with
his joint work with Chatterji et al. [5] L. Saloff-Coste asked whether the range of different
asymptotic behaviours can still be wider than in the case considered by Cartwright. In
this article we will pick up this question by investigating more general laws of the form
C �nδ n−λ logκ n. In this case, we speak of the factor n−λ logκ n as the non-exponential type
of the return probabilities.

The starting point for the present investigation was Woess [22, Section 17.B], where the
result of Cartwright [2] is explained that simple random walk on Zd ∗Zd for d ≥ 5 satisfies
a n−d/2-law. In this article we will prove the following more general theorem:

Theorem 1.1. Let m ∈ N with m ≥ 2 and d1, . . . , dm ∈ N. For each i ∈ {1, . . . , m},
consider on the lattice Zdi a probability measure µi with supp(µi) = {±e(i)

j | 1 ≤ j ≤ di},
where e(i)

j is the j-th unit vector in Zdi . For any α1, . . . , αm > 0 with
∑m

i=1 αi = 1, let
µ := ∑m

i=1 αiµi govern a (irreducible) random walk on the free product Zd1 ∗ . . . ∗ Zdm

starting at e, where e denotes the identity of the free product.
Then the return probabilities µ(2n)(e) behave asymptotically either like C · �2n · n−di/2

for i ∈ {1, . . . , m} or like C · �2n · n−3/2 for some constant C = Cµ depending on µ.
Moreover, if all exponents di are different and min{d1, . . . , dm} ≥ 5 then exactly m + 1
different asymptotic behaviours may occur by choosing the random walk adequately.

We will consider more general free products which go beyond free products of lattices.
For this purpose, we will present a new approach in order to be able to deal with irreducible
random walks on any free product of the form �1 ∗ . . . ∗ �m. At this point we have to make
the following assumption: if the Green function of the random walk on the free factor �i

is differentiable at its radius of convergence ri, then the Green function is assumed to have
a singular expansion (i.e. in a neighbourhood of ri) containing only singular terms of the
form (ri − z)q logk(ri − z) with q ∈ (1, ∞) and k ∈ N0 up to sufficiently large order. The
latter property is satisfied for several well-known groups as e.g. Zd or Zd × (Z/nZ) with
d ≥ 5 and n ≥ 2. If, however, the Green function of the random walk on the free factor �i

is not differentiable at ri, we do not need any assumption on the expansions.
If the asymptotic n-step return probabilities of the random walk on �i satisfy a law of

the form r−nδ
i n−λi logκi n then we will show that only one of the following non-exponential

types may occur for the random walk on the free product: either n−λi logκi n for some
i ∈ {1, . . . , m}, or n−3/2. That is, we may have up to m + 1 different types of asymptotic
behaviour for (symmetric or non-symmetric) random walks, and Theorem 1.1 shows that
one can have indeed exactly m + 1 different behaviours. Moreover, for the case �1 ∗ �2

equipped with the probability measure µ = α1µ1 + (1 − α1)µ2, where µ1 and µ2 are
probability measures on �1 and �2 and α1 ∈ (0, 1), we characterize the phase transitions
of the non-exponential types in terms of α1. We split the (0, 1)-interval, i.e. the interval of
possible values for α1, in up to three distinct subintervals such that, in each of them, we
have exactly one of the non-exponential types n−λ1 logκ1(n), n−λ2 logκ2 n or n−3/2.

Let us briefly recall some results regarding the asymptotic behaviour of return prob-
abilities. Work in this direction has been done since the 1970’s by Gerl, Sawyer, Woess,
Cartwright, Soardi and Lalley, see e.g. [3,9,12,18,21]. Sawyer [18] applies Fourier analysis
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to isotropic random walks on trees (free groups), which uses in a crucial way methods from
complex analysis. For finite range random walks on free groups, it is known from [9] and
[12] that the n-step return probabilities behave asymptotically like C�nn−3/2, where � < 1.
In [8,20,21] free products of finite groups are considered, which have a very tree-like struc-
ture and where random walks obey a n−3/2-law. In the more general case of free products of
arbitrary groups the interior structure of each free factor is more complicated. Woess [21],
Cartwright and Soardi [3], Voiculescu [19] and McLaughlin [16] found independently a
method to determine the Green function of a free product in terms of functional equations
of the Green functions defined on the free factors. We will study these equations carefully,
in order to obtain – with the help of the well-known method of Darboux – the asymptotic
behaviour of the power series’ coefficients, which are the sought return probabilities. We
refer also to the survey of Woess [23], which outlines the use of generating functions. More
recently, random walks on free products have also been studied by Mairesse and Mathéus
[15] and Gilch [10, 11], regarding boundary theory, entropy and rate of escape. For more
details and references we refer to Woess [22], which serves also as reference text for our
work.

The structure of this paper is as follows: in Section 2 we introduce some basic facts and
notations. In Section 3 we prove our main result for the case �1 ∗ �2, while in Sections 4
and 5 we are completing the list of degenerate cases, which, in particular, may occur if the
Green functions of the random walks on the single factors are non-differentiable at their
radii of convergence. In Section 5.3 we are proving inductively the proposed asymptotic
behaviour for multi-factor free products of the form �1 ∗ . . . ∗ �m with m ≥ 3. Section 6
discusses some examples. This includes the case of free products of the form Zd1 ∗ . . .∗Zdm ,
where we give a full classification of the asymptotic behaviour of the return probabilities,
which proves Theorem 1.1. For �1 ∗ �2, we give in Section 7 a full characterization of the
possible phase transition behaviour of the non-exponential types of the return probabilities
in terms of the weight α1 of the probability measure given on �1. Finally, Section 8 gives
some concluding remarks about higher asymptotic order terms.

2. RANDOM WALKS ON FREE PRODUCTS

Let m ∈ N with m ≥ 2. Suppose we are given finitely generated groups �1, . . . , �m, and
we denote by ei the identity of �i. We consider the free product � := �1 ∗ . . . ∗ �m, which
consists of all finite words of the form

x1x2 . . . xn, (2.1)

where x1, . . . , xn ∈ ⋃m
i=1 �i \ {ei} and two consecutive letters are not from the same free

factor �i. In the case �i = �j we may think that the elements of �i and �j have different
colours to distinguish their origin. Observe that each factor �i can be naturally embedded
into �, and therefore ei ∈ �i can be identified with the empty word e ∈ �. The free product is
a group with e as identity: the product of two elements is given by concatenation followed
by iterated contractions and cancellations of redundant terms in the middle, in order to
obtain the requested form (2.1). For example, if a, b ∈ �1 \ {e1} and c ∈ �2 \ {e2}, such that
c2 �= e, then (aca−1)(aca) = ac2a. For further details about free products see e.g. Lyndon
and Schupp [14].

We recall and introduce some notation: for any function f : D ⊆ C → C with f (z0) = 0
for z0 ∈ D, 0 < q ∈ R and k ∈ N0, we use the notation f (z) = o((z0 − z)q logk(z0 − z)),
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f (z) = Oc((z0 − z)q logk(z0 − z)) or f (z) = O((z0 − z)q logk(z0 − z)), if for z → z0

the function f (z) divided by (z0 − z)q logk(z0 − z) tends to zero, has a non-zero finite
limit or is bounded nearby z0 (that is, the quotient has a finite limes superior) respectively.
Furthermore, we write (z0 − z)q1 logk1(z0 − z) 
 (z0 − z)q2 logk2(z0 − z) if and only if
(z0 − z)q2 logk2(z0 − z) = O((z0 − z)q1 logk1(z0 − z)). The value z0 will be obvious from the
context.

Suppose we are given probability measures µi on �i with 〈supp(µi)〉 = �i for each
i ∈ {1, . . . , m}. These measures µi govern random walks on �i, that is, the single step
transition probabilities are given by pi(xi, yi) = µi(x

−1
i yi) for all xi, yi ∈ �i. (Let us remark

that, in the case of �i = Zdi with di ∈ N, we speak of a nearest neighbour random walk
if supp(µi) = {±ej | 1 ≤ j ≤ di}, where ej is the j-th unit vector in Zdi .) We lift now
µi to a probability measure µ̄i on � by defining µ̄i(x) := µi(x) if x ∈ �i; otherwise we
set µ̄i(x) := 0. Let α1, . . . , αm > 0 such that

∑m
i=1 αi = 1. Consider now the probability

measure µ := ∑m
i=1 αiµ̄i on the free product �, which arises as a convex combination of

the µ̄i’s. Then the single step transition probabilities on � given by p(x, y) := µ(x−1y) for
x, y ∈ � define a random walk on �, which is an irreducible Markov chain. We denote
by µ

(n)

1 , . . . , µ(n)
m and µ(n) the n-fold convolution power of µ1, . . . , µm and µ, that is, the

distribution after n steps with start at the identity. For z ∈ C, the associated Green functions
of the random walks on �i and � are given by

Gi(z) :=
∞∑

n=0

µ
(n)

i (ei)z
n and G(z) :=

∞∑
n=0

µ(n)(e)zn.

The corresponding radii of convergence are denoted by ri and r respectively, which are
singularities according to Pringsheim’s Theorem. Note that r > 1, since � is non-amenable
unless � = (Z/2Z)∗(Z/2Z) (see e.g. [22, Theorem 10.10, Corollary 12.5]; in the latter case
the random walk on � is recurrent). In the following we assume that Gi(z) is exactly di-times
differentiable at z = ri, where di ∈ N0. At this point we make the basic assumption that –
whenever G′

i(ri) < ∞ – the expansions of the Green functions Gi(z) in a neighbourhood
of z = ri have the form

Gi(z) =
di∑

k=0

g(i)
k (ri − z)k +

∑
(q,k)∈Ti

g(i)
(q,k)(ri − z)q logk(ri − z) + O((ri − z)di+2), (2.2)

where Ti is a finite subset of {(q, k) ∈ R × N0 | di < q ≤ di + 2}. In other words,
the expansions contain only logarithmic and algebraic terms as singular terms up to order
(ri − z)di+2. As we will see, higher order terms are not necessary for the computation of
the non-exponential type of the n-step return probabilities of the random walk on �. In the
following we want to motivate this assumption on Gi(z). This property for the expansion is
satisfied in several well-known cases: for example, the Green functions of nearest neighbour
random walks on lattices Zd have such an expansion; see Proposition 6.1. With some effort,
such an expansion can be deduced for Zd × (Z/nZ) via the same methods used for Zd . In
particular, we will prove our main result by induction on the number m of free factors of
�: we will see that the assumptions stated in (2.2) are stable under free products (except
for some degenerate cases), that is, G(z) has again a similar expansion if G′(r) < ∞ holds.
If the Green function Gi(z) has the form (2.2) then the well-known method of Darboux
yields that the n-step return probabilities of the random walk on �i (governed by µi) behave
asymptotically like the coefficients of the Taylor expansion of the leading singular term in
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(2.2) in a neighbourhood of 0. Assume that Si(z) := (ri − z)qi logki(ri − z) is the smallest
(or leading) singular term in (2.2) w.r.t. 
, that is, q > qi or (q = qi ∧ k < ki) for all
(q, k) ∈ Ti \ {(qi, ki)}; then the coefficients of its expansion in a neighbourhood of 0 behave
asymptotically like the n-step return probabilities on �i (the proof of this fact is completely
analogous to the one of Theorem 3.1). More precisely, they behave like Ĉir

−nδi
i n−λi logκi(n),

where δi := gcd{n ∈ N | µ
(n)

i (ei) > 0} is the period of the random walk on �i and

λi := qi + 1 and κi :=
{

ki, if qi /∈ N,
ki − 1 if qi ∈ N;

(2.3)

see e.g. Flajolet and Sedgewick [7, Chapter VI.2] for the asymptotic behaviour of the
coefficients in the expansion of (ri −z)qi logki(ri −z) in a neighbourhood of 0. Analogously,
δ := gcd{n ∈ N | µ(n)(e) > 0} = gcd{δ1, . . . , δm} is the period of the random walk on
�. Note that the method of Darboux needs some differentiability assumptions at z = ri;
therefore, we need the expansions of Gi(z) up to terms of order (ri −z)di+2. For more details
about Darboux’s method we refer to the comments in the proof of Theorem 3.1. We remark
that another – modern – tool to handle singular expansions as in (2.2) is Singularity Analysis,
which was developed by Flajolet and Odlyzko [6]. However, in our context it turns out that
the verification of the specific requirements of singularity analysis is quite cumbersome as
one can also see in Lalley [13]. Let us also point out that, in the case G′

i(ri) = ∞, we do
not need any assumptions on the singularity type at z = ri.

In the following we look at free products of the form �1 ∗ �2 different from
(Z/2Z) ∗ (Z/2Z) (it is well-known that random walks – in our context – on (Z/2Z)∗(Z/2Z)

obey a n−1/2-law). Free products with more than two factors are discussed in Section 5.3.
We introduce the following first visit generating functions for z ∈ C, i ∈ {1, 2} and all
si ∈ supp(µi), s ∈ supp(µ) = supp(µ1) ∪ supp(µ2):

Fi(si|z) :=
∑
n≥0

P
[
X (i)

n = ei, ∀m < n : X (i)
m �= ei

∣∣X (i)
0 = si

]
zn,

F(s|z) :=
∑
n≥0

P[Xn = e, ∀m < n : Xm �= e | X0 = s] zn,

where (X (i)
n )n∈N0 is a random walk on �i governed by µi. By conditioning on the number of

visits of ei the functions Fi(si|z) are directly linked with Gi(z) via

Gi(z) = 1

1 −∑si∈supp(µi)
µi(si) z Fi(si|z) . (2.4)

In the following we will summarize some further important basic facts, where we will refer
to Woess [22] for further details. Define

ζ1(z) := α1z

1 − α2z
∑

s2∈supp(µ2) µ2(s2)F(s2|z) and

ζ2(z) := α2z

1 − α1z
∑

s1∈supp(µ1) µ1(s1)F(s1|z) .
(2.5)

Note that ζi(1) is the probability of starting at e and making a step from e w.r.t. µi after finite
time. Observe that F(si|z) = Fi(si|ζi(z)) for si ∈ supp(µi); see [22, Proposition 9.18c)]. By
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[22, Equation (9.20)] and (2.4), the functions Fi(si|ζi(z)), Gi(z) and G(z) can be linked as
follows:

G(z) = ζi(z)

αi z
Gi(ζi(z)) = ζi(z)

αi z
(

1 −∑si∈supp(µi)
µi(si) ζi(z) Fi(si|ζi(z))

) . (2.6)

Hence, our aim will be to determine an expansion of ζi(z) in a neighbourhood of z = r, in
order to get a singular expansion for G(z) in a neighbourhood of z = r. By [22, Proposition
9.10], there are functions �i, i ∈ {1, 2}, and � such that

Gi(z) = �i(zGi(z)) and G(z) = �(zG(z)) (2.7)

for all z ∈ C in an open neighbourhood of the intervals [0, ri) and [0, r) respectively. In
particular, the functions �i and � are analytic in an open neighbourhood of the intervals
[0, θi) and [0, θ) respectively, where θi := riGi(ri) and θ := rG(r). �i and � are also strictly
increasing and strictly convex in [0, θi) and [0, θ) respectively. Furthermore, we define


i(t) := �i(t) − t�′
i(t) and 
(t) := �(t) − t�′(t). (2.8)

By [22, Theorem 9.19],

�(t) = �1(α1t) + �2(α2t) − 1 and 
(t) = 
1(α1t) + 
2(α2t) − 1. (2.9)

We write 
i(θi) := limt→θi− 
i(t). Define

θ̄ := min

{
θ1

α1
,
θ2

α2

}
.

We will make a case distinction according to finiteness of Gi(ri) and G′
i(ri) and also to

the sign of 
(θ̄) := limt→θ̄− 
(t). If 
(θ̄) < 0 then the n-step return probabilities of the
random walk on � behave asymptotically like

µ(nδ)(e) ∼ C · r−nδ · n−3/2

and the Green function of the random walk on � has the form

G(z) = A(z) + √
r − zB(z), (2.10)

where A(z), B(z) are analytic functions in a neighbourhood of z = r with B(r) �= 0; see
[22, Theorem 17.3] or [7, Section VI.7.]. Moreover, if one fixes any finite, symmetric sets
Si of generators of �i for i ∈ {1, 2}, where each Si contains at least one element of order
bigger than 2, then µ1, µ2 and α1 can always be chosen in a suitable way in order to obtain

(θ̄) < 0 with supp(µi) = Si; see [22, Corollary 17.10]. In particular, the same asymptotic
behaviour (including an expansion of the Green function of the form (2.10)) holds if �1 and
�2 are finite, see [21]. Therefore, we assume from now on that at least one out of �1 and �2

is infinite, and we may restrict our investigation to the cases 
(θ̄) > 0 and 
(θ̄) = 0.
We remark some important facts for the case 
(θ̄) ≥ 0. If the latter holds, we have

θ = θ̄ and G(r) < ∞, see [22, Theorem 9.22]. By [22, Lemma 17.1.a)], we have ζi(r) ≤ ri

for i ∈ {1, 2} with equality if and only if θ = θi/αi.
The proof for the asymptotic behaviours of the return probabilities is split up over the

following sections. In Section 3 we calculate the asymptotics in the case when 
(θ̄) > 0,
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G′
1(r1) < ∞ and G′

2(r2) < ∞ hold; see Theorem 3.1. In Section 4 we investigate the case
when 
(θ̄) = 0, G′

1(r1) < ∞ and G′
2(r2) < ∞ hold; see Theorem 4.1. From the proof of

this theorem we will see that even the case 
(θ̄) = 0, G′
1(ζ1(r1)) < ∞ and G′

2(ζ2(r2)) < ∞
is covered. In Section 5 we treat the remaining cases: Theorem 5.1 covers the case when
G1(r1) < ∞, G′

1(r1) = ∞ and G′
2(r2) < ∞ hold, while Corollary 5.2 answers the question

for the asymptotic behaviour when G′
1(r1) = ∞ and G′

2(r2) = ∞. Finally, Theorem 5.3
covers the remaining case when G1(r1) = ∞ or G2(r2) = ∞.

3. THE ASYMPTOTIC BEHAVIOUR IN THE CASE �(θ̄) > 0

Throughout this section we investigate the case m = 2 and assume that 
(θ̄) > 0 and
G1(z) and G2(z) are differentiable at their radii of convergence. That is, the Green functions
have an expansion as assumed in (2.2). Recall that the smallest singular term w.r.t. 
 in the
expansion of Gi(z), is denoted by Si(z) = (ri − z)qi logki(ri − z) with di < qi ≤ di + 1. Let
us remark that Darboux’s method yields that the n-step return probabilities of the random
walk on �i governed by µi behave asymptotically like Ĉir

−nδi
i n−λi logκi n, where λi and κi

are given by (2.3). The aim of this section is to prove the following:

Theorem 3.1. Assume that G1(z) and G2(z) are differentiable at z = r1, z = r2

respectively, and have an expansion as in (2.2). If S1(z) 
 S2(z) and 
(θ̄) > 0 then:

µ(nδ)(e) ∼
{

C1 · r−nδ · n−λ1 · logκ1(n), if α1 ≥ θ1
θ1+θ2

,

C2 · r−nδ · n−λ2 · logκ2(n), if α1 <
θ1

θ1+θ2
,

for some constants C1, C2 > 0.

In the following we may assume w.l.o.g. that θ = θ̄ = θ1/α1. Recall that F(si|z) =
Fi(si|ζi(z)) for all si ∈ supp(µi). Then we rewrite (2.5) as follows:

α1z = ζ1(z)

1 − α2z
∑

s2∈supp(µ2)

µ2(s2)F2(s2|ζ2(z))

 , (3.1)

α2z = ζ2(z)

1 − α1z
∑

s1∈supp(µ1)

µ1(s1)F1(s1|ζ1(z))

 . (3.2)

Recall that ζ1(r) = r1 and ζ2(r) ≤ r2 with equality if and only if θ = θ1/α1 = θ2/α2. We
remark also that 
(θ̄) > 0 implies G′(r) < ∞: since �′(θ̄) < �(θ̄)/θ̄ = 1/r we get by
differentiating (2.7)

G′(r) = lim
z→r

�′(zG(z)) G(z)

1 − z �′(zG(z))
= �′(θ̄) G(r)

1 − r �′(θ̄)
< ∞.

Furthermore, we define

D :=
{

d1, if θ̄ < θ2/α2,
min{d1, d2}, if θ̄ = θ1/α1 = θ2/α2.

We denote by S(z) the main leading singular term, which is given by

S(z) =
{

S1(z), if θ̄ < θ2/α2,
min{S1(z), S2(z)}, if θ̄ = θ2/α2.
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Lemma 3.2. 0 < ζ ′
1(r) < ∞ and 0 < ζ ′

2(r) < ∞.

Proof. We prove the lemma only for ζ ′
1(r). We write

H2(z) := α2z
∑

s2∈supp(µ2)

µ2(s2)F2(s2|ζ2(z)).

Since ζ1(r) = r1, we have H2(r) < 1; compare with the definition of ζ1(z). Furthermore,
the coefficient of zn in H2(z) is just the probability for the random walk on � of starting
at e, making the first step w.r.t. µ2 and returning for the first time to e at time n. Thus,
this probability is bounded from above by µ(n)(e), and consequently H ′

2(r) < G′(r) < ∞.
Computing the derivative of ζ1(z) in a neighbourhood of z = r gives

ζ ′
1(z) = α1(1 − H2(z)) + α1zH ′

2(z)

(1 − H2(z))2
> 0.

Finiteness of ζ ′
1(r) follows now directly from the remarks above.

The functions Fi(si|z), where i ∈ {1, 2} and si ∈ supp(µi), are at least di-times differen-
tiable at z = ri, since the same holds for Gi(z) and we can compare the coefficients of zn in
the definitions of Fi(si|z) and Gi(z) as follows:

µ
(n)

i (ei) ≥ µi(si) · P[X (i)
n = ei, ∀m < n : X (i)

m �= ei

∣∣X (i)
0 = si

]
.

Thus, we can rewrite these functions in the form

Fi(si|z) =
di∑

n=0

fn(si)(ri − z)n + E(i)(si|z) (3.3)

with coefficients fn(si) ∈ R and E(i)(si|z) = o((ri − z)di). If ζ2(r) < r2 then F2(s2|z) is
analytic at z = ζ2(r) for all s2 ∈ supp(µ2) and we can even write

F2(s2|z) =
∑
n≥0

fn(s2)(ζ2(r) − z)n.

Now we can prove:

Lemma 3.3. For z ∈ C in a neighbourhood of ri,∑
si∈supp(µi)

µi(si) z E(i)(si|z)

= e(i)
(qi ,ki)

(ri − z)qi logki(ri − z) +
∑

(q,k)∈T̂i

e(i)
(q,k)(ri − z)q logk(ri − z) + O((ri − z)di+2),

where e(i)
(qi ,ki)

�= 0 and T̂i ⊆ {(q, k) ∈ R×N0 | di < q ≤ di+2, q > qi or (q = qi ⇒ k < ki)}
is finite.

Proof. Define

Ui(z) :=
∑

si∈supp(µi)

µi(si) z Fi(si|z).
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Observe that the expansions of Ui(z) and Gi(z) have the same leading singular term: indeed,
both functions are di-times differentiable in a neighbourhood of z = ri due to the well-known
equation Gi(z) = 1/(1 − Ui(z)). Therefore, we have expansions

Gi(z) =
di∑

k=0

g(i)
k (ri − z)k + RGi(z) and Ui(z) =

di∑
k=0

u(i)
k (ri − z)k + RUi(z),

where RGi(z) = Oc(Si(z)) and RUi(z) = o((ri − z)di). Substituting these expansions into
Gi(z)(1 − Ui(z)) = 1, and taking all polynomial terms to one side, we get

(1 − Ui(ri)) RGi(z) − Gi(ri) RUi(z) = p(z) + o((ri − z)di+1),

where p(z) is some polynomial. This equation implies that the right hand side is of order
O((ri − z)di+1), that is, RUi(z) = Oc(Si(z)) and we can write

Ui(z) =
di∑

k=0

u(i)
k (ri − z)k + u(i)

(qi ,ki)
Si(z) + R̂Ui(z) with R̂Ui(z) = o(Si(z)).

Plugging this expansion once again into Gi(z)(1 − Ui(z)) = 1, comparing error terms and
iterating the last steps, together with substituting (3.3) in the definition of Ui(z), yields the
claim.

The next goal is to show that ζ1(z) and ζ2(z) are D-times differentiable at z = r.

Proposition 3.4. There are real numbers x0, x1, . . . , xD and y0, y1, . . . , yD such that

ζ1(z) =
D∑

k=0

xk (r − z)k + X (1)

D (z) and ζ2(z) =
D∑

k=0

yk (r − z)k + X (2)

D (z),

where X (1)

D (z) = o((r − z)D) and X (2)

D (z) = o((r − z)D).

Proof. We prove the proposition by determining x0, x1, . . . , xD and y0, y1, . . . , yD induc-
tively. By Lemma 3.2 and a well-known characterization of differentiability, we can rewrite
ζ1(z) and ζ2(z) in the following way:

ζ1(z) = r1 − ζ ′
1(r) (r − z) + X (1)

1 (z), where X (1)

1 (z) = o(r − z),
ζ2(z) = ζ2(r) − ζ ′

2(r) (r − z) + X (2)

1 (z), where X (2)

1 (z) = o(r − z).
(3.4)

Thus, we have determined x0, x1 and y0, y1. Assume now that we can write for some t < D

ζ1(z) =
t∑

k=0

xk (r − z)k + X (1)
t (z) and ζ2(z) =

t∑
k=0

yk (r − z)k + X (2)
t (z), (3.5)

where X (1)
t (z) = o((r − z)t) and X (2)

t (z) = o((r − z)t). Recall from (3.3) that we have
expansions of F1(s1|z

)
and F2(s2|z) of the form

F1(s1|z) =
D∑

n=0

an(s1)(r1 − z)n + E(1)(s1|z) and

F2(s2|z) =
D∑

n=0

bn(s2)(ζ2(r) − z)n + E(2)(s2|z),
(3.6)
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where E(i)(si|z) = o((ζi(r) − z)D). In particular, if θ̄ < θ2/α2 then ζ2(r) < r2 and con-
sequently we can even write F2(s2|z) = ∑

n≥0 bn(s2)(ζ2(r) − z)n. Recall that the case
D = d1 > d2 implies θ̄ < θ2/α2. We now substitute the expansions (3.5) and (3.6) in
Equations (3.1) and (3.2), yielding the following system:

α1z =
(

t∑
k=0

xk (r − z)k + X (1)
t (z)

)1 − α2(r − (r − z))
∑

s2∈supp(µ2)

µ2(s2)·

·
[

D∑
n=0

bn(s2)

(
−

t∑
k=1

yk (r − z)k − X (2)
t (z)

)n

+ E(2)(s2|ζ2(z))

] ,

α2z =
(

t∑
k=0

yk (r − z)k + X (2)
t (z)

)1 − α1(r − (r − z))
∑

s1∈supp(µ1)

µ1(s1)·

·
[

D∑
n=0

an(s1)

(
−

t∑
k=1

xk (r − z)k − X (1)
t (z)

)n

+ E(1)(s1|ζ1(z))

] .

(3.7)

Observe that
∑

si∈supp(µi)
µ(si)zE(i)(si|ζi(z)) = o((ζi(r) − ζi(z))D) = o((r − z)D). We now

bring all polynomial and higher order terms to the left hand side and get:

P(1)
t (z) + o((r − z)t+1) =

1 − α2r
∑

s2∈supp(µ2)

µ2(s2)b0(s2)

X (1)
t (z)

+
α2r1r

∑
s2∈supp(µ2)

µ2(s2)b1(s2)

X (2)
t (z),

P(2)
t (z) + o((r − z)t+1) =

α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)a1(s1)

X (1)
t (z)

+
1 − α1r

∑
s1∈supp(µ1)

µ1(s1)a0(s1)

X (2)
t (z),

(3.8)

where P(1)
t (z) and P(2)

t (z) are polynomials in the variable z. By assumption on X (1)
t (z) and

X (2)
t (z), the right hand sides of (3.8) are of order o((r−z)t). Therefore, the left hand sides have

to be of order O((r − z)t+1), and consequently the right hand sides have to be also of order
O((r − z)t+1). It remains to show that X (1)

t (z) = O((r − z)t+1) and X (2)
t (z) = O((r − z)t+1).

For this purpose, define the matrix M = (mij)1≤i,j≤2 by

m11 := 1 − α2r
∑

s2∈supp(µ2)

µ2(s2)b0(s2),

m12 := α2r1r
∑

s2∈supp(µ2)

µ2(s2)b1(s2),
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m21 := α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)a1(s1),

m22 := 1 − α1r
∑

s1∈supp(µ1)

µ1(s1)a0(s1).

Then the system (3.8) is equivalent to

M ·
(

X (1)
t (z)

X (2)
t (z)

)
=
(

Q(1)
t (z)

Q(2)
t (z)

)
,

where Q(1)
t (z) = O((r − z)t+1) and Q(2)

t (z) = O((r − z)t+1). If the matrix M is invertible,
then obviously X (1)

t (z) = O((r − z)t+1) and X (2)
t (z) = O((r − z)t+1). To this end, we now

prove invertibility of M:

Lemma 3.5. det(M) �= 0.

Proof. We start with differentiating equations (3.1) and (3.2):

α1 =
−α2

∑
s2∈supp(µ2)

µ2(s2)F2(s2|ζ2(z)) − α2z
∑

s2∈supp(µ2)

µ2(s2)F
′
2(s2|ζ2(z))ζ

′
2(z)

 ζ1(z)

+ ζ ′
1(z)

1 − α2z
∑

s2∈supp(µ2)

µ2(s2)F2(s2|ζ2(z))

 ,

α2 =
−α1

∑
s1∈supp(µ1)

µ1(s1)F1(s1|ζ1(z)) − α1z
∑

s1∈supp(µ1)

µ1(s1)F
′
1(s1|ζ1(z))ζ

′
1(z)

 ζ2(z)

+ ζ ′
2(z)

1 − α1z
∑

s1∈supp(µ1)

µ1(s1)F1(s1|ζ1(z))

 .

Observe that we have a0(s1) = F1(s1|r1), a1(s1) = −F ′
1(s1|r1), b0(s2) = F2(s2|ζ2(r)) and

b1(s2) = −F ′
2(s2|ζ2(r)). Substituting these values in the above system and letting z → r

yields

α1 =
−α2

∑
s2∈supp(µ2)

µ2(s2)b0(s2) + α2r
∑

s2∈supp(µ2)

µ2(s2)b1(s2)ζ
′
2(r)

 r1 + ζ ′
1(r)m11,

α2 =
−α1

∑
s1∈supp(µ1)

µ1(s1)a0(s1) + α1r
∑

s1∈supp(µ1)

µ1(s1)a1(s1)ζ
′
1(r)

 ζ2(r) + ζ ′
2(r)m22.

Since ζ1(r), ζ2(r) > 0 and a1(s1), b1(s2) < 0 the last equations imply m11, m22 > 0. We
proceed with rewriting the last system:

α2r1r
∑

s2∈supp(µ2)

µ2(s2)b1(s2)ζ
′
2(r) = A − ζ ′

1(r)m11,

α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)a1(s1)ζ
′
1(r) = B − ζ ′

2(r)m22,
(3.9)
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where

A := α1 + α2r1

∑
s2∈supp(µ2)

µ2(s2)b0(s2) and B := α2 + α1ζ2(r)
∑

s1∈supp(µ1)

µ1(s1)a0(s1).

Multiplying both equations in (3.9) yields the equation

ζ ′
1(r)ζ

′
2(r)m12m21 = AB − ζ ′

1(r)m11B − ζ ′
2(r)m22A + ζ ′

1(r)ζ
′
2(r)m11m22.

Assume now that det(M) = 0. Then we would get

ζ ′
1(r)m11B + ζ ′

2(r)m22A = AB,

or equivalently,

ζ ′
2(r) = AB − ζ ′

1(r)m11B

m22A
. (3.10)

Furthermore, (3.9) implies

ζ ′
1(r) = (A − Cζ ′

2(r)
)
/m11,

where C := α2r1r
∑

s2∈supp(µ2) µ2(s2)b1(s2) < 0. Substituting the last equation in (3.10)
would lead to

ζ ′
2(r) = BC

m22A
ζ ′

2(r).

Observe now that A, B, m22 > 0 and C < 0. This yields a contradiction in the last equation,
since ζ ′

2(r) > 0. Thus, det(M) �= 0.

The last lemma finishes the proof of Proposition 3.4.

Recall the definition of the main leading singular term S(z) = Si(z) = (ri − z)qi

logki(ri − z). The next aim is to show that at least one of the functions X (1)

D (z) and X (2)

D (z)
has order Oc((r − z)qi logki(r − z)). To this end, we look at the final step of the induction
in the proof of Proposition 3.4. For t = D, the system (3.7) becomes1 − α2r

∑
s2∈supp(µ2)

µ2(s2)b0(s2)

 · X (1)

D (z) +
α2r1r

∑
s2∈supp(µ2)

µ2(s2)b1(s2)

 · X (2)

D (z)

− α2r1

∑
s2∈supp(µ2)

µ2(s2) z E(2)(s2|ζ2(z)) = P(1)

D (z) + o((r − z)D+1),

α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)a1(s1)

 · X (1)

D (z) +
1 − α1r

∑
s1∈supp(µ1)

µ1(s1)a0(s1)

 · X (2)

D (z)

− α1ζ2(r)
∑

s1∈supp(µ1)

µ1(s1) z E(1)(s1|ζ1(z)) = P(2)

D (z) + o((r − z)D+1),

where P(1)

D (z) and P(2)

D (z) are polynomials in the variable z. By (3.4), we may conclude that
(ζi(r) − ζi(z)) = Oc(r − z). Since ζ ′

i (ri) < ∞ by Lemma 3.2, we have for 1 < p ∈ R

(ζi(r) − ζi(z))
p = (ζ ′

i (ri)(r − z) + o(r − z)
)p = ζ ′

i (ri)
p (r − z)p (1 + o(1))p = Oc((r − z)p)
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and

log(ζi(r) − ζi(z)) = log
(
ζ ′

i (ri)(r − z) + o(r − z)
)

= log
(
ζ ′

i (ri)
)+ log(r − z) + log(1 + o(1))

= log
(
ζ ′

i (ri)
)+ log(r − z) + o(1).

We remark that (1 + z)p and log(1 + z) are analytic in a neighbourhood of z = 0. In the
following we denote by i ∈ {1, 2} the index such that S(z) = Si(z). Then, the computations
above imply with Lemma 3.3 that∑

si∈supp(µi)

µ(si) z E(i)(si|ζi(z)) = Oc((r − z)qi logki(r − z)).

Since the matrix M from the proof of Proposition 3.4 is invertible, we can conclude
analogously that we must have

X (1)

D (z) = Oc((r − z)qi logki(r − z)) and X (2)

D (z) = Oc((r − z)qi logki(r − z)).

Thus, the leading singular term of ζi(z) has the same order as the leading singular term in
the expansion of Gi(z) if S(z) = Si(z). By (2.6), we can conclude that the leading singular
term in the expansion of G(z) at z = r has the same form as the leading singular term in
the expansion of Gi(z) at z = ri, namely (r − z)qi logki(r − z).

Recall that we assumed throughout this section that Gi(z) is exactly di-times differentiable
at z = ri. For an application of Darboux’s method we need in a first step the expansion
of G(z) in a neighbourhood of z = r up to terms of order (r − z)D+2, where D = d1, if
θ̄ < θ2/α2, and D = min{d1, d2}, if θ̄ = θ1/α1 = θ2/α2. Thus, by (2.6), we have to extend
the expansions of ζ1(z) and ζ2(z) up to terms of order (r − z)D+2. The next lemma ensures
that there are only finitely many terms up to order (r − z)D+2 in these expansions.

Lemma 3.6. For i ∈ {1, 2}, ζi(z) has an expansion of the form

D∑
k=0

xk(r − z)k +
∑

(q,k)∈T
x(q,k)(r − z)q logk(r − z) + o((r − z)D+2),

where xk , x(q,k) ∈ R, T is a finite subset of T̂ := {(q, k) ∈ R × N0 | D < q ≤ D + 2}. In
particular, (qi, ki) ∈ T with x(qi ,ki) �= 0, and (q, k) ∈ T implies (qi, ki) 
 (q, k).

Proof. Recall the expansion of
∑

si∈supp(µi)
µi(si) z E(i)(si|z) from Lemma 3.3. Assume that

ζi(z) has already an expansion of the form

D∑
k=0

xk(r − z)k +
∑

(q,k)∈T ′
x(q,k)(r − z)q logk(r − z) + o(max T ′), (3.11)

where T ′ is a finite subset of T̂ and max T ′ := max
{(r − z)q logk(r − z) | (q, k) ∈ T ′}. In
particular, x(qi ,ki) ∈ T ′ with x(qi ,ki) �= 0. We proceed with expanding the next terms of ζi(z)
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analogously to the proof of Proposition 3.4. For this purpose, observe that for p > 1 we can
rewrite (ζi(r) − ζi(z))p as

(−x1)
p (r − z)p

×
1 +

D∑
k=2

xk

x1
(r − z)k−1 +

∑
(q,k)∈T ′

x(q,k)

x1
(r − z)q−1 logk(r − z) + o

(
max T ′

r − z

)p

(3.12)

and log(ζi(r) − ζi(z)) as

C + log(r − z)

+ log

1 +
D∑

k=2

xk

x1
(r − z)k−1 +

∑
(q,k)∈T ′

x(q,k)

x1
(r − z)q−1 logk(r − z) + o

(
max T ′

r − z

) .

(3.13)

Note that (1 + z)p with p > 1 and log(1 + z) are analytic in a neighbourhood of z = 0.
We substitute (3.11), (3.12) and (3.13) in Equations (3.1) and (3.2) and compare again the
error terms (we will repeat this procedure in each of the following steps). Therefore, if
max T ′ = (r − z)q̂ logk̂(r − z) then the next possible terms up to order (r − z)q̂ in the
expansion may only be

(r − z)q̂ logk̂−1(r − z), (r − z)q̂ logk̂−2(r − z), . . . , (r − z)q̂.

Analogously to the proof of Proposition 3.4 we determine step by step the corresponding
coefficients of these terms. The next term in the expansion of ζi(z) has now the form
(r − z)q̌ logǩ(r − z), where q̌ > q̂ is a sum of elements from the finite set

{1, q, q − 1 | (q, ·) ∈ T1 ∪ T2}
with Ti given as in (2.2). The value of q̌ is minimal such that q̌ > q̂. Due to (3.12) and (3.13)
there is obviously a maximal ǩ ∈ N0 such that (r − z)q̌ logǩ(r − z) may be a non-vanishing
next term in the expansion of ζi(z). Thus, we may iterate the last few steps again. Since there
are only finitely many possible values for q such that a term of the form (r − z)q logk(r − z)
may appear in the expansion up to order (r − z)D+2, we have shown that there are only
finitely many terms up to order (r − z)D+2 in the expansion of ζi(z).

With the last lemma we are now able to prove Theorem 3.1:

Proof of Theorem 3.1. We start by expanding ζ1(z) and ζ2(z) as in Proposition 3.4. If
α1 > θ1/(θ1 + θ2) then θ̄ = θ1/α1 < θ2/α2 and ζ1(r) = r1, ζ2(r) < r2, and consequently
the leading singular term in the expansion of ζ1(z) (and ζ2(z)) is then given by the term
S1(z) = (r − z)q1 logk1(r − z). Analogously, if we have θ̄ = θ2/α2 < θ1/α1, then ζ2(r) = r2

and ζ1(r) < r1, and the leading singular term is then S2(z) = (r − z)q2 logk2(r − z). If
α1 = θ1/(θ1 + θ2) then θ̄ = θ1/α1 = θ2/α2, ζ1(r) = r1, ζ2(r) = r2, and the leading singular
term in the expansions of ζ1(z) and ζ2(z) is Sj(z) = (r − z)qj logkj (r − z), where j = 1, if
S1(z) 
 S2(z), and j = 2, if S2(z) ≺ S1(z). For the rest of the proof, we denote by i ∈ {1, 2}
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the index such that S(z) = Si(z). Therefore, the expansion of the common leading singular
term of ζ1(z) and ζ2(z), namely Si(z), in a neighbourhood of 0 has coefficients of asymptotic
order proportional to r−nn−λi logκi n.

We will use the technique which is called Darboux’s method: recall that the Riemann-
Lebesgue-Lemma states that if a function H(z) =∑n≥0 hnzn has radius of convergence rH

and if H is k-times continuously differentiable on its circle of convergence, then hnrn
Hnk → 0

as n → ∞. Thus, one identifies all singularities on the circle of convergence and subtracts
parts of the expansion near them such that the remaining part is sufficiently often differen-
tiable on the circle. The asymptotics of the coefficients arise then from the main leading
singular terms. We refer to Olver [17, Chap. 8, §9.2] for more details.

Lemma 3.6 assures that we have a singular expansion of ζ1(z) up to terms of order
�λi� = �qi� + 1 = D + 2, which allows us to apply Darboux’s method: we get the
asymptotic behaviour of µ(nδ)(e) by plugging ζ1(z) into Equation (2.6). Thus, the leading
singular term in the expansion of G(z) in a neighbourhood of z = r is the same as the one
of ζ1(z), namely (r − z)qi logki(r − z). We have to show that the expansion of G(z) at every
singular point on the disc of convergence has the same form. The singularities are exactly
the points r exp(i2π j/δ) with 0 ≤ j < δ − 1; see e.g. [22, Theorem 9.4]. Writing z = λrωj,
where ωj = exp(i2π j/δ) and λ ∈ C with |λ| < 1,

G(z) = G(λrωj) =
∑
n≥0

µ(nδ)(e)(λrωj)
nδ =

∑
n≥0

µ(nδ)(e)(λr)nδ = G(λr) = G(z/ωj).

Thus, for every j ∈ {0, 1, . . . , δ − 1}, we have expansions of G(z) in a neighbourhood of
z = rωj given by

G(z) =
D∑

k=0

gk(r − z/ωj)
k +

∑
(q,k)∈T̂i

g(q,k)(r − z/ωj)
q logk(r − z/ωj) + O

((
rωj − z

)D+2
)

,

where T̂i is a finite subset of {(q, k) ∈ R×N | D < q ≤ D+2, q > qi ∨(q = qi ⇒ k < ki)},
g(qi ,ki) ∈ T̂i with g(qi ,ki) �= 0 and (q, k) ∈ T̂i implies (qi, ki) 
 (q, k). Therefore, the difference

G(z) −
δ−1∑
j=0

∑
(q,k)∈T̂i

g(q,k)(r − z/ωj)
q logk(r − z/ωj)

is (D + 2)-times differentiable on the circle of convergence. Observe now that the coeffi-
cients of the expansion of (r − z/ωj)

qi logki(r − z/ωj) in a neighbourhood of 0 behave
asymptotically like C (rωj)

−n n−λi logκi(n). We can drop higher order terms in the above
difference because the corresponding coefficients have higher asymptotic order. Since
G(z) =∑n≥0 µ(n)zn, we can conclude that

µ(n)(e) ∼
δ−1∑
j=0

C n−λi logκi(n) r−n ω−n
j .

Observe that
∑δ−1

j=0 ω−n
j = δ if δ divides n, and this sum is zero otherwise.

We note once again that the asymptotic behaviour of the coefficients in the expansion of
the function (r − z)qi logki(r − z) near 0 are well-known; see e.g. Flajolet and Sedgewick
[7].
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Let us remark that the reasoning in the above proof shows analogously the asymp-
totic behaviour µ

(n)

i (ei) ∼ Ĉi r−n
i n−λi logκi n. That is, in the presented case of 
(θ̄) > 0,

G′
1(r1) < ∞ and G′

2(r2) < ∞ the asymptotics are directly inherited from the asymptotics
of the random walk on �i governed by µi.

4. THE CASE �(θ̄) = 0

We now consider the case � = �1 ∗ �2 and assume that 
(θ̄) = 0, G′
1(r1) < ∞ and

G′
2(ζ2(r)) < ∞ hold. W.l.o.g. we may also assume θ = θ̄ = θ1/α1. The aim of this section

is to prove the following:

Theorem 4.1. Assume that G′
1(r1) < ∞ and G′

2(ζ2(r2)) < ∞. If 
(θ̄) = 0 then

µ(nδ)(e) ∼ C · r−nδ · n−3/2.

In the following we will derive expansions of ζi(z) and G(z) in a neighbourhood of z = r
in order to prove Theorem 4.1. Recall from (2.8) that 
(θ̄) = 0 implies

�′(θ̄) = �(θ̄)

θ̄
= �(θ)

θ
= �(r G(r))

r G(r)
= G(r)

r G(r)
= 1

r
.

Differentiating (2.7) yields

G′(z) = G(z)�′(zG(z))

1 − z�′(zG(z))
. (4.1)

Therefore, G′(r) = ∞, and consequently we have to proceed differently from the previous
section in order to find the expansion of G(z). First, we show positivity of �′′(θ̄) in the
present setting:

Lemma 4.2. Assume that G′
1(r1) < ∞ and G′

2(ζ2(r2)). If 
(θ̄) = 0 then �′′(θ̄) > 0.

Proof. Differentiating (2.9) twice yields

�′′(θ̄) = α2
1�

′′
1(α1θ̄ ) + α2

2�
′′
2(α2θ̄ ). (4.2)

Since �1(t) and �2(t) are strictly convex for t ∈ [0, θ1) and t ∈ [0, θ2) respectively, we
get �′′(θ̄) > 0 whenever θ1/α1 �= θ2/α2: if θ̄ = θ1/α1 < θ2/α2 then α2θ̄ < θ2, that is,
�′′

2(α2θ̄ ) > 0.
We now consider the case θ1/α1 = θ2/α2, that is, ζ2(r) = r2. Assume now �′′(θ̄) = 0.

Then �′′
1(θ1) = limt→θ1− �′′

1(t) = 0 and �′′
2(θ2) = limt→θ2− �′′

2(t) = 0 must hold. For
i ∈ {1, 2}, differentiating (2.7) yields

G′
i(ri) = lim

z→ri

Gi(z)�′
i(zGi(z))

1 − z�′
i(zGi(z))

,

or equivalently

�′
i(θi) = lim

z→ri

G′
i(z)

zG′
i(z) + Gi(z)

= G′
i(ri)

riG′
i(ri) + Gi(ri)

< ∞.
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In particular, we have �′
i(θi) < 1/ri since G′

i(ri) < ∞ by assumption. If �′′
i (θi) = 0,

differentiating (2.7) twice yields

G′′
i (ri) = lim

z→ri

�′′
i (zGi(z))

(
Gi(z) + zG′

i(z)
)2 + 2�′

i(zGi(z))Gi(z)

1 − z�′
i(zGi(z))

= 2�′
i(θi)Gi(ri)

1 − ri�
′
i(θi)

< ∞.

Define the first return generating function as

Ui(z) :=
∑
n≥1

P
[
X (i)

n = ei, ∀1 ≤ m ≤ n − 1 :X (i)
m �= ei | X (i)

0 = ei

]
zn,

which satisfies the well-known equation Gi(z) = 1/(1 − Ui(z)) and is strictly convex.
G′′

i (ri) < ∞ implies obviously U ′′
i (ri) < ∞. Therefore, we can compute �′′

i (θi) as

�′′
i (θi) = lim

z→ri

Gi(z)3U ′′
i (z)

(Gi(z) + zG′
i(z))3

= Gi(ri)
3U ′′

i (ri)

(Gi(ri) + riG′
i(ri))3

> 0,

a contradiction, and consequently �′′(θ̄) > 0 due to (4.2).

We proceed with expanding G(z) nearby z = r.

Proposition 4.3. Assume that �′′(θ̄) < ∞, 
(θ̄) = 0, G′
1(r1) < ∞ and G′

2(ζ2(r)) < ∞
hold. Then we can expand G(z) in a neighbourhood of z = r as follows:

G(z) = g0 + g1

√
r − z + o(

√
r − z),

where g0, g1 ∈ R with g1 �= 0.

Proof. Consider the auxiliary function H(z) := (G(z) − G(r))2, and its first derivative
H ′(z) = 2G′(z)(G(z) − G(r)). Using Equation (4.1), we get

H ′(z) = 2
G(z)�′(zG(z))

1 − z�′(zG(z))
(G(z) − G(r)).

The next aim is to show differentiability of H(z) at z = r. For this purpose, we want to
show finiteness of the following limit:

lim
z→r

H ′(z) = lim
z→r

2G(z)�′(zG(z))
G(z) − G(r)

1 − z�′(zG(z))
.

Since 2G(z)�′(zG(z)) tends to A := 2G(r)/r < ∞, we just look at the following limit:

lim
z→r

G(z) − G(r)
1 − z�′(zG(z))

= lim
z→r

�(zG(z)) − G(r)
1 − z�′(zG(z))

= lim
z→r

�′(zG(z))(G(z) + zG′(z))
−�′(zG(z)) − z�′′(zG(z))(G(z) + zG′(z))

. (4.3)

In the last equation we applied De L’Hôpital’s rule. We now write G(z) := G(z) + zG′(z),
which tends to infinity for z → r. Recall that θ̄ = θ = rG(r) if 
(θ̄) = 0. Therefore,
Equation (4.3) yields

H ′(r) = lim
z→r

A�′(θ)G(z)

−�′(θ) − r�′′(θ)G(z)
= lim

x→∞
A�′(θ)x

−�′(θ) − r�′′(θ)x
= A

−r2�′′(θ)
∈ (−∞, 0).
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Thus,

lim
z→r

G(r) − G(z)√
r − z

= lim
z→r

√
(G(z) − G(r))2

r − z
= √−H ′(r) ∈ (0, ∞)

leads to the proposed expansion, namely

G(z) = G(r) −√−H ′(r)
√

r − z + o(
√

r − z),

where
√−H ′(r) �= 0.

The next lemma shows that also ζ1(z) and ζ2(z) have the same expansion type:

Lemma 4.4. Assume �′′(θ̄) < ∞. If 
(θ̄) = 0, G′
1(r1) < ∞ and G′

2(ζ2(r)) < ∞ we
can expand ζ1(z) and ζ2(z) in a neighbourhood of z = r in the following way:

ζ1(z) = r1 + a0

√
r − z + o(

√
r − z), ζ2(z) = ζ2(r) + b0

√
r − z + o(

√
r − z),

where a0, b0 ∈ R \ {0}.

Proof. Obviously, we can write

ζ1(z) = r1 + X1(z), ζ2(z) = ζ2(r) + X2(z), (4.4)

where X1(r) = X2(r) = 0. Moreover, for i ∈ {1, 2},

Gi(ζi(z)) = Gi(ζi(r)) − G′
i(ζi(r))(−Xi(z)) + o(Xi(z)). (4.5)

Substituting (4.4) and (4.5) in (2.6) yields the claim when comparing all error terms.

Now we can show that �′′(θ̄) < ∞ holds in the present setting:

Lemma 4.5. Assume G′
1(r1) < ∞ and G1(ζ2(r)) < ∞. If 
(θ̄) = 0 then �′′(θ̄) < ∞.

Proof. Assume now that �′′(θ̄) = ∞. We rewrite ζ1(z) and ζ2(z) as

ζ1(z) = r1 + X1(z), and ζ2(z) = ζ2(r) + X2(z), (4.6)

with X1(r) = X2(r) = 0. More precisely, if �′′(θ̄) = ∞, then the reasoning in Propo-
sition 4.3 yields H ′(r) = 0, and consequently X1(z), X2(z) = o(

√
r − z). Furthermore,

X1(z), X2(z) �= O((r − z)), because otherwise ζ ′
1(r), ζ

′
2(r) < ∞ together with (2.6) would

lead to a contradiction with G′(r) = ∞. For i ∈ {1, 2} and si ∈ supp(µi), we write in the
following Fi(si|z) =∑n≥1 f (i)

n (si)zn with suitable coefficients f (i)
n (si) ∈ R. Our next aim is

to find real numbers C(i)
1 and C(i)

2 such that

C(i)
1 X1(z) + C(i)

2 X2(z) + o(r − z) = LPi, (4.7)
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where LPi is a linear polynomial. For this purpose, we rewrite Equations (3.1) and (3.2)
with the help of (4.6). In the following denote by j the element of {1, 2} which is different
from i. We get:1 − αj(r − (r − z))

∑
sj∈supp(µj)

µj(sj)
∑
n≥1

f (j)
n (sj)(ζj(r) + Xj(z))

n

 (ζi(r) + Xi(z)) = αiz.

(4.8)

The coefficients C(i)
1 and C(i)

2 of X1(z) and X2(z) respectively, are

C(1)

1 := 1 − α2r
∑

s2∈supp(µ2)

µ2(s2)
∑
n≥1

f (2)
n (s2) ζ2(r)n

= 1 − α2r
∑

s2∈supp(µ2)

µ2(s2)F2(s2|ζ2(r)),

C(1)

2 := −α2r1r
∑

s2∈supp(µ2)

µ2(s2)
∑
n≥1

f (2)
n (s2)n ζ2(r)n−1

= −α2r1r
∑

s2∈supp(µ2)

µ2(s2)F
′
2(s2|ζ2(r)),

C(2)

1 := −α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)
∑
n≥1

f (1)
n (s1)nrn−1

1

= −α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)F
′
1(s1|r1),

C(2)

2 := 1 − α1r
∑

s1∈supp(µ1)

µ1(s1)
∑
n≥1

f (1)
n (s1)rn

1

= 1 − α1r
∑

s1∈supp(µ1)

µ1(s1)F1(s1|r1).

For i = 1, the linear polynomial term on the left hand side of (4.8) is

r1

1 − α2z
∑

s2∈supp(µ2)

µ2(s2)F2(s2|ζ2(r))

 ,

while on the right hand side it is α1z. For i = 2, we have on the left hand side of (4.8)

ζ2(r)

1 − α1z
∑

s1∈supp(µ1)

µ1(s1)F1(s1|r1)

 ,

and on the right hand side α2z. Therefore, (4.7) holds with

LP1 := α1z − r1

1 − α2z
∑

s2∈supp(µ2)

µ2(s2)F2(s2|ζ2(r))

 and

LP2 := α2z − ζ2(r)

1 − α1z
∑

s1∈supp(µ1)

µ1(s1)F1(s1|r1)

 .
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The coefficients C(i)
1 , C(i)

2 satisfy

C(1)

1 C(2)

2 − C(2)

1 C(1)

2 = 0. (4.9)

Indeed, assume that C(1)

1 C(2)

2 − C(2)

1 C(1)

2 �= 0. Then the following linear system

C(1)

1 X1(z) + C(1)

2 X2(z) + o(r − z) = LP1,

C(2)

1 X1(z) + C(2)

2 X2(z) + o(r − z) = LP2

has a unique solution for X1(z) and X2(z), but this means that both of them are of order
O(r − z), a contradiction to (4.6), where X1(z), X2(z) �= O(r − z).

Evaluating Equation (4.8) with i = 2 at z = r gives C(2)

2 > 0. Equation (4.9) yields

LP1 −C(1)

2

C(2)

2

LP2 = 0. (4.10)

Evaluating the last equation at z = 0 yields

−r1 + C(1)

2

C(2)

2

· ζ2(r) = 0. (4.11)

Since C(1)

2 < 0, Equation (4.11) gives us a contradiction, therefore �′′(θ̄) = ∞ cannot hold
when 
(θ̄) = 0.

We now proceed analogously to the previous section: we substitute the expansion of the
last lemma in Equations (3.1) and (3.2) and determine step by step the next terms in the
expansions of ζ1(z) and ζ2(z). The next lemma shows that we get only a finite number of
terms up to order (r − z)2:

Lemma 4.6. Let i ∈ {1, 2}. If 
(θ̄) = 0, we can expand ζi(z) in a neighbourhood of
z = r in the following way:

ζi(z) = ζi(r) + c0

√
r − z +

∑
(q,k)∈T

c(q,k)(r − z)q logk(r − z) + O((r − z)2),

where T is a finite subset of T̂ := {(q, k) ∈ R × N0 | 1/2 < q ≤ 2} and c0, c(q,k) ∈ R with
c0 �= 0.

Proof. We start by plugging ζi(z) = ζi(r) + c0
√

r − z + X (i)
0 (z) with X (i)

0 (z) = o(
√

r − z)
into Equations (3.1) and (3.2) and determine step by step the next terms inductively
analogously to the proof of Lemma 3.6. Assume now that ζi(z) has an expansion of the
form

ζi(r) + c0

√
r − z +

∑
(q,k)∈T ′

c(q,k)(r − z)q logk(r − z) + o(max T ′),

where T ′ with T ′ ⊆ T̂ finite. For p > 1, (ζi(r) − ζi(z))p can be rewritten as

(−c0)
p (r − z)p/2

1 +
∑

(q,k)∈T ′

c(q,k)

c0
(r − z)q−1/2 logk(r − z) + o

(
max T ′
√

r − z

)p

(4.12)
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and log(ζi(r) − ζi(z)) as

C + 1

2
log(r − z) + log

1 +
∑

(q,k)∈T ′

c(q,k)

c0
(r − z)q−1/2 logk(r − z) + o

(
max T ′
√

r − z

) .

(4.13)

Once again, if max T ′ = (r−z)q̂ logk̂(r−z) then the next possible terms up to order (r−z)q̂

in the expansion may only be

(r − z)q̂ logk̂−1(r − z), (r − z)q̂ logk̂−2(r − z), . . . , (r − z)q̂.

We determine step by step the corresponding coefficients of these terms by plugging the
expansions of ζi(z), (4.12) and (4.13) into Equations (3.1) and (3.2) and comparing error
terms. The next term has the form (r − z)q̌ logǩ(r − z), where q̌ ≤ 2 is now a sum of
elements from the finite set {1/2, q/2, q/2 − 1/2 | (q, ·) ∈ T1 ∪ T2} such that q̌ > q̂ (recall
the definitions of Ti from (2.2)). Due to (4.12) and (4.13) there is obviously a maximal
ǩ ∈ N0 such that (r − z)q̌ logǩ(r − z) may be a non-vanishing next term in the expansion of
ζi(z). Iterating the last steps yields the claim of the lemma, since there are only finitely many
possible values for q such that the term (r − z)q logk(r − z) may appear in the expansion of
ζi(z).

Substituting the obtained expansion of ζ1(z) into Equation (2.6) yields the proposed
claim of Theorem 4.1.

Remark. The result could also be obtained analogously to Flajolet and Sedgewick
[7, Section VI.7.] by singularity analysis, but one still has to prove positivity and finiteness
of �′′(θ̄).

5. THE REMAINING CASES

In this section we look at all remaining cases not covered by Section 3 and 4. Afterwards
we will extend our results to free products �1 ∗ . . . ∗ �m with m > 2.

5.1. Case G1(r1) < ∞ and G ′
1(r1) = ∞

Theorem 5.1. Consider a free product of the form �1 ∗�2, where G1(r1) < ∞, G′
1(r1) =

∞ and G′
2(r2) < ∞. Then:

µ(nδ)(e) ∼
{

C1 · r−nδ · n−3/2, if θ̄ = θ1/α1 or 
(θ̄) ≤ 0,
C2 · r−nδ · n−λ2 · logκ2(n), if θ̄ = θ2/α2 < θ1/α1 and 
(θ̄) > 0.

Proof. For the first part of the proof assume that θ̄ = θ1/α1. With

U1(z) :=
∑
g∈�1

µ1(g) z F1(g
−1|z)
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we have the well-known equation G1(z) = 1/(1 − U1(z)). Therefore, G′
1(r1) = ∞ implies

U ′
1(r1) = ∞, and we get due to [22, Equation (9.14)]


1(α1θ̄ ) = 
1(θ1) = lim
z→r1


1(zG(z)) = lim
z→r1

1

zU ′
1(z) + 1 − U1(z)

= 0. (5.1)

Thus,


(θ̄) = 
1(α1θ̄ ) + 
2(α2θ̄ ) − 1 = 
1(θ1) + 
2(α2θ̄ ) − 1 = 
2(α2θ̄ ) − 1.

Recall that 
(t) is strictly decreasing and 
2(0) = 1. Therefore, 
(θ̄) < 0, and con-
sequently we obtain the asymptotic behaviour µ(nδ)(e) ∼ C1r−nδn−3/2; see [22, Theorem
17.3].

For the case θ̄ = θ2/α2 < θ1/α1 and 
(θ̄) = 0, we refer to Section 4.
In the case θ̄ = θ2/α2 < θ1/α1 and 
(θ̄) > 0 the Green function G1(z) is analytic at

z = ζ1(r) < r1 and thus we may apply the technique from Section 3 to obtain the proposed
asymptotic behaviour.

At this point, let us remark that the formula for 
(t) used in Equation (5.1) always
implies 
i(θi) = 0 whenever G′

i(ri) = ∞. Moreover:

Corollary 5.2. If G′
1(r1) = G′

2(r2) = ∞, then µ(nδ)(e) ∼ C · r−nδ · n−3/2.

Proof. Since U ′
1(r1) = U ′

2(r2) = ∞, Equation (5.1) implies that at least one of 
1(α1θ̄ )

and 
2(α2θ̄ ) equals zero, yielding 
(θ̄) < 0.

5.2. Case G1(r1) = ∞
For finite groups �1 and �2, Woess [21] proved that the n-step return probabilities behave
asymptotically like C · r−nδ · n−3/2. Moreover, we get the following asymptotic behaviours:

Theorem 5.3. Consider a free product of the form �1 ∗ �2, where G1(r1) = ∞. Then:

µ(nδ)(e) ∼
{

C1 · r−nδ · n−3/2, if 
(θ̄) ≤ 0,
C2 · r−nδ · n−λ2 · logκ2(n), if 
(θ̄) > 0.

Proof. If G′
2(r2) = ∞, we have 
(θ̄) < 0; see proof of Corollary 5.2.

If G2(r2) < ∞ and G′
2(r2) = ∞ then θ̄ = θ2/α2, and U ′

2(r2) = ∞. This implies once
again 
(α2θ̄ ) = 0, and thus 
(θ̄) < 0.

If G′
2(r2) < ∞ then θ̄ = θ2/α2 and ζ1(r) < r1. Therefore, we can follow the

argumentation of Section 3 and 4 analogously to prove the proposed claim.

5.3. Free Products with more than two Factors

Let m ∈ N with m ≥ 3. Suppose we are given finitely generated groups �1, . . . , �m. We
consider now a free product of the form � := �1 ∗ . . . ∗ �m, on which a random walk is
governed by the measure µ defined as µ :=∑m

j=1 αjµ̄j; see Section 2. We get the following
result:
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Theorem 5.4. Let m ≥ 3. Consider the free product � := �1 ∗ . . . ∗ �m equipped with a
random walk governed by µ :=∑m

j=1 αjµ̄j . Assume that the corresponding Green functions
Gi(z) on the free factors �i have an expansion as in (2.2) whenever G′

i(r) < ∞. Denote
by r the radius of convergence of the Green function associated with the random walk on
�. Then the asymptotic behaviour of the corresponding n-step transition probabilities must
obey one of the following laws: C r−nδ n−λi logκi(n), where λi and κi are inherited from one
of the µi’s, or C r−nδ n−3/2 with some constant C = Cµ depending on µ.

Proof. In order to prove the theorem, we just remark that – by induction on the number
of free factors – the Green function (with radius of convergence r∗) of the random walk on
�∗ := �1 ∗ . . . ∗ �m−1 governed by µ∗ := ∑m−1

j=1
αj

α1+...+αm−1
µ̄j has an expansion either of

the form

G∗(z) =
D∑

k=0

gk(r∗ − z)k +
∑

(q,k)∈T
g(q,k)(r∗ − z)q logk(r∗ − z) + O((r∗ − z)D+2), (I)

where T is a finite subset of {(q, k) ∈ R × N0 | D < q ≤ D + 2} and gk , g(q,k) ∈ R, or of
the form

G∗(z) = g0 + g1

√
r∗ − z +

∑
(q,k)∈T

g(q,k)(r∗ − z)q logk(r∗ − z) + O((r∗ − z)2), (II)

where T is a finite subset of {(q, k) ∈ R × N0 | 1/2 < q ≤ 2} and g0, g1, g(q,k) ∈ R with
g1 �= 0. Thus, we may apply the results from Section 3 to the free product �∗ ∗�m equipped
with µ = (α1 + . . . + αm−1)µ

∗ + αmµ̄m and obtain the proposed result.

6. EXAMPLES

6.1. Free Products of Lattices

Let d1, . . . , dm ∈ N. In this subsection we consider free products of the form
� := Zd1 ∗ . . . ∗ Zdm , equipped with a nearest neighbour random walk, that is, we always
assume supp(µi) = {±e(i)

j | 1 ≤ j ≤ di}, where e(i)
j is the j-th unit vector in Zdi . In

the following subsection we show that the Green functions of nearest neighbour random
walks on Zd have an expansion as requested by (2.2). Afterwards we can give a complete
classification of the asymptotic behaviour.

6.1.1. Expansion of the Green Function on Zd . Let d ∈ N. Suppose we are given a
probability measure π with supp(π) = {±e1, . . . , ±ed}, the set of natural generators of Zd .
Then π defines a random walk on Zd , and we denote by π(n) its n-fold convolution power.
We write for 1 ≤ i ≤ d

βi := π(ei) + π(−ei) and pi := π(ei)

π(ei) + π(−ei)
.

Denote by 0 the zero vector in Zd . Once again Gd(z) :=∑n≥0 π(n)(0)zn denotes the asso-
ciated Green function, which has radius of convergence rd . The crucial point for our later
discussion is the following:
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Proposition 6.1. The Green function of the random walk on Zd has an expansion of the
form

Gd(z) =
{

f (z) + g(z)(rd − z)(d−2)/2, if d is odd,
f (z) + g(z)(rd − z)(d−2)/2 log(rd − z), if d is even,

where the functions f (z), g(z) are analytic in a neighbourhood of z = rd and g(rd) �= 0.

Remarks. For the case of simple random walks on Zd , i.e. π(±ei) = 1/(2d), a proof
of this proposition can be found in [22, Proposition 17.16]. In our case, we generalize
the statement to arbitrary nearest neighbour random walks on Zd , but we will only give a
sketch of the proof and refer once again to [22]. From the expansion follows with the help
of Darboux’s method that π(2n)(0) ∼ C r−2n

d n−d/2; this asymptotic behaviour follows also
from Cartwright and Soardi [4].

Proof. First, note that the spectral radius of the random walk on Zd is given by

� =
d∑

i=1

βi

√
4pi(1 − pi) = 1

rd
;

compare with [22, Theorem 8.23]. For i ∈ {1, . . . , d}, we define random walks onZgoverned
by probability measures πi with πi(1) := pi and πi(−1) := 1−pi. For z ∈ C, the exponential
generating function on Zd is given by

E(z) :=
∞∑

n=0

π(n)(0)
zn

n!

and on the i-th coordinate axis it is given by

Ei(z) :=
∑
n≥0

π
(n)

i (0)
zn

n! =
∫ 1

−1
e
√

4pi(1−pi)tz
1

π
√

1 − t2
dt.

In the last equation we applied the following relation, which is easy to check:

π
(n)

i (0) =
∫ 1

−1

√
4pi(1 − pi)

n
tn 1

π
√

1 − t2
dt.

Furthermore, we get E(z) =∏d
i=1 Ei(βiz) = ∫ �

−�
etz(f̂1 ∗ . . . ∗ f̂d)(t)dt, where

f̂i(t) := 1

βi

√
4pi(1 − pi)

f0

(
t

βi

√
4pi(1 − pi)

)
and f0(t) :=

{
1

π

√
1−t2

, if t ∈ (−1, 1),

0, otherwise.

This allows us to rewrite the Green function in the following way:

Gd(z) =
∫ �

−�

1

1 − zt
(f̂1 ∗ . . . ∗ f̂d)(t) dt. (6.1)
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Moreover, there is a function gd(t), which is analytic in a neighbourhood of t = � and
satisfies gd(�) �= 0 such that

(f̂1 ∗ . . . ∗ f̂d)(t) = (� − t)(d−2)/2gd(t). (6.2)

To prove this, we define f̄i(t) := f̂i(βi

√
4pi(1 − pi) − t) and show inductively that we can

write

(f̄1 ∗ . . . ∗ f̄d)(t) = t(d−2)/2ḡd(t),

where the function ḡd(t) is analytic in a neighbourhood of t = 0 and ḡd(0) �= 0. Analogously
to the proof of [22, Proposition 17.16], we may conclude together with (6.1) and (6.2) that
Gd(z) has the proposed expansion.

6.1.2. Classification of the Asymptotic Behaviour. Observe that a nearest neighbour
random walk on Zd has period 2 since it can return to the origin only in an even number
of steps. Therefore, the period of a nearest neighbour random walk on Zd1 ∗ Zd2 is δ = 2.
Now we can give a complete classification of the asymptotic behaviour of n-step return
probabilities of nearest neighbour random walks on Zd1 ∗ Zd2 :

Theorem 6.2. Consider irreducible nearest neighbour random walks on the lattices Zd1

and Zd2 with d1 ≤ d2. Then the n-step return probabilities of the associated random walk
on Zd1 ∗ Zd2 obey one the following laws:

µ(2n)(e) ∼


C1 · r−2n · n−d1/2, if d1 ≥ 5 and 
(θ̄) > 0 and θ̄ = θ1/α1,
C2 · r−2n · n−d2/2, if d2 ≥ 5 and 
(θ̄) > 0 and θ̄ = θ2/α2 < θ1/α1,
C3 · r−2n · n−3/2, otherwise.

Consider now the multi-factor free product Zd1 ∗ . . . ∗Zdm . Let µi be the simple random
walk on Zdi for each i ∈ {1, . . . , m}, that is, µi(±e(i)

j ) = 1/(2di), where e(i)
j is the j-th

unit vector in Zdi . Choose α1, . . . , αm > 0 with
∑m

j=1 αj = 1. Let Gi(z) denote the Green
function of the simple random walk on Zdi , which has radius of convergence ri = 1, and
define 
i(t) analogously as in (2.8). Cartwright [1] computed numerically some of the
values of 
i(Gi(1)) and showed that 
i(Gi(1)) → 1 if di → ∞. Thus, for large di we
have 
i(Gi(1)) > 1 − 1/m. Recall also that 
i(t) is decreasing. Denote by G(z) the Green
function of the random walk on Zd1 ∗ . . . ∗ Zdm and by r its radius of convergence, and
define 
(t) analogously as in (2.8). By [22, Equation 9.21],


(θ̄) = 1 +
m∑

j=1

(
i(αiθ̄ ) − 1),

where θ̄ = min1≤i≤m θi/αi. If all exponents di ≥ 5 are large enough, we get 
(θ̄) > 0.
Furthermore, if αi is chosen large enough, we get an asymptotic behaviour of the form
Ci r−2n n−di/2. Moreover, one can define (symmetric) measures µ1, . . . , µm supported on the
natural generators in such a way that we obtain a C0 r−2n n−3/2-law: one chooses µ1 and µ2
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such that 
1(θ1), 
2(θ2) < 1/2, and α1 and α2 are chosen such that θ̄ = θ1/α1 = θ2/α2,
yielding


(θ̄) = 1 + (
1(θ1) − 1)︸ ︷︷ ︸
<−1/2

+ (
2(θ2) − 1)︸ ︷︷ ︸
<−1/2

+
m∑

k=3

(
k(αk θ̄ ) − 1)︸ ︷︷ ︸
≤0

< 0;

see also comments at the end of Section 2. That is, we can have m + 1 different asymptotic
behaviours. This finally proves Theorem 1.1.

For instance, consider � = Z5 ∗Z6 ∗Z7 equipped with simple random walks µ1, µ2 and
µ3 on each free factor. For i ∈ {1, 2, 3}, we define 
i(t) analogously to (2.8). Cartwright
[1] computed the values 
1(G1(1)) = 0.691, 
2(G2(1)) = 0.824 and 
3(G3(1)) = 0.876.
Thus, the random walk on Z5 ∗ Z6 governed by µ12 := α∗

1 µ̄1 + α∗
2 µ̄2, where α∗

1 =
α1/(α1 + α2) andα∗

2 = α2/(α1+α2), satisfies
(M) ≥ 0.515 with M := min{θ1/α
∗
1 , θ2/α

∗
2}.

That is, M = r1,2G1,2(r1,2), where G1,2(z) is the Green function of the random walk onZ5∗Z6

with radius of convergence r1,2. Since all 
i-functions are strictly decreasing, we obtain for
the random walk on � = �1 ∗ �2 with �1 = Z5 ∗ Z6 and �2 = Z7:


(θ̄) = 
1((α1 + α2)θ̄) + 
2(α3θ̄ ) − 1 ≥ 0.515 + 0.876 − 1 > 0.

For the simple random walk on �, we have then the asymptotic non-exponential type n−7/2,
if α1 + α2 < M/(M + G3(1)). Otherwise, we have the asymptotic behaviour n−5/2, if
M = θ1/α

∗
1 , or n−3, if M = θ2/α

∗
2 �= θ1/α

∗
1 .

6.2. (Z/mZ) ∗ Zd

Consider the groups �1 = Z/mZ and �2 = Zd for any m, d ∈ N with m ≥ 2. Suppose
we are given a probability measure µ1 on �1 and a probability measure µ2 on Zd , which
is supported on the natural generators. Then G1(1) = ∞, and thus we get the following
classification:

µ(nδ)(e) ∼
{

C1 · r−nδ · n−d/2, if 
(θ̄) > 0,
C2 · r−nδ · n−3/2, otherwise.

Let us remark that 
(θ̄) < 0 if d ≤ 4: this follows from the fact G′
2(r2) = ∞ (see

Proposition 6.1) and Corollary 5.2.

6.3. �q ∗ Zd

Consider the groups �1 = �q := ∗q
i=1(Z/2Z) and �2 = Zd for any q, d ∈ N with q ≥ 2.

Observe that the Cayley graph of �1 is the homogeneous tree of degree q. Suppose we are
given probability measures µ1 on �1 and µ2 on Zd , which are both supported on the natural
generators. If q = 2 then G1(1) = ∞, and thus we get the same classification as in the case
(Z/mZ) ∗ Zd . If q ≥ 3, then it is well-known that G1(z) can be written as

G1(z) = A(z) + √
r1 − z B(z),
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where A(z), B(z) are analytic in a neighbourhood of z = r1 and B(r1) �= 0; see e.g. Woess
[23, Equation (4.5)]. Therefore, we get the following classification for the associated random
walk on the free product �1 ∗ �2:

µ(2n)(e) ∼
{

C1 · r−2n · n−d/2, if θ̄ = θ2/α2 < θ1/α1 and 
(θ̄) > 0,
C2 · r−2n · n−3/2, otherwise.

Analogously to the previous example, observe that d ≤ 4 implies 
(θ̄) < 0.

7. CLASSIFICATION OF PHASE TRANSITIONS

Let us return to the case m = 2, that is, � = �1 ∗ �2. We now fix the measures µ1 and µ2,
and investigate the variation of 
(θ̄) as a function of the parameter α1.

Lemma 7.1. Assume θ̄ < ∞. Then the function ϒ : (0, 1) �→ R defined by

ϒ(α1) := 
1(α1θ̄ ) + 
2((1 − α1)θ̄) − 1

is continuous, strictly decreasing in the interval (0, θ1
θ1+θ2

] and strictly increasing in the

interval [ θ1
θ1+θ2

, 1).
(
We set c

c+∞ := 0 and ∞
∞+c := 1 for c ∈ (0, ∞).

)
Proof. We leave the proof of continuity of ϒ as an easy exercise to the reader, since 
i is
analytic in an open neighbourhood of the interval [0, θi).

Note that ϒ(α1) equals 
(θ̄) in dependence of α1. We divide the proof into two parts,
according to finiteness of θ1 and θ2.

Case θ1, θ2 < ∞. If 0 < α1 <
θ1

θ1+θ2
then θ̄ = θ2/α2. Consequently, we have

ϒ(α1) = 
1

(
α1

1 − α1
θ2

)
+ 
2(θ2) − 1.

Since the function α1
1−α1

is strictly increasing, it follows that 
1(
α1

1−α1
θ2) is strictly decreasing,

implying ϒ(α1) strictly decreasing.
If α1 = θ1

θ1+θ2
we obtain θ̄ = θ1/α1 = θ2/α2, that is, ϒ(α1) = 
1(θ1) + 
2(θ2) − 1.

If θ1
θ1+θ2

< α1 < 1 we have 
(θ̄) = 
1(θ1) + 
2(
1−α1
α1

θ1) − 1. Since 1−α1
α1

is strictly
decreasing, ϒ(α1) is a strictly increasing function in the abovementioned interval.

Case θ1 = ∞. Then θ̄ = θ2
1−α1

. The same reasoning as before shows that ϒ(α1) is strictly
decreasing in the interval (0, 1).

Case θ2 = ∞. Then θ̄ = θ1
α1

. Analogously, ϒ(α1) is strictly increasing in the interval
(0, 1).

Let us remark that θ̄ = ∞ implies 
(θ̄) < 0 (see [22, Theorem 9.22]); otherwise we
would have a contradiction to ρ-transience.

Now we can give a complete picture of the phase transition of the asymptotic behaviour
of the return probabilities depending on the parameter α1, and we present specific examples.
In the following we discuss the different possible behaviours of the function ϒ(α1) = 
(θ̄).
In Figure 1, the dashed line will represent approximately the qualitative behaviour of ϒ(α1);
we denote its zeros (if they exist) by αlow and αhigh (with αlow ≤ αhigh). Moreover, we write
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Fig. 1. The different behaviours of ϒ : α1 �→ 
(θ̄).

αc := θ1/(θ1+θ2). We decompose the interval (0, 1) into subintervals such that every choice
of α1 in a fixed subinterval leads to the same non-exponential type. With the help of Figure 1
we discuss case by case the different behaviours of ϒ(α1), and for each case we give an
example of a nearest neighbour random walk onZd1 ∗Zd2 . Recall that 
(0) = 
i(0) = 1.

Case A: Consider Figure 1, Case A. We give an example such that this case holds.
We set � = Zd1 ∗ Zd2 with d1, d2 ≥ 5, and we choose µ1 and µ2 such that

1(θ1) < 1/2 and 
2(θ2) < 1/2. Recall that it is possible to find such measures
(see end of Section 2 and [22, Lemma 17.9]). We remark that
i(θi) > 0: indeed,

i(θi) = 0 would imply

�′
i(θi) = �i(θi)

θi
= Gi(ri)

riGi(ri)
= 1

ri
.
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Differentiating (2.7) would yield G′
i(ri) = ∞, a contradiction to Propo-

sition 6.1, according to which, G′
i(ri) must be finite due to di ≥ 5.

Therefore:
– If α1 is small then θ̄ = θ2/(1 − α1) and


(θ̄) = 
1

(
α1

θ2

1 − α1

)
︸ ︷︷ ︸

α1→0−−−→0︸ ︷︷ ︸
α1→0−−−→1

+ 
2(θ2)︸ ︷︷ ︸
>0

−1, (7.1)

that is, 
(θ̄) > 0 if α1 is sufficiently small. This yields an n−d2/2-law for
small values of α1.

– If α1 is close to 1 then θ̄ = θ1/α1 and we get analogously an n−d1/2-law.
– For α1 = αc, we get 
(θ̄) = 
1(θ1) + 
2(θ2) − 1 < 0, that is, we have

an n−3/2-law in this case.
Case B: We set � = Z2 ∗ Z7. By Lemma 7.1, ϒ(α1) is strictly decreasing and θ̄ =

θ2/α2.
– If α1 is small then the same reasoning as in (7.1) holds and 
(θ̄) > 0,

that is, we have an n−d2/2-law for small α1.
– If α1 is close to 1 then


(θ̄) = 
1

(
α1

θ2

1 − α1

)
︸ ︷︷ ︸

α1→1−−−→∞︸ ︷︷ ︸
α1→1−−−→0

+ 
2(θ2)︸ ︷︷ ︸
<1

−1 < 0,

since limt→∞ 
1(t) = 0, which follows analogously to (5.1). That is, we
have an n−3/2-law for large α1.

Case C: By setting � = Z7 ∗ Z2, we have the symmetric situation as in Case B, which
gives an example for this case by exchanging the roles of Z2 and Z7.

Case D: We set � = Z5 ∗Z6 and consider simple random walks on the factorsZ5 andZ6.
By Cartwright [1], we have 
1(θ1) = 0.691 and 
2(θ2) = 0.824. Since 
1(z)
and 
2(z) are strictly decreasing, we have ϒ(α1) ≥ 
1(θ1) + 
2(θ2) − 1 > 0
for all α1 ∈ (0, 1). Thus, we obtain an n−5/2-law, if α1 ≥ αc, and an n−3-law, if
α1 < αc.

Case E: We set � = Z3∗Z4. By Equation (5.1), follows that 
1(α1θ̄ ) = 0 or 
2(α2θ̄ ) =
0, that is, we have ϒ(α1) < 0 for all α1 ∈ (0, 1). This yields an n−3/2-law for
all α1 ∈ (0, 1).

We now give an example (see Case F of Figure 1) where the n−3/2-interval of case A collapses
to a singleton. For this purpose, we have to prove the following:
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Lemma 7.2. Consider � = Z5 ∗ Z6. Then there are probability measures µ1

and µ2 supported on the natural generators of Z5 and Z6 respectively such that

1(θ1) = 
2(θ2) = 1

2 .

Proof. Let i ∈ {1, 2}. We have d1 = 5, d2 = 6 and choose any δ ∈ (0, 1). We define

ν
(i)
δ (x) :=

(1 − δ)/2, if x = (±1, 0, . . . , 0) ∈ Zdi ,
δ

2di − 2
, if x = (0, . . . , 0, ±1, 0, . . . , 0) ∈ Zdi \ {(±1, 0, . . . , 0)}.

The Green function associated with the random walk on Zdi governed by the symmetric
measure ν

(i)
δ has radius of convergence ri = 1; see [22, Cor. 8.15]. If δ = 1 − 1/di then


1(θ1) = 0.691 > 1/2 and 
2(θ2) = 0.824 > 1/2; see Cartwright [1]. On the other hand
side, if δ is small enough then 
1(θ1) < 1/2 and 
2(θ2) < 1/2; see proof of [22, Lemma
17.9]. It remains to show that 
i(θi) varies continuously in dependence of δ, which implies
that there is some δ

(i)
0 such that
i(θi) = 1/2. We now write Gi(z) = Gi(δ|z), Ui(z) = Ui(δ|z)

and 
i(t) = 
i(δ|t). Recall that


i(δ|θi) = 1

U ′
i (δ|1) + 1 − Ui(δ|1)

.

Since Ui(δ|1) can be rewritten as a power series in the variable δ, the function δ �→ 
i(δ|θi)

is continuous in δ. This finishes the proof.

We can now present an example, where Case F of Figure 1 holds: we set � = Z5 ∗Z6 and
choose the measures µ1 and µ2 such that 
1(θ1) = 
2(θ2) = 1/2. Obviously, we have then
ϒ(αc) = 
1(θ1) + 
2(θ2) − 1 = 0. That is, we get the following asymptotic behaviour:

µ(2n)(e) ∼


C1 · r−2n · n−5/2, if α1 > αc,
C2 · r−2n · n−3/2, if α1 = αc,
C3 · r−2n · n−3, if α1 < αc.

As a final remark let us explain that it is not possible that ϒ(α1) is strictly increasing or
decreasing with ϒ(α1) > 0 for all α1 ∈ (0, 1). In order to show this assume that ϒ(α1) is
strictly increasing. Then, by Lemma 7.1, θ2 = ∞ must hold, that is, G2(r2) = ∞. The same
reasoning as in Equation (5.1) leads to limz→r2 
2(zG(z)) = limt→∞ 
2(t) = 0. Therefore,
we obtain for α1 small enough


(θ̄) = 
1(θ1)︸ ︷︷ ︸
<1

+ 
2

(
(1 − α1)

θ1

α1

)
︸ ︷︷ ︸

α1→0−−−→∞︸ ︷︷ ︸
α1→0−−−→0

−1 < 0.

Analogously, if ϒ(α1) is strictly decreasing, then it must have a zero.
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8. HIGHER ASYMPTOTIC ORDERS

The techniques we used for determining the asymptotic behaviour give us not only the
leading term n−λ logκ n, but also the proceeding terms of higher order, according to the
singular terms in the expansion following the leading one. For instance, consider a nearest
neighbour random walk on Z7 ∗ Z8 with α1 = θ1/(θ1 + θ2). Then the associated Green
function has the following expansion:

4∑
k=0

gk(r − z)4 + ĝ1(r − z)5/2 + ǧ1(r − z)3 log(r − z)

+ ĝ2(r − z)7/2 + ǧ2(r − z)4 log(r − z) + o((r − z)4),

where ĝ1 �= 0. That is,

µ(2n)(e) ∼ r−2n · (C1 n−7/2 + C2 n−4 + C3 n−9/2 + C4 n−5 + o(n−5)),

where C1 �= 0.
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Branching random walks on free products of groups

Elisabetta Candellero, Lorenz A. Gilch and Sebastian Müller

Abstract

We study certain phase transitions of branching random walks (BRW) on Cayley graphs of free
products. The aim of this paper is to compare the size and structural properties of the trace,
that is, the subgraph that consists of all edges and vertices that were visited by some particle,
with those of the original Cayley graph. We investigate the phase when the growth parameter
λ is small enough such that the process survives, but the trace is not the original graph. A first
result is that the box-counting dimension of the boundary of the trace exists, is almost surely
constant and equals the Hausdorff dimension which we denote by Φ(λ). The main result states
that the function Φ(λ) has only one point of discontinuity which is at λc = R where R is the
radius of convergence of the Green function of the underlying random walk. Furthermore, Φ(R)
is bounded by one half the Hausdorff dimension of the boundary of the original Cayley graph
and the behaviour of Φ(R)− Φ(λ) as λ ↑ R is classified.

In the case of free products of infinite groups the end-boundary can be decomposed into words
of finite and words of infinite length. We prove the existence of a phase transition such that if
λ � λ̃c, the end boundary of the trace consists only of infinite words and if λ > λ̃c, it also contains
finite words. In the last case, the Hausdorff dimension of the set of ends (of the trace and the
original graph) induced by finite words is strictly smaller than the one of the ends induced by
infinite words.
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1. Introduction

A branching random walk (BRW) is a growing cloud of particles that move on an underlying
graph X in discrete time. The process starts with one particle in the root e of the graph. Then
at each discrete time step a particle produces offspring particles according to some offspring
distribution with mean λ > 1, and then each descendent moves one step according to a random
walk on X . Particles branch and move independently of the other particles and the history of
the process. A first natural question is to ask whether the process eventually fills up the whole
graph, that is, whether every finite subset will eventually be occupied or free of particles. If the
BRW visits the whole graph, it is called recurrent, and transient otherwise. As a consequence
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of Kesten’s amenability criterion, any BRW is recurrent on the Cayley graph of an amenable
group. Furthermore, one observes a phase transition on non-amenable groups; there exists
some λc > 1 such that a BRW with λ � λc is transient, while it is recurrent otherwise. In
the transient case, the trace of the BRW, that is, the subgraph that consists of all edges
and vertices that were visited by the BRW, is a proper random subgraph of the original
Cayley graph. Benjamini and Müller [1] studied first general qualitative statements of the
trace of BRW on groups. In particular, they proved exponential volume growth of the trace
in general. However, their approach is rather qualitative and gives no quantitative results
on the growth rate. In this article, we study BRW on free products of groups and obtain a
precise formula for the growth rate and dimensions of the end boundary of the trace. One
motivation to study BRW on this class of structures lies mainly in the fact that they are
among the simplest non-amenable groups. This makes them to a reference and starting point
for more complicated non-amenable structures such as, for instance, groups with infinitely
many ends or hyperbolic groups. Besides this, free products of groups are interesting on their
own since they play an important role in some fields of algebraic topology and in Basse–Serre
theory.
The starting point of the present investigation of BRWs was the work of Hueter and

Lalley [13], who studied BRW on homogeneous trees. We remark that in their setting and
notation weak survival is equivalent to transience in our language. In the transient regime, the
BRW eventually vacates every finite subset and the particle trails converge to the geometric end
boundary Ω of the tree. The limit set Λ of the BRW is the random subset of the boundary that
consists of all ends, where the BRW accumulates. By this we mean that each neighbourhood
of an end in Λ is visited infinitely often by the process. Equivalently, we can define Λ as the
geometric end boundary of the trace.
Typical ways of measuring the size of boundaries are by use of the box-counting dimension

(also known as the Minkowski dimension) or the Hausdorff dimension. In [13], a formula for the
Hausdorff dimension of Λ is given for BRW on homogeneous trees. In particular, it is shown
there that the limit set has the Hausdorff dimension no larger than one half the Hausdorff
dimension of the entire boundary Ω. We extend these results to BRW on free products of
groups. We prove existence of the box-counting dimension, show that the Hausdorff dimension
equals the box-counting dimension and present a formula in terms of generating functions of
the underlying random walk, see Theorem 3.5. In the same way, we obtain a formula for the
Hausdorff dimension of the whole space of ends, see Theorem 3.8. This eventually leads to the
result that the Hausdorff dimension of Λ is not larger than one half the Hausdorff dimension
of the entire boundary. Another consequence of the formula of the Hausdorff dimension is that
the dimension varies continuously in the subcritical regime, see Theorem 3.10. This affirms the
conjecture made in [1] for general non-amenable groups that the Hausdorff dimension of the
limit set is continuous for λ �= λc and discontinuous at λc. As pointed out in [13], the very same
phenomenon holds for other growth processes (for example, hyperbolic branching Brownian
motion, isotropic contact process on homogeneous trees) that exhibit a phase transition between
weak and strong survival.
In [13], the behaviour of the critical BRW on the free group was studied in more detail and

two phenomena were observed. First, Φ(R) = HD(Ω)/2 if and only if the underlying random
walk is the simple random walk. This statement is not true for our more general setting since
there are non-simple random walks that attain the maximal Hausdorff dimension HD(Ω)/2,
see Remark 3.12 together with Example 3.14. Second, it was shown in [13] that Φ(R)− Φ(λ) ∼
C
√
R− λ as λ ↑ R. For free products of groups this behaviour turns out to be more subtle:

Φ(R)− Φ(λ) may behave like C(R− λ) or C
√
R− λ depending on whether the Green function

is differentiable at its radius of convergence or not.
The very same phenomena were also studied in the continuous setting. Lalley and Sellke [18]

studied the phase transition for branching Brownian motion on the hyperbolic disc and
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Karpelevich, Pechersky, and Suhov [14] generalized these results to higher-dimensional
Lobachevsky spaces. Grigor’yan and Kelbert [11] studied recurrence and transience for
branching diffusion processes on Riemannian manifolds. In Cammarota and Orsingher [3],
first results on a ‘linear’ growing system of particles on the hyperbolic disc are given.
In the case of free products of groups Γ = Γ1 ∗ · · · ∗ Γr , where at least one of the factors is

infinite, another phase transition occurs. The boundary Ω can be decomposed into up to r + 1
direct summands. For 1 � i � r, let Ωi denote the set of ends described by semi-infinite non-
backtracking paths, which eventually stay in one copy of Γi. The set Ω∞ consists of all ends
described by infinite, non-backtracking paths that change the different copies of the free factors
infinitely many times. Now, for all infinite Γi, Theorem 3.1 gives a criterion whether Λ ∩ Ωi �= ∅
almost surely. In particular, it states that there exists a critical value λi such that λ � λi is
equivalent to Λ ∩ Ωi = ∅ almost surely. In other words, if we increase the growth parameter λ,
then more and more different parts of the boundary appear in Λ. However, even if Λ ∩ Ωi �= ∅,
only the infinite words contribute to the Hausdorff dimension of Λ, see Corollary 3.7.
Finally, for the case of free products of finite groups we slightly adapt the metric defined

on the boundary and obtain (following analogously the reasoning in [13]) a simpler formula
for the Hausdorff dimension of Λ, see Corollary 3.16. Analogously, we obtain a formula for
the Hausdorff dimension of Λ, if we have a BRW on free products by amalgamation of finite
groups, see Corollary 3.18. In both cases, the Hausdorff dimension can be expressed through a
Perron–Frobenius eigenvalue.
Let us remark that free products have been studied in great variety. Asymptotic behaviour

of return probabilities of random walks on free products has been studied in many ways; e.g.
Gerl and Woess [7, 24], Sawyer [22], Cartwright and Soardi [5], Lalley [15] and Candellero and
Gilch [4]. For free products of finite groups, Mairesse and Mathéus [19] computed an explicit
formula for the drift and asymptotic entropy. Gilch [9, 10] computed different formulas for
the drift and also for the entropy for random walks on free products of graphs. Our proofs
involve, in a very crucial way, generating function techniques for free products. These techniques
were introduced independently and simultaneously by Cartwright and Soardi [5], Woess [24],
Voiculescu [23] and McLaughlin [20]. In particular, we show that the Hausdorff dimension
can be computed as the solution of a functional equation in terms of double generating
functions.
The structure of the paper is as follows. In Section 2, we give an introduction to random

walks on free products, generating functions, and branching random walks. In Section 3,
we state our results and illustrate them with sample computations. The proofs are given in
Section 4.

2. Branching random walks on free products

2.1. Free products of groups and random walks

Let I = {1, 2, . . . , r} be a finite index set. Suppose we are given finitely generated groups Γi,
i ∈ I, where each Γi is generated by a symmetric generating set Si (that is, s ∈ Si implies
s−1 ∈ Si) with identity ei. Let Γ×

i := Γi \ {ei}, for every i ∈ I and let Γ×
∗ :=

⋃
i∈I Γ×

i . The
free product Γ := Γ1 ∗ · · · ∗ Γr is defined as the set

{x1x2 . . . xn | n ∈ N, xj ∈ Γ×
∗ , xj ∈ Γ×

k ⇒ xj+1 /∈ Γ×
k } ∪ {e}. (2.1)

That is, each element of Γ is a word x1 . . . xn such that each letter (also called block) xi is a
non-trivial element of one of the factors and two consecutive letters are not from the same free
factor Γi; e denotes the empty word. We exclude the trivial cases where Γi is the trivial group
and the case r = 2 = |Γ1| = |Γ2|; see beginning of Section 2.2 for further remarks. The group
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Figure 1. Structure of the free product (Z/2Z) ∗ (Z/3Z).

operation on the free product Γ can be described as follows: if u = u1 . . . um, v = v1 . . . vn ∈ Γ,
then uv stands for their concatenation as words with possible contractions and cancellations
in the middle in order to get the form of (2.1). For instance, if u = aba and v = abc with a, c ∈
Γ×
1 , b ∈ Γ×

2 and a2 = e1, b
2 �= e2, then uv = (aba)(abc) = a(b2)c. In particular, we set uei := u,

for all i ∈ I, and eu := u. Note that Γi ⊆ Γ and ei as a word in Γ is identified with e. The
block length of a word u = u1 . . . um ∈ Γ is given by ‖u‖ := m. Additionally, we set ‖e‖ := 0.
The type τ(u) of u is defined to be i if um ∈ Γ×

i ; we set τ(e) := 0.
To help visualizing the structure of a free product we may interpret the set Γ as the vertex

set of its Cayley graph X (with respect to the generating set
⋃

i∈I Si), which is constructed as
follows: consider Cayley graphs X1, . . . ,Xr of Γ1, . . . ,Γr with respect to the (finite) symmetric
generating sets S1, . . . , Sr; take copies of X1, . . . ,Xr and glue them together at their identities
to one single common vertex, which becomes e; inductively, at each vertex v = v1 . . . vk with
vk ∈ Γi attach a copy of every Xj , j �= i, where v is identified with ej of the new copy of Xj

(see Figure 1). The natural graph distance on X is also used for elements of Γ and we write
l(u) for the graph distance or length of u ∈ Γ to e. A geodesic of u is a shortest path from e
to u. We remark that the length of an element may differ drastically from its block length.
We construct in a natural way a random walk on Γ from some given random walks on its

free factors. Suppose we are given (symmetric, finitely supported) probability measures μi on
Γi with 〈supp(μi)〉 = Γi for each i ∈ I. For x, y ∈ Γi, the corresponding single-step transition
probabilities of a random walk on Γi are given by pi(x, y) := μi(x

−1y) and the n-step transition

probabilities are denoted by p
(n)
i (x, y) := μ

(n)
i (x−1y), where μ

(n)
i is the nth convolution power

of μi. Each of these random walks is irreducible. For the sake of simplicity, we also assume
μi(ei) = 0, for every i ∈ I. We lift μi to a probability measure μ̄i on Γ by defining μ̄i(x) :=
μi(x), if x ∈ Γi, and μ̄i(x) := 0, otherwise. Let αi > 0, i ∈ I, with∑i∈I αi = 1. We now obtain
a new finitely supported probability measure on Γ given by

μ =
∑

i∈I
αiμ̄i.

The random walk on Γ starting at e, which is governed by μ, is described by the sequence
of random variables (Xn)n∈N0

. For x, y ∈ Γ, the associated single and n-step transition
probabilities are denoted by p(x, y) := μ(x−1y) and p(n)(x, y) := μ(n)(x−1y), where μ(n) is
the nth convolution power of μ. The Cayley graph under consideration will always be with
respect to the set of generators supp(μ) =

⋃
i∈I supp(μi). We refer to Remark 3.11 for a short

discussion for the case of non-nearest-neighbour random walks.
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2.2. Generating functions

One key ingredient of the proofs is the study of the following generating functions. The most
common among these generating functions are the Green functions related to μi and μ which
are defined by

Gi(xi, yi|z) :=
∑

n�0

p
(n)
i (xi, yi) z

n and G(x, y|z) :=
∑

n�0

p(n)(x, y) zn,

where z ∈ C, i ∈ I, xi, yi ∈ Γi and x, y ∈ Γ. We note that the free product Γ is non-amenable
and that the radius of convergence R of G(·, ·|z) is strictly larger than 1; see, for example,
[25, Theorem 10.10, Corollary 12.5]. In particular, this implies transience of our random walk
on Γ. At this point, let us remark that the case r = 2 = |Γ1| = |Γ2| leads to a recurrent random
walk (and therefore to a recurrent BRW), which is the reason why we excluded this case.
Moreover, non-amenability of Γ yields G(e, e|R) <∞; see, for example, [16, Proposition 2.1].
The first visit generating functions related to μi and μ are given by

Fi(xi, yi|z) :=
∑

n�0

P[Y (i)
n = yi,∀m � n− 1 : Y (i)

m �= yi | Y (i)
0 = xi]z

n

and

F (x, y|z) :=
∑

n�0

P[Xn = y,∀m � n− 1 : Xm �= y | X0 = x]zn,

where (Y
(i)
n )n∈N0

describes a random walk on Γi governed by μi. For M ⊆ Γ, we also define

F (x,M |z) :=
∑

n�0

P[Xn ∈M,∀m � n− 1 : Xm /∈M | X0 = x]zn

and the first return generating function

U(x,M |z) :=
∑

n�1

P[Xn ∈M,∀ 1 � m � n− 1 : Xm /∈M | X0 = x]zn.

By a Harnack-type inequality, the generating functions F (·, ·|z) and U(·, ·|z) have also radii of
convergence of at least R > 1 and U(x,M |z) = F (x,M |z), if x /∈M . By transitivity, we have
Gi(xi, xi|z) = Gi(ei, ei|z) and G(x, x|z) = G(e, e|z), for all xi ∈ Γi and x ∈ Γ. For x ∈ Γ \ {e},
we have

G(e, e|z) > F (e, x|z)G(x, x|z)F (x, e|z); (2.2)

indeed, while on the left-hand side we take into account all paths from e to e, on the right-
hand side we only take into account all random walk paths from e to e which pass through x;
therefore, strict inequality follows from irreducibility of the random walk which ensures always
existence of random walk paths from e to e not passing through x. Symmetry of the laws μi

now implies that F (e, x|z) < 1 for all |z| � R and all x ∈ Γ \ {e}. The last visit generating
functions related to μi and μ are given by

Li(xi, yi|z) :=
∑

n�0

P[Y (i)
n = yi,∀1 � m � n : Y (i)

m �= xi | Y (i)
0 = xi]z

n

and

L(x, y|z) :=
∑

n�0

P[Xn = y,∀1 � m � n : Xm �= x | X0 = x]zn.

We have the following important equations, which follow by conditioning on the first visits of
yi and y, the last visits of xi and x, respectively:

Gi(xi, yi|z) = Fi(xi, yi|z) ·Gi(yi, yi|z) = Gi(xi, xi|z) · Li(xi, yi|z),
G(x, y|z) = F (x, y|z) ·G(y, y|z) = G(x, x|z) · L(x, y|z). (2.3)
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Thus, by transitivity, we obtain

F (x, y|z) = L(x, y|z) for any x, y ∈ Γ and |z| � R. (2.4)

Let x, y, w ∈ Γ such that all (random walk) paths from x to w pass through y. Then

F (x,w|z) = F (x, y|z) · F (y, w|z) and L(x,w|z) = L(x, y|z) · L(y, w|z); (2.5)

this can be checked by conditioning on the first/last visit of y when walking from x to w. For
i ∈ I and z ∈ C, we define the functions

ξi(z) := U(e, supp(μi)|z) = U(e,Γ×
i |z) = F (e, supp(μi)|z), (2.6)

which also have radii of convergence of at least R > 1. We remark that ξi(1) < 1; see, for
example, [9, Lemma 2.3]. Moreover, we have F (xi, yi|z) = Fi(xi, yi|ξi(z)) and L(xi, yi|z) =
Li(xi, yi|ξi(z)), for all xi, yi ∈ Γi; see [25, Proposition 9.18c; 9, Lemma 2.2]. Thus, by
conditioning on the number of visits of e before finally making a step from e to Γ×

i we obtain
the following formula:

ξi(z) =
αiz

1−∑j∈I\{i}
∑

s∈Γj
αjμj(s)zFj(s, ej |ξj(z))

. (2.7)

Finally, we define the following power series that will lead to a useful expression for the
Hausdorff dimension. Let

F(λ|z) :=
∑

x∈Γ

F (e, x|λ) zl(x), (2.8)

and define for i ∈ I:
F+

i (λ|z) :=
∑

x∈Γ×
i

F (e, x|λ) zl(x) =
∑

x∈Γ×
i

Fi(ei, x|ξi(λ))zl(x), (2.9)

Fi(λ|z) :=
∑

n�1

∑

x=x1...xn∈Γ:
x1∈Γ×

i

F (e, x|λ) zl(x) = F+
i (λ|z)

⎛
⎝1 +

∑

j∈I\{i}
Fj(λ|z)

⎞
⎠ . (2.10)

The latter functions satisfy the following relation:

F(λ|z) = 1 +
∑

i∈I
Fi(λ|z). (2.11)

2.3. Branching random walks

In this section, we introduce discrete-time branching random walks on free products and recall
some basic results.
There are two different main descriptions or constructions of a BRW. The first defines the

process inductively as a growing cloud of particles moving in (discrete) time and space. The
second, via tree-indexed random walks, uses the fact that the branching distribution does
not depend on the space. For that reason one can separate branching and movement into
two steps. First, one generates the whole genealogy of the process and then one maps the
corresponding genealogical tree into the Cayley graph. In both cases, we need the following
definition. A Galton–Watson process is characterized through an offspring distribution ν. This
is a probability measure on N = {0, 1, 2, 3, . . .} with mean (or also called growth parameter)
λ =
∑

k�1 k ν(k) ∈ (0,∞). We assume that ν has finite second moment, that is,
∑

k�1 k
2

ν(k) <∞. Moreover, we exclude the cases where ν(0) > 0 and ν(1) = 1; this guarantees that
the process survives almost surely and that the BRW is not reduced to a (non-branching)
random walk.
The BRW on Γ is defined inductively: at time 0 we have one particle at e (if not mentioned

otherwise). Between time n and n+ 1 the process performs two steps: branching and movement.
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First, each particle, independently of all others and the previous history of the process, produces
descendants according to ν and dies. Second, each of these descendants, independently of all
others and the past, moves to a neighbour vertex in Γ according to μ. A particle located at
some vertex x ∈ Γ at time n has a unique direct ancestor at time n− 1. Consequently, each
particle has a unique finite sequence of ancestors, the family history, which traces back to the
original starting particle at e. The sequence of the locations of its ancestors (chronologically
ordered) gives a path from e to x, which we call the trail of the particle.
Sometimes it will be convenient to work with the interpretation of a BRW as a tree-indexed

random walk, see [2]. Let T be a rooted infinite tree. The root is denoted by r and other
vertices by v and let |v| be the (graph) distance from v to the root r. The random walk on Γ
indexed by T is the collection of Γ-valued random variables (Sv)v∈T defined as follows. Label
the edges of T with i.i.d. random variables ηv with distribution μ; the random variable ηv
is the label of the edge (v−, v). Define Sv = e ·∏|v|

i=1 ηvi
, where 〈v0 = r, v1, . . . , vn = v〉 is the

unique geodesic (also called ancestry of v) from r to v at level n. A tree-indexed random walk
becomes a BRW if the underlying tree is a Galton–Watson tree induced by ν. We refer to T as
the family tree and to X as the base graph of the BRW. Furthermore, a vertex v ∈ T is called
a particle of the BRW and Tn denotes the vertices of T on level n or equivalently the particles
in generation n.
A useful variation of the first description of a BRW is the coloured BRW, see [13]. This

process behaves like a standard BRW where in addition each particle is either blue or red. In
order to define this coloured version we choose a subset M of Γ that plays the role of a ‘paint
bucket’. We start the BRW with one blue particle at e. Blue particles located outside of M
produce blue offspring. A blue particle that hits the paint bucket is frozen there and will be
replaced by a red particle. The new red particle starts an ordinary (red-coloured) BRW. As a
consequence, every red particle has exactly one ‘frozen’ ancestor in M .
We denote by Z∞(M) ∈ N ∪ {∞} the random number of frozen (blue) particles inM during

the whole branching process. If M = {x}, then we just write Z∞(x).
For ease of presentation, we will switch freely between the different definitions of a BRW;

nevertheless, it will always be clear from the context which description we are using.
A BRW on a Cayley graph is called recurrent if each vertex is visited infinitely many times

and transient if any finite subset is eventually free of particles. The recurrence/transience
behaviour is well understood. In fact, we have the following classification in recurrence and
transience, see [2] for the sub- and supercritical cases and [6] for the critical case. We also refer
to [11] for the corresponding result in the continuous setting.

Theorem 2.1. The BRW is transient if and only if λ � R.

Recall that in the language of [13] transience is equivalent to weak survival if λ > 1. For the
rest of this paper, we will restrict our investigation to the case of transience or weak survival.
Since in this case the process eventually vacates every finite subset of Γ almost surely the
investigation of the convergence of the BRW to the geometric boundary is meaningful.

2.4. Ends of graphs, box-counting dimension and Hausdorff dimension

Let us first recall some basic notations on infinite graphs. Let G be an infinite, connected,
locally finite graph with countable vertex set and root e. For ease of presentation, we will
identify G or a subgraph with its vertex set. A path of length n in G is a finite sequence of
vertices [x0, x1, . . . , xn] such that there is an edge from xi−1 to xi, for each i ∈ {1, . . . , n}. Recall
that a geodesic of a vertex x ∈ G is a shortest path from e to x in G. A ray is a semi-infinite
path [e = x0, x1, x2, . . .], which does not backtrack, that is, xi �= xj , if i �= j. Two rays η1 and
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η2 are equivalent if there is a third ray which shares infinitely many vertices with η1 and η2.
An equivalence class of rays is called an end. The set of equivalence classes of rays is called the
end boundary of G, denoted by ∂G. For further details, we refer to [25, Section 21].
In the case of free products we have different types of ends occurring in the Cayley graph X of

Γ: ends arising from ends in one of the Xi, and ‘infinite words’. More precisely, denote by Ω
(0)
i the

set of ends of Xi. For ωi ∈ Ω
(0)
i , let η = [ei, y1, y2, . . .] ∈ ωi and let x ∈ Γ, where [x0, x1, . . . , xn]

is a geodesic from x0 to x = xn. Then, the ray xη := [x0, x1, . . . , xn, xny1, xny2, . . .] describes

an end in Γ. The end described by xη is denoted by xωi. We set Ωi := {xωi | x ∈ Γ, ωi ∈ Ω
(0)
i }.

Moreover, the set of infinite words is given by

Ω∞ = {x1x2x3 . . . ∈ (Γ×
∗ )

N |xj ∈ Γ×
k ⇒ xj+1 /∈ Γ×

k }.
It is easy to see that the set Ω of ends of X can be decomposed in the following way:

Ω = Ω∞ � Ω1 � Ω2 � . . . � Ωr.

Observe that Ωi is empty if and only if Γi is finite. Thus, if all groups Γi are finite, then
Ω = Ω∞.
In order to measure the size of Ω, we define a metric on Ω. We say that an end ω1 ∈ Ω is

contained in a subset of the graph if all representatives have all but finitely many vertices in
this subset. Now, if we remove from X any finite vertex subset F ⊆ X (including the removal
of edges to vertices in F ), then there is exactly one connected component in the reduced graph
X \ F containing the end ω1. We call this component the ω1-component and say that ω1 ends
up in this component. Denote by Bm := {x ∈ Γ | l(x) � m} the ball centred at e with radius
m; we also set B−1 := ∅. Let ω2 ∈ Ω be another end with ω1 �= ω2. Obviously, there is some
maximal m ∈ N0 such that ω1 and ω2 end up in the same connected component of X \Bm−1.
We write c(ω1, ω2) for this maximal integer m. We now define a metric on Ω by

dΩ(ω1, ω2) := αc(ω1,ω2),

where α ∈ (0, 1) is arbitrary, but fixed. Additionally, we set dΩ(ω1, ω1) := 0. The ball B(ω, ε)
centred at ω ∈ Ω with radius ε � 0 is given by all ends ω̂ ∈ Ω with dΩ(ω, ω̂) � ε. In other words,
if ε = αm, then ω̂ ∈ B(ω, ε) if and only if ω and ω̂ end up in the same component of X \Bm−1.
A cover of a subset Ω′ ⊆ Ω is a finite or countable set of balls of the form B(ω, εω) with

ω ∈ Ω′ and εω > 0 such that the union of these balls include Ω′. For any ε > 0, let Nε(Ω
′) be

the minimal number of balls of the form B(ω, εω) with ω ∈ Ω′ and 0 < εω � ε, which cover Ω′.
Apparently, Nε(Ω

′) is bounded from above by the number of elements in Γ at graph distance
m = �log(ε)/ log(α)�. The lower and upper box-counting dimension (also called the Minkowski
dimension) of Ω′ are defined as

BD(Ω′) := lim inf
ε↓0

logNε(Ω
′)

− log ε
and BD(Ω′) := lim sup

ε↓0

logNε(Ω
′)

− log ε
. (2.12)

If both limits are equal, then the common value is called the box-counting dimension BD(Ω′)
of Ω′.
Another well-known measure for the size of Ω′ is given by the Hausdorff dimension. For

δ > 0, the δ-dimensional Hausdorff measure of Ω′ is defined by

Hδ(Ω
′) := lim

ε↓0
inf

{∑

i

εδi

∣∣∣∣∣ {B(·, εi)}i is a cover of Ω′ with εi < ε

}
.

Then the Hausdorff dimension of Ω′ is defined as

HD(Ω′) := inf{δ � 0 |Hδ(Ω
′) = 0}. (2.13)

Since X has bounded vertex degrees we have HD(Ω′) <∞. It is well known that, for all Ω′ ⊆ Ω,

HD(Ω′) � BD(Ω′).
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One of our main goals is to investigate to which kind of ends the BRW converges and to compare
the dimensions of the whole space of ends with the set of ends which are ‘hit’ by the BRW. More
precisely, for any ω ∈ Ω, if we remove any finite vertex subset F ⊆ X , then there is exactly
one connected component in the reduced graph X \ F containing ω. We say that the BRW
accumulates at the end ω if for every finite vertex subset F ⊆ X there is at least one particle
visiting the connected ω-component in X \ F . The set of accumulation points is denoted by Λ.
If the BRW is recurrent, then Ω = Λ; thus, we restrict our investigation to the more interesting
case of transience and therefore assume 1 < λ � R. Note that Λ ∩ Ω∞ is almost surely non-
empty; each infinite ancestry line converges to some element in g1g2 . . . ∈ Ω∞ with convergence
in the sense that the length of the common prefix of the particle’s location and g1g2 . . . tends to
infinity, see, for example, [9, Proposition 2.5]. We also remark that the Hausdorff dimensions
of Λ and Λ ∩ Ω∞ are almost surely constant, which can be shown analogously as explained in
[13, Section 1, Remark (C)].

3. Results

In this section, we summarize our results about branching random walks on free products and
present several explicit examples.

3.1. Main results

The first result describes how the structure of Λ gets richer when increasing the growth
parameter λ and that there are up to r = |I| possible phase transitions.

Theorem 3.1. Let λ ∈ (1, R]. Then P[Λ ∩ Ωi �= ∅] ∈ {0, 1}, and P[Λ ∩ Ωi �= ∅] = 1 if and
only if ξi(λ) > 1. More precisely:

(1) if ξi(λ) � 1, then ∅ � Λ ⊆ Ω∞,
(2) if ξi(λ) > 1, then ∅ � Ω∞ ∩ Λ ⊂ Λ with Λ ∩ Ωi �= ∅ and |Λ ∩ Ωi| = ∞.

Remark 3.2. In the case where one of the free factors is an infinite amenable group its
ends do not appear in Λ. In other words, if Ri = 1 is the radius of convergence of Gi(ei, ei|z),
then ξi(λ) � 1 for all λ ∈ (1, R]; see [25, Lemma 17.1a]. Consequently, no ends in Ωi contribute
to Λ, that is, Λ ∩ Ωi = ∅ almost surely.

We illustrate the above described behaviour in the following two examples:

Example 3.3. Consider Γ = Zd1 ∗ Zd2 and let μ1 and μ2 be two symmetric probability
measures on Zd1 and Zd2 . Due to Kesten’s amenability criterion, we have R1 = R2 = 1.
Consequently, Λ ⊆ Ω∞ almost surely, for all λ � R.

Example 3.4. Consider Γ = Γ1 ∗ Γ2, where Γ1 and Γ2 are non-amenable groups, and let
μi define a symmetric random walk on Γi for i ∈ {1, 2}. Due to the non-amenability, we have
that R1, R2 > 1 and Gi(ei, ei|Ri) <∞. In the case where

α1 =
R1G1(e1, e1|R1)

R1G1(e1, e1|R1) +R2G2(e2, e2|R2)
,

we obtain by Woess [25, Lemma 17.1] that ξ1(R), ξ2(R) > 1. Therefore, there are numbers
λ1, λ2 ∈ (1, R) with ξ1(λ1) = ξ2(λ2) = 1 which leads to phase transitions at λ1 and λ2.
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Now we state our first main result.

Theorem 3.5. Suppose that ν has a finite second moment. Then the box-counting
dimension of Λ, Λ ∩ Ω∞, respectively, exists and equals the Hausdorff dimension of Λ, Λ ∩ Ω∞,
respectively. Furthermore:

BD(Λ) = BD(Λ ∩ Ω∞) = HD(Λ) = HD(Λ ∩ Ω∞) =
log z∗

logα
,

where z∗ is the smallest real positive number with

∑

i∈I

F+
i (λ|z∗)

1 + F+
i (λ|z∗) = 1. (3.1)

Remark 3.6. The proof of Theorem 3.5 directly applies to BRW on free products of finite
graphs and a corresponding result holds verbatim; see, for example [25, Section 9.C], for a
formal definition of general free products and random walks on them.

As a first consequence, we obtain that only infinite words contribute to the dimension of Λ.

Corollary 3.7. For i ∈ I, HD(Λ ∩ Ωi) < HD(Λ ∩ Ω∞).

For i ∈ I, m ∈ N and z ∈ C, we define Si(m) := |{x ∈ Γi | l(x) = m}| and

S+
i (z) :=

∑

m�1

Si(m)zm.

Analogously to Theorem 3.5, we can prove existence of the box-counting dimension of the
whole boundary Ω and express the dimension as the solution of a functional equation.

Theorem 3.8. The box-counting dimensions of Ω and Ω∞ exist and satisfy

BD(Ω) = BD(Ω∞) = HD(Ω) = HD(Ω∞) =
log z∗S
logα

,

where z∗S is the smallest real positive number with

∑

i∈I

S+
i (z∗S)

1 + S+
i (z∗S)

= 1. (3.2)

Analogously to Corollary 3.7, we obtain that the Hausdorff dimension of Ω arises only from
the ends in Ω∞.

Corollary 3.9. For all i ∈ I, HD(Ωi) < HD(Ω∞).

Beyond these first consequences of Theorems 3.5 and 3.8, the expressions for the Hausdorff
dimensions allow us to study first regularity properties. For any fixed free product Γ, let us
consider the function

Φ : [1,∞) −→ R : λ �−→ HD(Λ),
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which assigns to every value λ the Hausdorff dimension of Λ of a BRW with growth parameter
λ. The limit case λ = 1 corresponds to the degenerate case of a non-BRW; in this case, the
Hausdorff dimension is just zero.

Theorem 3.10. The function Φ(λ) has the following properties:

(1) Φ(λ) is strictly increasing on [1, R], Φ(1) = 0 and Φ(λ) = HD(Ω) for all λ > R;
(2) Φ(λ) is continuous in [1,∞) \ {R} and continuous from the left at λ = R with

Φ(R) � 1
2HD(Ω),

(3) Φ(λ) has the following behaviour as λ ↑ R:

Φ(R)− Φ(λ) ∼
{
C1 · (R− λ) if G′(R) <∞,

C2 ·
√
R− λ if G′(R) = ∞

for suitable constant C1 and C2, respectively.

Remark 3.11. The last theorem states that HD(Λ) does not exceed HD(Ω)/2 unless the
BRW is recurrent. We always assumed the random walk to be of nearest-neighbour type.
However, we feel confident that our techniques work well in the case of finite range random
walks and that the equality HD(Λ) � HD(Ω)/2 does not depend on the choice of the metric.
This type of phenomenon was already conjectured for the contact process on the homogeneous
tree in [17]. We also refer to Section 8 in [18] for a discussion how the value 1

2 can be explained
through the ‘backscattering principle’.

Remark 3.12. In [13], it was shown that HD(Λ) = HD(Ω)/2 only if λ = R and if the
underlying walk is a simple random walk. In our more general setting this is no longer true,
since the maximal Hausdorff dimension can also be attained by a non-simple random walk, see
Example 3.14. More generally, we conjecture that one has maximal dimension for the BRW
(with λ being the critical growth value). for every choice of α1 ∈ (0, 1). if we consider a general
free product Γ = Γ1 ∗ Γ2 with μ1 and μ2 governing positive recurrent random walks on the
single factors Γ1 and Γ2.

Remark 3.13. Recall that we always assume that the random walk on Γ is symmetric.
This assumption can be dropped for free products of finite groups/graphs. In this case, we
always have the crucial property F (e, x|R) < 1 for all x ∈ Γ \ {e} (compare with (2.2)). In
fact, if x = x1 . . . xm ∈ Γ \ {e}, then

F (e, x1 . . . xm|R) =
m∏

j=1

Fτ(xj)(eτ(xj), xj | ξτ(xj)(R)) < 1,

as ξi(R) < 1 due to Woess [25, Lemma 17.1, Theorem 9.22].

Theorem 3.5 allows explicit calculations in all cases where formulas for the involved
generating functions are known. In the following examples, we set the exponent of the metric
on Ω equal to 1

2 , that is, dΩ(·, ·) = 2−c(·,·).

Example 3.14. Consider the free product Γ = Γ1 ∗ Γ2 = (Z/3Z) ∗ (Z/2Z), where Z/3Z =
{e1, a, a2}, with supp(μ1) = {a, a2}. The required generating functions F (e, x|λ), x ∈ Γ×

∗ , may,
for example, be obtained by solving the finite systems of equations given in [24, Proposition 3c],
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Figure 2. Hausdorff dimension HD(Λ) of a BRW on (Z/3Z) ∗ (Z/2Z) in dependence of λ on the
x-axis.

and therefore HD(Λ) can be computed via Equation (3.1). Solving Equation (3.2) leads to
HD(Ω) = 1

2 . Figure 2 shows (with the help of numerical computation by Mathematica) the
graph of the function λ �→ HD(Λ) for simple random walk on (Z/3Z) ∗ (Z/2Z). Let us remark
that in this case the critical parameter R can be explicitly calculated by the formula given in
[25, (9.29),(3)].
Another interesting phenomenon occurs in this example. If μ1(a) = μ1(a

2) = 1
2 and if we

let α1 vary in the interval (0, 1) and denote by R(α1) the radius of convergence of G(e, e|z)
in dependence of α1, then we always obtain Φ(R(α1)) =

1
2HD(Ω), which can be verified by

explicit calculations with the help of Mathematica.

Example 3.15. We consider the free product of two infinite ‘ladders’ Z× (Z/2Z). We
set α1 = α2 = 1

2 and μ1((±1, 0)) = μ1((0, 1)) = μ2((±1, 0)) = μ2((0, 1)) =
1
3 . The functions

F1((0, 0), (z, a)|z) with (z, a) ∈ Z× Z/2Z can be computed by solving a system of equations
as is shown in [10, Section 7.2]. In order to compute the Hausdorff dimension of Λ one has to
solve, analogously to [9, Section 6.2]:

λ

2

ξ1(λ)

λ− ξ1(λ)
=

ξ1(λ)

1− (2ξ1(λ)/3)(F1((0, 0), (1, 0)|ξ1(λ)) + F1((0, 0), (−1, 0)|ξ1(λ))
+F1((0, 0), (0, 1)|ξ1(λ)))

.

In order to compute HD(Ω) we observe that S1(1) = 3 and S1(m) = 4, for m � 2. Hence,
S+
1 (z) = S+

2 (z) = 3z + 4z2/(1− z). This yields z∗S =
√
5− 2. Numerical evaluations then lead

to a picture qualitatively similar to Figure 2.

3.2. Free products of finite groups

In this subsection, we give a more explicit formula for the box-counting dimension with respect
to a slightly changed metric on the boundary in the case of free products of finite groups. In this
case, we have Ω = Ω∞. Throughout the whole subsection we do not need the assumption that
the random walks on the factors are symmetric. For any ω1 = x1x2 . . . , ω2 = y1y2 . . . ∈ Ω∞ with
ω1 �= ω2, we define the confluent ω1 ∧ ω2 of ω1 and ω2 as the word x1 . . . xk of maximal length
with xi = yi, for all 1 � i � k. If x1 �= y1, then ω1 ∧ ω2 := e. The metric on the boundary Ω∞ is
defined by

dfinΩ (ω1, ω2) := α‖ω1∧ω2‖,
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for any arbitrary but fixed α ∈ (0, 1). With respect to this metric on Ω∞, we can define

analogously to (2.12) and (2.13) the upper box-counting dimension BDfin(Ω′), the box-counting
dimension BDfin(Ω′) and the Hausdorff dimension HDfin(Ω′), for any Ω′ ⊆ Ω∞. We set
F+

i (λ) := F+
i (λ|1) and define the matrix M = (m(i, j))i,j∈I by

m(i, j) :=

{
F+

j (λ) if i �= j,

0 if i = j.

Since M is irreducible and has non-negative entries, the Perron–Frobenius eigenvalue exists
and is denoted by θ.
Furthermore, define the matrix D = (d(i, j))i,j∈I by d(i, j) := |Γj | − 1, if i �= j, and di,i := 0,

and denote by  its Perron–Frobenius eigenvalue. With this notation we obtain:

Corollary 3.16.

BDfin(Λ) = HDfin(Λ) = − log θ

logα
and BDfin(Ω) = HDfin(Ω) = − log 

logα
.

Let us remark that, in the case of Γ = Γ1 ∗ Γ2 with |Γ1| = |Γ2| <∞, we obtain the following
explicit formulas for the dimensions:

BDfin(Λ) = HDfin(Λ) = −
log
√
F+

1 (λ)F+
2 (λ)

logα

and

BDfin(Ω) = HDfin(Ω) = − log
√
(|Γ1| − 1)(|Γ2| − 1)

logα
.

Example 3.17. Consider Γ = (Z/3Z) ∗ (Z/2Z), where Z/3Z = {e1, a, a2} and Z/2Z =
{e2, b}. We choose μ(a) = p ∈ (0.1, 0.7), μ(a2) = q ∈ (0, 0.9− p) and μ(b) = 1− p− q. We set
α := 1

2 and λ = 1.005. Let us note that this choice of the parameters p and q lead to R � 1.005,
which can be verified by numerical evaluation. For instance, in [8, Section 3.6.1] the required
generating functions are computed. In Figure 3, we can see the behaviour of HDfin(Λ) with
λ = 1.005 in dependence of the parameters p and q. The Hausdorff dimension of the whole
space of ends is 0.5; compare with Example 3.14.

3.3. Free products by amalgamation of finite groups

An important generalization of free products are free products by amalgamation (of finite
groups). Let Γ1, . . . ,Γr,H, be finite groups such that each group Γi contains a subgroup Hi

that is isomorphic to H. Let φi : Hi → H be an isomorphism for each i ∈ {1, . . . , r}. Moreover,
let Si be a generating set of Γi and Ri its relations. The free product by amalgamation with
respect to the subgroup H is defined by

ΓH := Γ1 ∗H Γ2 ∗H . . . ∗H Γr

:= 〈S1, . . . , Sr | R1, . . . , Rn, φ
−1
j (φi(a)) = a ∀a ∈ Hi ∀i, j ∈ I〉.

For i ∈ I, the quotient Γi/Hi consists of all left co-sets of the form xiHi = {xih | h ∈ Hi},
where xi ∈ Γi. We fix a set of representatives Ri := {gi,1 = ei, gi,2, . . . , gi,ni

} for the elements
of Γi/Hi, that is, for each yi ∈ Γi, there is a unique gi,k ∈ Ri with yi ∈ gi,kHi. We write
τ̂(x) = i, if x ∈ Ri \ {ei}. The amalgam ΓH consists of all finite words of the form

x1x2 . . . xnh (3.3)
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Figure 3. Hausdorff dimension HD(Λ) of the BRW on (Z/3Z) ∗ (Z/2Z) with λ = 1.005 in
dependence of p and q.

with n ∈ N0, xi ∈
⋃

j∈I Rj \ {ej} and h ∈ H such that τ̂(xi) �= τ̂(xi+1). Here, without loss of

generality, we may identify h with φ−1
1 (h), and e denotes again the empty word. Let Ω be the set

of all ends of ΓH , which consists of all infinite words of the form w1w2 . . . ∈ (
⋃

i∈I Ri \ {ei})N
such that τ̂(wi) �= τ̂(wi+1), for all i ∈ N. For any ω1 = x1x2 . . . , ω2 = y1y2 . . . ∈ Ω with ω1 �= ω2,
we define again the confluent ω1 ∧ ω2 of ω1 and ω2 as the word x1 . . . xk of maximal length
with xi = yi, for all 1 � i � k. If x1 �= y1, then ω1 ∧ ω2 := e. Again we can define a metric on
the boundary Ω:

d
(H)
Ω (ω1, ω2) := α‖ω1∧ω2‖,

for any α ∈ (0, 1). With respect to this metric on Ω, we can define analogously to (2.12) and

(2.13) the upper box-counting dimension BD(H)(Ω′), the box-counting dimension BD(H)(Ω′)
and the Hausdorff dimension HD(H)(Ω′) for any Ω′ ⊆ Ω.
Suppose we are given symmetric probability measures μi on the groups Γi and numbers

αi > 0 such that
∑

i∈I αi = 1. The random walk on ΓH is then governed by

μ(x) :=

⎧
⎪⎨
⎪⎩

αiμi(x) if x ∈ Γi \Hi,∑
i∈I αiμi(φ

−1
i (φ1(x))) if x ∈ H1,

0 otherwise.

For gi ∈ Ri, denote by TgiH the stopping time of the first visit of the set giHi. We introduce
the following generating functions:

FH(gh|z) :=
∑

n�0

P[TgH = n,Xn = gh | X0 = e] zn,

where g ∈ ⋃i∈I Ri \ {ei}, h ∈ Hi and z ∈ C. By symmetry we have FH(gh|z) � F (e, gh|z) < 1;
compare with (2.2). Conditioning on the first step of the random walk, we obtain

FH(gh|z) = μ(gh)z +
∑

g0∈Γτ(g)\gHτ(g)

μ(g0)zFH(g−1
0 gh|z)

+
∑

i∈I\{τ(g)}

∑

g0∈Γi

μ(g0)z
∑

h0∈Hi

FH(g−1
0 h0|z)FH(h−1

0 gh|z). (3.4)
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Since there are only finitely many functions FH(·|z), one can compute FH(·|z) by solving the
finite system of quadratic equations (3.4). We also define

F (H)
i (z) :=

∑

g∈Ri\{ei},
h∈Hi

FH(gh|z)

and the matrix N = (n(i, j))i,j∈I with entries

n(i, j) :=

{
F (H)

j (λ) if i �= j,

0 if i = j.

We denote by θH the Perron–Frobenius eigenvalue of N . Furthermore, we denote by H the
Perron–Frobenius eigenvalue of the matrix DH = (dH(i, j))i,j∈I , which is defined by

dH(i, j) :=

{
[Γj : Hj ]− 1 if i �= j,

0 if i = j.

Finally, we can state the following formulas for the dimensions:

Corollary 3.18.

BD(H)(Λ) = HD(H)(Λ) = − log θH
logα

and BD(H)(Ω) = HD(H)(Ω) = − log H
logα

.

Example 3.19. Consider the amalgam (Z/6Z) ∗Z/2Z (Z/6Z). Hence, let Γ1 = 〈a | a6 = e1〉,
Γ2 = 〈b | b6 = e2〉, and H = 〈c | c2 = eH〉, where eH is the identity in H. The isomorphisms are
defined through φ1(a

3) = c = φ2(b
3). Eventually,

(Z/6Z) ∗Z/2Z (Z/6Z) = 〈a, b | a6 = b6 = e, a3 = b3〉.
We set μ1(a) = μ1(a

5) = μ2(b) = μ2(b
5) = 1

2 , α1 = α2 = 1
2 and consider the distance with base

α = 1
2 . The system (3.4) becomes then

FH(a|z) = z

4
+
z

4
FH(a2|z) + z

2
(FH(a|z)2 + FH(a2|z)2),

FH(a2|z) = z

4
FH(a|z) + z

2
(FH(a|z)FH(a2|z) + FH(a2|z)FH(a|z)).

Observe that FH(a|z) = FH(a5|z) and FH(a2|z) = FH(a4|z). The Hausdorff dimension of the
BRW is then given by

HD(H)(Λ) =
log(2FH(a|λ) + 2FH(a2|λ))

log 2
,

while HD(H)(Ω) = 1. The behaviour of HD(H)(Λ) in function of λ is qualitatively the same as
in Figure 2.

4. Proofs

4.1. Proof of Theorem 3.1

We first introduce some preliminary results on BRW. Using the description of a tree-indexed
random walk it is easy to see that the distribution of the location of some particle in generation
n has the same distribution as the location of a (non-branching) random walk on Γ after n
steps, see [2].
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Lemma 4.1. Let v ∈ T with |v| = n, for some n � 1. Then,

P[Sv = y] = P [Xn = y] = μ(n)(y).

The following lemma will be used several times in our proofs. It gives a formula for the
expected number of elements frozen in a set M , in the coloured branching random walk. This
observation can be found for example in [21] or [13, Lemma 1]. Nevertheless, we give a short
proof since it is one of the essential points where the generating function F (·, ·|z) intervenes.

Lemma 4.2. For any M ⊆ Γ, we have E[Z∞(M)] = F (e,M |λ).

Proof. For any v ∈ T , let 〈v0 = r, v1, . . . , v|v| = v〉 be the unique geodesic from r to v. Now,
we define, for any n ∈ N,

Fr(n)v :=

{
1 if v ∈M and vi /∈M ∀i � n− 1,

0 otherwise.

In words, Fr(n)v is the number of particles being frozen in v at time n. Using the well-known
fact that E[|Tn|] = λn, we obtain

E

[∑

v∈Tn

Fr(n)v

]
=
∑

k�1

E

[ ∑

v∈Tn

Fr(n)v

∣∣∣∣∣ |Tn| = k

]
P[|Tn| = k]

=
∑

k�1

P[Xn ∈M,∀ m � n− 1 : Xm /∈M ] k P[|Tn| = k]

= P[Xn ∈M,∀ m � n− 1 : Xm /∈M ]λn.

Summing over n finishes the proof.

The proof of Theorem 3.1 splits up into the proofs of the following Propositions 4.3–4.5.
Recall from the definition of Ω

(0)
i and Ωi that Ω

(0)
i ⊆ Ωi ⊆ Ω.

Proposition 4.3. Ends of Ω
(0)
i occur in Λ with positive probability if and only if ξi(λ) > 1,

that is, P[Λ ∩ Ω
(0)
i �= ∅] > 0 if and only if ξi(λ) > 1.

Proof. It is convenient to work with the coloured BRW. In fact, the idea of the proof is to
define an embedded Galton–Watson process that counts the number of particles that hit Γi,
where ξi(λ) will be the growth parameter.

We start the BRW with one particle in e = ei. The first generation of the branching process
is formed by those particles that are frozen in Γ×

i . Let us check that the number of those
particles is almost surely finite. Since μ has finite support, every particle visiting Γ×

i has to
pass through supp(μi). Hence, Z∞(Γ×

i ) = Z∞(supp(μi)), which is almost surely finite since the
BRW is transient. The second generation of the branching process is constructed as follows. For
each particle frozen in some x ∈ Γ×

i , we start a new BRW where each particle when reaching
Γi \ {x} is frozen. Now, the second generation of the branching process consists of all these
new frozen particles. Further generations are constructed inductively in the same way. Let ψn

be the number of particles of this process at generation n. Obviously, (ψn)n�0 turns out to be
a Galton–Watson process with mean

mi = E[Z∞(supp(μi))] = F (e, supp(μi)|λ) = ξi(λ).
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Hence, this Galton–Watson process survives with positive probability if and only if ξi(λ) > 1;
see, for example, [12, Theorem 6.1]. As a consequence, we have that Γi is visited infinitely

many times with positive probability if ξi(λ) > 1. That is, P[Λ ∩ Ω
(0)
i �= ∅] > 0 if ξi(λ) > 1. On

the other hand, ξi(λ) � 1 implies that Γi is almost surely visited only for a finite number of

times and hence P[Λ ∩ Ω
(0)
i �= ∅] = 0.

The next step is to show |Λ ∩ Ωi| = ∞ if ξi(λ) > 1.

Proposition 4.4. If ξi(λ) > 1, then there are almost surely infinitely many cosets xΓi,
where the branching random walk accumulates. That is, the set

{x ∈ Γ | τ(x) �= i, xΩ
(0)
i ∩ Λ �= ∅}

is almost surely infinite.

Proof. We construct the family tree T of the BRW with branching distribution ν in
the following way. We start with one geodesic line v∞ = 〈r, v1, v2, . . .〉 and attach to each
of the vertices independent copies of Galton–Watson trees where the distribution of the
first generation is ν̃(k) = ν(k + 1) for k � 0 and ν for the other generations. The trajectory
along v∞ has the same distribution as a non-BRW, compare with Lemma 4.1. Hence, Svn

converges almost surely to a random infinite word g∞ = g1g2 . . . ∈ Ω∞ as n→ ∞; here, we
mean convergence in the sense that the block length of the common prefix of the location of Svn

and g∞ tends to infinity. Moreover, we define the random indices n1 := min{m ∈ N | gm ∈ Γi},
and recursively nk := min{m ∈ N | m > nk−1, gm ∈ Γi}. Note that these indices are almost
surely finite; see, for example, [9, Section 7.I]. Denote by v̂k the first vertex in v∞ with
v̂k = g1 . . . gnk

. Let Bk be the set of offspring of v̂k = vs different from vs+1 and denote by
Λv the set of accumulation points of the descendants of some v ∈ T . Moreover, we define Ak

as the event that Λv ∩ SvΩ
(0)
i �= ∅ for some v ∈ Bk with τ(v) = i. Observe that the events Ak

are i.i.d. since transitivity yields P[Λv ∩ SvΩ
(0)
i �= ∅] = P[Λ ∩ Ω

(0)
i �= ∅], for every v ∈ T . Now,

due to Proposition 4.3 and the fact that

P [Bk �= ∅,∃v ∈ Bk : τ(Sv) = i] = (1− ν(1)) · P[v ∈ Bk : τ(Sv) = i | Bk �= ∅]
� (1− ν(1)) · αi > 0,

we have P [Ak] � c for all k and some c > 0. Eventually, the Lemma of Borel–Cantelli yields
that an infinite number of events Ak occurs almost surely.

In order to complete the proof of Theorem 3.1 it remains to treat the critical and subcritical
cases.

Proposition 4.5. If ξi(λ) � 1, then P[Λ ∩ Ωi �= ∅] = 0.

Proof. Due to Proposition 4.3, we have that P[Λ ∩ xΩ(0)
i �= ∅] = 0, for all x ∈ Γ: indeed,

each x ∈ Γ is almost surely visited finitely often; each particle, which hits x, starts its own
BRW at x and each of these BRW hits xΩ

(0)
i only finitely often with probability 1. Since

Λ ∩ Ωi =
⊎

x∈Γ:τ(x) 	=i

(Λ ∩ xΩ(0)
i )
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we conclude

P[Λ ∩ Ωi �= ∅] =
∑

x∈Γ:τ(x) 	=i

P[Λ ∩ xΩ(0)
i �= ∅] = 0.

4.2. Proof of Theorem 3.5 and Corollary 3.7

First, we show that the proposed formula for the dimension is an upper bound for the upper
box-counting dimension; see Proposition 4.9 in Section 4.2.1. In the second step, we show that
the proposed formula is also a lower bound for the Hausdorff dimension of Λ; see Corollary 4.14
in Subsection 4.2.2. Finally, this will imply the proof of Theorem 3.5 and Corollary 3.7.

4.2.1. Upper bound for the box-counting dimension. In this part, we show that log z∗/ logα
is an upper bound for BD(Λ). To this end, we introduce the following notation: for n ∈ N, we
denote by

Hn := {x ∈ Γ | l(x) = n, x is visited by the BRW}
the set of visited sites at graph distance n. An important observation is that, for each end
ω ∈ Λ and every m ∈ N, the branching random walk has to visit at least one vertex xω ∈ Hm,
where xω is in the ω-component of X \Bm−1. Thus,

Λ ⊆
⋃

x∈Hm

{ω ∈ Ω | x lies in the ω-component of X \Bm−1}.

This implies that Λ can be covered by |Hm| balls of radius αm. Our strategy for the upper
bound is to study the limit behaviour of E|Hm|1/m first and then the resulting limit behaviour
of |Hm|1/m as m→ ∞; see Lemma 4.8. This will eventually lead to the proposed upper bound
for BD(Λ); see Proposition 4.9.

Observe that x ∈ Hm if and only if Z∞(x) � 1. Therefore, by Lemma 4.2,

1 � E|Hm| �
∑

x∈Γ:l(x)=m

EZ∞(x) =
∑

x∈Γ:l(x)=m

F (e, x|λ) =: Hm.

We have that Hm+n � HmHn and hence Fekete’s lemma implies that limn→∞H
1/m
m exists.

Recall the definitions of F(λ|z) =∑m�0Hm zm, F+
i (λ|z) and Fi(λ|z) in (2.8)–(2.10). Due to

(2.11), we obtain the equation

Fi(λ|z) = F+
i (λ|z)(F(λ|z)−Fi(λ|z)),

or equivalently

Fi(λ|z) = F(λ|z) F+
i (λ|z)

1 + F+
i (λ|z) .

Hence,

F(λ|z) = 1 +
∑

i∈I
Fi(λ|z) = 1 + F(λ|z)

∑

i∈I

F+
i (λ|z)

1 + F+
i (λ|z) ,

or equivalently

F(λ|z) = 1

1−∑i∈I(F+
i (λ|z)/(1 + F+

i (λ|z))) . (4.1)

This equation holds, for every z ∈ C with |z| < R(F), where R(F) is the radius of convergence
of F(λ|z). Since

1 � lim
m→∞

H1/m
m = 1/R(F),

we have

R(F) � 1. (4.2)
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In order to determine R(F), we have to find (by Pringsheim’s Theorem) the smallest singularity
point on the positive x-axis of F(λ|z). This smallest singularity point is either one of the radii
of convergence R(F+

i ) of the functions F+
i (λ|z) or the smallest real positive number z∗ with

∑

i∈I

F+
i (λ|z∗)

1 + F+
i (λ|z∗) = 1. (4.3)

The next two lemmas imply that in fact R(F) = z∗.

Lemma 4.6. We have R(F) ∈ (0, 1).

Proof (This short proof was suggested by the referee). The fact that R(F) > 0 follows from
the fact that the Cayley graph grows not faster than exponentially. To see that R(F) < 1 recall
that Equation (2.3) states that the generating functions F (e, x|z) and G(e, x|z) are comparable,
that is, G(e, x|λ) = F (e, x|λ)G(e, e|λ). Hence, for some C > 0, we have, for all m ∈ N, that

∑

x:l(x)�m

F (e, x|λ) � C
∑

x:l(x)�m

G(e, x|λ).

The sum on the right-hand side is the expected number of visits of the BRW in the ball
Bm, the set of vertices x ∈ Γ with l(x) � m. As we assumed the random walk to be of nearest-
neighbour type all particles up to generationm must be contained in the ball Bm. The expected
population size at time m is just λm which eventually implies that Hm grows exponentially
fast, since limm→∞H

1/m
m exists and is at least 1.

Lemma 4.7. For all i ∈ I, R(F) = z∗ < R(F+
i ).

Proof. Let us first consider the case ξi(λ) < 1, where we obtain

F+
i (λ|1) =

∑

x∈Γ×
i

Fi(ei, x|ξi(λ))

=
1

Gi(ei, ei|ξi(λ))
∑

x∈Γi

Gi(ei, x|ξi(λ))− 1

=
1

Gi(ei, ei|ξi(λ))(1− ξi(λ))
− 1 <∞. (4.4)

Hence, ξi(λ) < 1 implies R(F+
i ) � 1 > R(F). In the case of ξi(λ) � 1, the claim follows from

the following inequality:

1

R(F)
= lim sup

n→∞

⎛
⎜⎜⎝
∑

x∈Γ:
l(x)=n

F (e, x|λ)

⎞
⎟⎟⎠

1/n

> lim sup
n→∞

⎛
⎜⎜⎝
∑

x∈Γ1:
l(x)=n

F (e, x|λ)

⎞
⎟⎟⎠

1/n

=
1

R(F+
1 )
. (4.5)

In order to prove (4.5) we define, for n ∈ N,

an := log
∑

x∈Γ1:
l(x)=n

F (e, x|λ).

We have that an � 0, since
∑

x∈Γ1:
l(x)=n

F (e, x|λ) =
∑

x∈Γ1:
l(x)=n

F1(e1, x|ξ1(λ)) �
∑

x∈Γ1:
l(x)=n

F1(e1, x|1) � P[TS1(n) <∞] = 1,
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where S1(n) := {x ∈ Γ1 | l(x) = n} and TM is the stopping time for the random walk on Γ1

(governed by μ1) of the first visit of a set M ⊆ Γ1. Furthermore, (an)n∈N is a subadditive
sequence, that is, am + an � am+n for allm,n ∈ N. By Fekete’s Lemma, the limit limn→∞ an/n
exists and is equal to infn∈N an/n, hence

lim
n→∞

⎛
⎜⎜⎝
∑

x∈Γ1:
l(x)=n

F (e, x|λ)

⎞
⎟⎟⎠

1/n

=
1

R(F+
1 )

= inf
n∈N

⎛
⎜⎜⎝
∑

x∈Γ1:
l(x)=n

F (e, x|λ)

⎞
⎟⎟⎠

1/n

.

The last equation implies that
⎛
⎜⎜⎝
∑

x∈Γ1:
l(x)=n

F (e, x|λ)

⎞
⎟⎟⎠

1/n

� 1

R(F+
1 )

=: q1 ∀n ∈ N.

Observe that
∑

x∈Γ2:l(x)=1 F (e, x|λ) � ξ2(λ). Then, for all n ∈ N:

Hn =
∑

x∈Γ:
l(x)=n

F (e, x|λ) =
n∑

k=1

∑

x=x1...xk∈Γ:
l(x)=n

k∏

j=1

F (e, xj |λ)

�
�n/2�∑

k=1

∑

x1,...,xk∈Γ1:
l(x1)+...l(xk)+k=n

ξ2(λ)
k

k∏

j=1

F (e, xj |λ)

�
�n/2�∑

k=1

∑

n1,...,nk∈N:
n1+···+nk+k=n

qn1
1 ξ2(λ)q

n2
1 ξ2(λ)q

n3
1 . . . ξ2(λ)q

nk
1 ξ2(λ)

�
�n/2�∑

k=1

qn−k
1 ξ2(λ)

k

(
n− 2k + k − 1

k − 1

)
.

In the last inequality the binomial coefficients arise as follows: we think of counting the number
of possibilities of placing n− k (undistinguishable) balls into k urns, where each urn should at
least contain one ball. We note that n− k − 2 � �n/2� − 1, for all k � �n/2� − 1. Therefore,
with the help of the Binomial theorem we obtain:

Hn � qn1

�n/2�−1∑

k=0

(
ξ2(λ)

q1

)k+1(
n− k − 2

k

)

� qn−1
1 ξ2(λ)

�n/2�−1∑

k=0

(
ξ2(λ)

q1

)k (�n/2� − 1

k

)
� qn−1

1 ξ2(λ)

(
1 +

ξ2(λ)

q1

)�n/2�−1

.

Taking nth roots on both sides and letting n→ ∞ yields

lim inf
n→∞

⎛
⎜⎜⎝
∑

x∈Γ:
l(x)=n

F (e, x|λ)

⎞
⎟⎟⎠

1/n

� 1

R(F+
1 )

√
1 +

ξ2(λ)

q1
>

1

R(F+
1 )
. (4.6)

The next lemma gives an almost sure upper bound for |Hm|1/m as m→ ∞. Its proof is a
straightforward application of Markov’s Inequality and the Lemma of Borel–Cantelli.
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Lemma 4.8.

lim sup
m→∞

|Hm|1/m � 1

z∗
almost surely.

Eventually, we obtain the desired upper box-counting dimension.

Proposition 4.9.

BD(Λ) � log z∗

logα
.

Proof. Denote by N(αm), the number of balls of radius of at most αm needed to cover
Λ. Then, for any ε > 0, N(αm) � |Hm| � (1/z∗ + ε)m almost surely for sufficiently large m.
Therefore,

BD(Λ) = lim sup
m→∞

− logN(αm)

logαm
� lim sup

m→∞
− log(1/z∗ + ε)m

logαm
= − log(1/z∗ + ε)

logα
.

Letting ε→ 0 proves the claim.

4.2.2. Lower bound for Hausdorff dimension. In this section, we will show that log z∗/ logα
is also a lower bound for the Hausdorff dimension of Λ. From this, we may then conclude
existence of the box-counting dimension since HD(Λ) � BD(Λ) � BD(Λ). The main idea of
the proof follows [13]. This idea† is to construct a sequence of embedded Galton–Watson trees
τr in the BRW such that the limit set Λτr of the Galton–Watson trees are subsets of the limit
set Λ, see Section 6.3 in [13]. As r goes to infinity, we will have that HD(Λτr ) → HD(λ).
This approximation property relies mainly on the facts that particles travel essentially along
geodesics segments and that limit sets of multi-type Galton–Watson trees are well understood.
Both facts hold still true for free products of finite groups and the proof of the lower bound
is analogous to the one for free groups in [13], albeit technically more involved. The case of
infinite factors need some extra care, since in this case particles do not necessarily travel along
geodesics and infinite-type Galton–Watson processes are not so easy to handle. To bypass these
difficulties, we approximate the infinite factors by increasing sequence of finite subgraphs. These
subgraphs X (d)

i are the subgraphs induced by the balls Bi(d) := {y ∈ Γi | l(y) � d}, d � 1.
Letting d→ ∞ will give the optimal bound log z∗/ logα.
We add an additional vertex † to X (d)

i , the ‘tomb’, such that all edges in Xi exiting Bi(d)

now lead to the tomb. The random walk (Y
(i,d)
n )n∈N0

on X (d)
i behaves like the random walk on

Γi, with the exception that a particle leaving Bi(d) dies. We now build the free product X (d)

from the X (d)
i , whose vertices are given by the set

{
x1 . . . xn ∈ Γ |n ∈ N, xj ∈

⋃

i∈I
X (d)

i \ {ei, †}, xj ∈ X (d)
i ⇒ xj+1 /∈ X (d)

i

}
∪ {e, †},

where † symbolizes the tomb. We identify x ∈ X (d) with the corresponding element in Γ.
Analogously to Section 2.1, we lift the random walks on the graphs X (d)

i to a random walk

(X
(d)
n )n∈N0

on X (d) and define the associated BRW. We use the same notation (for Green
functions, generating functions, etc.) as for the random walk on Γ itself but for reason of
distinguishing we add superscripts ‘(d)’, that is, we write, for example, G(d)(x, y|z) for the

†In this section, the parameter r is not identified with |I| but is used as a parameter of the Galton–Watson
trees τr as in [13].
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corresponding Green function of the random walk on X (d). All involved generating functions
on X (d) have radii of convergence of at least R.
For any x, y ∈ Γ, we define x : y to be the set of vertices w ∈ Γ such that there is a geodesic

from x to y which passes through w. For u ∈ Γ, d(u, x : y) is defined as the minimal distance
with respect to the graph metric of u to any element of x : y. In the case of the coloured BRW
on X (d), let Z

(d)
∞ (y|x) be the overall number of blue particles arriving and freezing at y ∈ X (d)

under the assumption that the BRW is started with one blue particle at x. For r ∈ N, we write
Z

(d)
∞,r(y|x) for the overall number of particles counted in Z

(d)
∞ (y|x) whose trail remain within

distance r to a geodesic from x to y. In other words, in all sites u with d(u, x : y) > r every
blue particle is coloured red. In the following, we set x0 := x−1

1 , for any x = x1 . . . xm ∈ X (d).
The proofs of the following two lemmas are similar to the ones of Lemma 4 and Proposition 7
in [13] and are therefore omitted.†

Lemma 4.10.

lim
r→∞

inf
x=x1...xm∈X (d)

(∏m
j=1 EZ

(d)
∞,r(x1 . . . xj |x1 . . . xj−1)

EZ(d)
∞ (x|e)

)1/l(x)

= 1.

For x ∈ X (d), we define the event E(d)(x) that among the particles counted in Z
(d)
∞ (x|e) there

is at least one particle whose trail has not entered Γ×
1 and enters the set

{y ∈ X (d) | l(y) = l(x)}

first at x. Obviously, Z
(d)
∞ (x|e) � 1 on the event E(d)(x) and hence P[E(d)(x)] � EZ(d)

∞ (x|e).

Lemma 4.11.

lim
k→∞

⎛
⎜⎝ min

x=x1...xm∈X (d):
m∈N,x1 /∈Γ1,l(x)=k

P[E(d)(x)]

EZ(d)
∞ (x|e)

⎞
⎟⎠

1/k

= 1.

Analogously to (2.9) and (2.10), we define, for i ∈ I and d ∈ N,

L(d)+
i (λ|z) :=

∑

x∈Γ×
i

L(d)(e, x|λ) zl(x) =
∑

x∈Γ×
i

L
(d)
i (ei, x|ξ(d)i (λ))zl(x),

L(d)
i (λ|z) :=

∑

n�1

∑

x=x1...xn∈X (d):
τ(x1)=i

L(d)(e, x|λ) zl(x)

= L(d)+
i (λ|z)

⎛
⎝1 +

∑

j∈I\{i}
L(d)
j (λ|z)

⎞
⎠ . (4.7)

Writing L(d)(λ|z) := 1 +
∑

i∈I L(d)
i (λ|z), we obtain analogously to Equation (4.1):

L(d)(λ|z) = 1

1−∑i∈I(L
(d)+
i (λ|z)/(1 + L(d)+

i (λ|z)))
.

†The reader may find all the details in the arxiv.org version (preprint) of this paper.
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Since every function L(d)+
i (λ|z) is convergent and strictly increasing, for all z � 0, there is

some unique z∗d,L > 0 such that
∑

i∈I L(d)+
i (λ|z∗d,L)/(1 + L(d)+

i (λ|z∗d,L)) = 1. The radius of

convergence of L(d)(λ|z) is then given by z∗d,L.
We define for k ∈ N

S∗
k := {x1 . . . xs ∈ X (d) | s ∈ N, l(x) = k, x1 /∈ Γ1, xs ∈ Γ1}.

Since we excluded the case |I| = 2 = |Γ1| = |Γ2|, we have that S∗
2 �= ∅ and S∗

3 �= ∅. Therefore,
S∗
k �= ∅ for all 2 � k ∈ N.

Lemma 4.12.

lim sup
k→∞

⎛
⎝∑

x∈S∗
k

P[E(d)(x)]

⎞
⎠

1/k

=
1

z∗d,L
.

Proof. By Lemma 4.11, we have P[E(d)(x)] � (1− ε)kEZ(d)
∞ (x|e) uniformly for all x with

l(x) = k, if k is large enough. Recall also P[E(d)(x)] � EZ(d)
∞ (x|e). Thus, it is sufficient to prove

lim sup
k→∞

⎛
⎝∑

x∈S∗
k

EZ(d)
∞ (x|e)

⎞
⎠

1/k

=
1

z∗d,L
.

Since
∑

x∈S∗
k

EZ(d)
∞ (x|e) =

∑

x∈S∗
k

F (d)(e, x|λ) =
∑

x∈S∗
k

G(d)(e, e|λ)
G(d)(x, x|λ)L

(d)(e, x|λ)

and 1 � G(d)(x, x|λ) � G(x, x|λ) = G(e, e|λ) <∞, we have

lim sup
k→∞

⎛
⎝∑

x∈S∗
k

L(d)(e, x|λ)

⎞
⎠

1/k

= lim sup
k→∞

⎛
⎝∑

x∈S∗
k

EZ(d)
∞ (x|e)

⎞
⎠

1/k

. (4.8)

To determine the left-hand side of (4.8), we define further generating functions:

L(d)
¬1,1(λ|z) :=

∑

n�2

∑

x=x1...xn∈X (d):
x1 /∈Γ×

1 ,xn∈Γ×
1

L(d)(e, x|λ) zl(x),

L(d)∗(λ|z) :=
∑

n�1

∑

x=x1...xn∈X (d):
x1,x2,...,xn /∈Γ1

L(d)(e, x|λ) zl(x).

For k ∈ N, the coefficient of zk in L(d)
¬1,1(λ|z) is just

∑
x∈S∗

k
L(d)(e, x|λ). Due to Equation (4.7),

we have

L(d)
1 (λ|z) = L(d)+

1 (λ|z) ·

⎛
⎝1 +

∑

i∈I\{1}
L(d)
i (λ|z)

⎞
⎠ ,

and hence the function L(d)
¬1 (λ|z) := 1 +

∑
i∈I\{1} L

(d)
i (λ|z) must have the same radius of

convergence as L(d)(λ|z), which is z∗d,L. Moreover, we have the following relations:

L(d)
¬1 (λ|z) = 1 + L(d)

¬1,1(λ|z)(1 + L(d)∗(λ|z)) + L(d)∗(λ|z),
L(d)
¬1,1(λ|z) � L(d)∗(λ|z) · L(d)+

1 (λ|z).
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Since L(d)
¬1,1(λ|z),L(d)∗(λ|z) � L(d)

¬1 (λ|z), the function L(d)
¬1,1 also has a radius of convergence

of z∗d,L.

Now we show that z∗d,L tends to z∗ as d→ ∞. Since z∗d,L is strictly decreasing as d grows
and due to

lim
d→∞

L(d)(e, x|λ) = L(e, x|λ) = F (e, x|λ) (4.9)

we have z∞ = limd→∞ z∗d,L � z∗. Assume now, for a moment, that z∗ < z∞. Then F+
i (λ|z∞) <

∞: indeed, assume that limd→∞ L(d)+
j (λ|z∞) = F+

j (λ|z∞) = ∞, for some j ∈ I. Then we get
the following contradiction:

1 = lim
d→∞

∑

i∈I

L(d)+
i (λ|z∗d,L)

1 + L(d)+
i (λ|z∗d,L)

� lim
d→∞

∑

i∈I

L(d)+
i (λ|z∞)

1 + L(d)+
i (λ|z∞)

> 1, (4.10)

since L(d)+
j (λ|z∞)/(1 + L(d)+

j (λ|z∞)) is arbitrarily close to 1, if d is large enough. Hence,

F+
i (λ|z∞) <∞. Now z∞ > z∗ yields the following contradiction:

1 = lim
d→∞

∑

i∈I

L(d)+
i (λ|z∗d,L)

1 + L(d)+
i (λ|z∗d,L)

� lim sup
d→∞

∑

i∈I

L(d)+
i (λ|z∞)

1 + L(d)+
i (λ|z∞)

=
∑

i∈I

F+
i (λ|z∞)

1 + F+
i (λ|z∞)

> 1.

which produces a contradiction. Thus,

lim
d→∞

z∗d,L = z∗. (4.11)

Let 2 � k ∈ N arbitrary, but fixed. Similar to [13] we define an embedded Galton–Watson
process of the BRW on the free product X (d). For n ∈ N0, we define generations gen(n) S∗

nk

and distinguished particles ζx associated to vertices x ∈ gen(n) inductively as follows:

(1) gen(0) := {e} consists of one particle ζe located at e.
(2) y ∈ S∗

(n+1)k belongs to gen(n+ 1) if and only if there exists a distinguished particle ζx

in gen(n) such that some of its offspring particles counted in Z
(d)
∞ (y|x) has a trail which

(a) remains in the set

Γ(x) := {y ∈ Γ | y has the form xw1 . . . ws with w1 /∈ Γ1, s � 1} ∪ {x},
(b) hits the set {w ∈ X (d) | l(w) = (n+ 1)k} first at y.

(3) The first particle hitting y ∈ S∗
(n+1)k becomes the distinguished particle ζy.

Let φn denote the number of particles in generation n. Since we have the same offspring
distribution at every x ∈ S∗

nk, (φn)n�0 defines a Galton–Watson process with mean Md,k.

Corollary 4.13.

lim sup
k→∞

M
1/k
d,k =

1

z∗d,L
.

Proof. The claim follows directly with Lemma 4.12 since Md,k =
∑

x∈S∗
k
P[E(d)(x)].

Applying Hawkes’ Theorem as in Corollary 7 in [13] together with Equation (4.11) yields
the following corollary.
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Corollary 4.14. We have HD(Λ ∩ Ω∞) � log z∗/logα.

Proof of Theorem 3.5. The following chains of inequalities summarize the previous results
and finish the proof of the theorem:

log z∗

logα
� HD(Λ) � BD(Λ) � BD(Λ) � log z∗

logα
,

log z∗

logα
� HD(Λ ∩ Ω∞) � BD(Λ ∩ Ω∞) � BD(Λ ∩ Ω∞) � BD(Λ) � log z∗

logα
.

Proof of Corollary 3.7. It is well known that the Hausdorff dimension of a countable union⋃
iBi of sets Bi ⊆ Ω equals the supremum of the Hausdorff dimensions of the single sets Bi.

Thus,

HD(Λ ∩ Ωi) = sup
x∈Γ:τ(x) 	=i

HD(Λ ∩ xΩ(0)
i ) � sup

x∈Γ:τ(x) 	=i

BD(Λ ∩ xΩ(0)
i ).

For arbitrary, but fixed x ∈ Γ with τ(x) �= i, denote by H(x)
m the vertices y ∈ xΓi with l(y) =

l(x) +m, which are visited by the BRW. Therefore,

E|H(x)
m | �

∑

y∈Γi:l(y)=m

F (e, xy|λ) = F (e, x|λ)
∑

y∈Γi:l(y)=m

F (e, y|λ).

Define

F+
x,i(λ|z) := F (e, x|λ)

∑

m�1

∑

y∈Γi:l(y)=m

F (e, y|λ) zm.

The radius of convergence of F+
x,i(λ|z) is obviously R(F+

i ). Therefore, Lemma 4.7 yields

lim supm→∞(E|H(x)
m |)1/m � 1/R(F+

i ) < 1/z∗. The rest follows analogously to the proofs of
Lemma 4.8 and Proposition 4.9.

4.3. Proof of Theorem 3.8 and Corollary 3.9

In order to prove Theorem 3.8, we can follow the argumentation of the proof of Theorem 3.5.
For this purpose, we define, for m ∈ N and i ∈ I,

Si(m) := |{x ∈ Γi | l(x) = m}|, S(m) := |{x ∈ Γ | l(x) = m}|,
S(i)(m) := |{x = x1 . . . xn ∈ S(m) | n ∈ N, x1 ∈ Γi}|.

To cover Ω by balls of radius αm we need at least S(m− 1) balls: indeed, for all x, y ∈ Γ, x �= y,
with l(x) = l(y) = m− 1, we can choose vx ∈ Γ×

∗ \ Γτ(x) and vy ∈ Γ×
∗ \ Γτ(y); then all balls of

the form B(ω1, α
m) and B(ω2, α

m), where xvx lies in the ω1-component of X \Bm−1 and yvy
in the ω2-component, do not intersect. Apparently, we need at most S(m) balls of radius αm

to cover Ω. Obviously, the same holds for covering Ω∞. We are now interested in the behaviour
of S(m)1/m as m→ ∞. We define

S+
i (z) :=

∑

m�1

Si(m) zm, Si(z) :=
∑

m�1

S(i)(m) zm,

S(z) :=
∑

m�0

S(m) zm = 1 +
∑

i∈I
S(i)(z).

Analogously to the computations in Section 4.2.1 (we just replace the functions F+
i (λ|z),

Fi(λ|z) and F(λ|z) by the functions S+
i (z), Si(z) and S(z)) we obtain

S(z) = 1

1−∑i∈I(S+
i (z)/(1 + S+

i (z)))
. (4.12)
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Lemma 4.15.

lim
m→∞

S(m)1/m =
1

z∗S
< 1,

where z∗S is the smallest positive real number with

∑

i∈I

S+
i (z∗S)

1 + S+
i (z∗S)

= 1.

Proof. Obviously, R(S) � R(F) < 1 since F (e, x|λ) < 1, for all x ∈ Γ \ {e}. The equation
R(S) = z∗S follows now analogously to the proof of Lemma 4.7. This yields

lim sup
m→∞

S(m)1/m =
1

z∗S
=

1

R(S) > 1.

Thus, it is sufficient to prove convergence of S(m)1/m as m→ ∞. By transitivity of Γ, we
have S(m)S(n) � S(m+ n), for all m,n ∈ N. Therefore, logS(m) + logS(n) � logS(m+ n),
that is, (logS(m))m∈N forms a subadditive sequence. By Fekete’s Lemma, (1/m) logS(m) =
logS(m)1/m converges to some constant s, that is, S(m)1/m converges to es, which must equal
1/z∗S .

Remark 4.16. One can show analogously to Lemma 4.7 that z∗S < R(S+
i ), where R(S+

i )
is the radius of convergence of S+

i (z). In particular, z∗S is the radius of convergence of S(z).

We can conclude by giving a formula for BD(Ω) and observing that the box-counting
dimension of Ω results from the dimension of Ω∞.

Proposition 4.17.

BD(Ω) = BD(Ω∞) =
log z∗S
logα

.

Proof. Recall the remarks at the beginning of this section concerning the minimal and
maximal number of balls needed to cover Ω∞. This yields

BD(Ω) � BD(Ω∞) � lim inf
m→∞

− logS(m− 1)

logαm

= lim inf
m→∞

− logS(m− 1)1/(m−1)

logα

m− 1

m
=

log z∗S
logα

.

Analogously,

BD(Ω∞) � BD(Ω) � lim sup
m→∞

− logS(m)

logαm
= lim sup

m→∞
− logS(m)1/m

logα
=

log z∗S
logα

.

Both inequality chains together yield the formula for the box-counting dimension.

Finally, we can prove the formula for the Hausdorff dimensions of Ω and Ω∞.
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Proof of Theorem 3.8. It is sufficient to show that HD(Ω∞) � log z∗S/logα. Define for d, k ∈
N and i ∈ I

S
(d)+
i (k) = |{x ∈ X (d)

i \ {†} | l(x) = k}|, S(d)(k) = |{x ∈ X (d) \ {†} | l(x) = k}|,
S
(d)
i (k) = |{x1 . . . xs ∈ X (d) \ {†} | s ∈ N, l(x) = k, x1 ∈ Γi}|,
S
(d)
¬1 (k) = |{x1 . . . xs ∈ X (d) \ {†} | s ∈ N, l(x) = k, x1 /∈ Γ1}|,

S
(d)
¬1,¬1(k) = |{x1 . . . xs ∈ X (d) \ {†} | s ∈ N, l(x) = k, x1, xs /∈ Γ1}|,
S
(d)
¬1,1(k) = |{x1 . . . xs ∈ X (d) \ {†} | s ∈ N, l(x) = k, x1 /∈ Γ1, xs ∈ Γ1}|.

The associated generating functions are given by

S(d)+
i (z) =

∑

k�1

S
(d)+
i (k) zk, S(d)(z) =

∑

k�0

S(d)(k) zk,

S(d)
i (z) =

∑

k�1

S
(d)
i (k) zk, S(d)

¬1 (z) =
∑

k�1

S
(d)
¬1 (k) z

k,

S(d)
¬1,¬1(z) =

∑

k�1

S
(d)
¬1,¬1(k) z

k, S(d)
¬1,1(z) =

∑

k�1

S
(d)
¬1,1(k) z

k.

Once again, we write

S(d)(z) =
1

1−∑i∈I(S
(d)+
i (z)/(1 + S(d)+

i (z)))

and obtain

S(d)+
2 (z)S(d)+

1 (z)S(d)
¬1,¬1(z)S

(d)+
1 (z) � S(d)

¬1,1(z) = S(d)
¬1 (z)− S(d)

¬1,¬1(z).

Thus, S(d)
¬1,1(z) and S(d)

¬1 (z) have the same radius of convergence. Moreover,

S(d)+
2 (z)S(d)

1 (z) � S(d)
¬1 (z) = S(d)(z)− S(d)

1 (z)− 1.

That is, S(d)
¬1,1(z) and S(d)(z) have the same radius of convergence, which is given by z∗d,S , the

smallest positive solution satisfying

1 =
∑

i∈I

S(d)+
i (z)

1 + S(d)+
i (z)

.

Since z∗d,S is strictly decreasing as d→ ∞, we have that limd→∞ z∗d,S = z∗S . This can be seen

by contradiction. Indeed, if limd→∞ z∗d,S = z∗∞,S > z∗S , then S+
i (z∗∞,S) <∞, for all i ∈ I (this

is proved analogously as explained in Equation (4.10)) and therefore

1 = lim
d→∞

∑

i∈I

S(d)+
i (z∗d,S)

1 + S(d)+
i (z∗d,S)

� lim
d→∞

∑

i∈I

S(d)+
i (z∗∞,S)

1 + S(d)+
i (z∗∞,S)

=
∑

i∈I

S+
i (z∗∞,S)

1 + S+
i (z∗∞,S)

> 1,

a contradiction. Thus,

(S
(d)
¬1,1(k))

1/k k→∞−−−−→ 1

z∗d,S

d→∞−−−→ 1

z∗S
.

We can embed a ‘deterministic’ Galton–Watson tree into the free product analogously to
Section 4.2.2, where each generation has exactly S

(d)
¬1,1(k) descendants. By Hawkes’s Theorem,

the Hausdorff dimension of the boundary of the embedded tree is bounded from below by
log z∗d,S/ logα, and therefore HD(Ω∞) � log z∗S/ logα.

Proof of Corollary 3.9. Analogously to the proof of Corollary 3.7 and by Remark 4.16, we
can use the property HD(∪iBi) = supi HD(Bi) for all countable unions of sets Bi ⊆ Ω in order
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to show that

HD(Ωi) = sup
x∈Γ:τ(x) 	=i

HD(xΩ
(0)
i ) � BD(Ω

(0)
i ) < BD(Ω∞) = HD(Ω∞).

4.4. Proof of Theorem 3.10

Proof of Theorem 3.10(1). In the following, we write z∗ = z∗(λ) in order to distinguish the
solutions of (3.1) for different values of λ. Note that z∗(λ1) > z∗(λ2), if λ1 < λ2. This implies
the strictly increasing behaviour of Φ in the interval (1, R]. Recall that the BRW does almost
surely not survive in the limit case λ = 1, yielding Φ(1) = 0. Moreover, if λ > R, then the BRW
is recurrent and thus HD(Λ) = HD(Ω).

The proof of Theorem 3.10(2) splits up into the following two lemmas:

Lemma 4.18. The function Φ is continuous in [1,∞) \ {R} and continuous from the left
at λ = R.

Proof. In order to prove continuity of Φ, it is sufficient to prove continuity of the mapping
λ �→ z∗ = z∗(λ). First, we prove continuity from the left at λ0 ∈ (1,∞). For this purpose, let
(λn)n∈N be a sequence of strictly increasing real numbers with λn < λ0 and limn→∞ λn = λ0.
We use a proof by contradiction. Assume z0 := limn→∞ z∗(λn) > z∗(λ0) (by simple domination
arguments, z∗(λn) cannot be less than z∗(λ0)). We have that z∗(λn) is strictly decreasing and

F+
i (λn|z∗(λ0)) + ξi(1)(z0 − z∗(λ0)) � F+

i (λn|z0) <∞.

Here we used the fact that the coefficient of z in F+
i (λ|z) is at least ξi(1). We set c := ξi(1)(z0 −

z∗(λ0)). Since f(x)/(1 + f(x)) is strictly increasing in [1,∞) if f(x) is a strictly increasing
function on [1,∞) we obtain the following contradiction:

1 = lim
n→∞

∑

i∈I

F+
i (λn|z∗(λn))

1 + F+
i (λn|z∗(λn))

� lim sup
n→∞

∑

i∈I

F+
i (λn|z0)

1 + F+
i (λn|z0)

� lim sup
n→∞

∑

i∈I

F+
i (λn|z∗(λ0)) + c

1 + F+
i (λn|z∗(λ0)) + c

=
∑

i∈I

F+
i (λ0|z∗(λ0)) + c

1 + F+
i (λ0|z∗(λ0)) + c

>
∑

i∈I

F+
i (λ0|z∗(λ0))

1 + F+
i (λ0|z∗(λ0))

= 1.

Thus, limn→∞ z∗(λn) = z∗(λ0).
Since HD(Λ) = HD(Ω) for all λ > R, it remains to prove continuity from the right for λ0 ∈

(1, R). We make a case distinction whether ξi(λ0) < 1 or not. If ξi(λ0) < 1, then F+
i (λ0 +

δ|1) <∞, for all δ > 0 with ξi(λ0 + δ) < 1 according to (4.4). Moreover, z∗(λ0) < 1. Therefore,
continuity from the right follows directly from the Implicit Function Theorem, since z∗ = z∗(λ)
is given by the equation

1 =
∑

i∈I

F+
i (λ | z∗(λ))

1 + F+
i (λ | z∗(λ)) .
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We note that the derivative ∂F+
i (λ|z)/∂z evaluated at z = z∗(λ) is positive and finite, since

z∗(λ) is strictly smaller than the radius of convergence of F+
i (λ|z); see Lemma 4.7.

Now we turn to the case ξi(λ0) � 1. Let (λn)n∈N be a sequence of strictly decreasing real
numbers with λ0 < λn < R and limn→∞ λn = λ0. Assume z0 := limn→∞ z∗(λn) < z∗(λ0) (by
simple domination arguments, z∗(λn) cannot be larger than z∗(λ0)). Observe that z∗(λn) is
strictly increasing. By (4.6), there is C :=

√
1 + ξ2(1)/(2|supp(μ1)|) > 1 such that Cz∗(λn) �

R(F+
i ), for all n ∈ N. Choose C̃ ∈ (1, C) such that C̃z0 < z∗(λ0) and choose N ∈ N large

enough such that C̃z∗(λn) � z0, for all n � N . Therefore,

1 = lim
n→∞

∑

i∈I

F+
i (λn|z∗(λn))

1 + F+
i (λn|z∗(λn))

� lim
n→∞

∑

i∈I

F+
i (λn|C̃z0)

1 + F+
i (λn|C̃z0)

=
∑

i∈I

F+
i (λ0|C̃z0)

1 + F+
i (λ0|C̃z0)

< 1,

a contradiction. Consequently, limn→∞ z∗(λn) = z∗(λ0).
It remains to prove continuity from the right at λ0 = 1. In this case, ξi(1) < 1. Once again

F+
i (λ0 + δ|1) <∞ for all δ > 0 with ξi(λ0 + δ) < 1 according to (4.4). Let (λn)n∈N be a strictly

decreasing sequence of real numbers with limit 1. We write z0 = limn→∞ z∗(λn) � 1. Then, for
n large enough,

1 = lim
n→∞

∑

i∈I

F+
i (λn|z∗(λn))

1 + F+
i (λn|z∗(λn))

� lim
n→∞

∑

i∈I

F+
i (λn|z0)

1 + F+
i (λn|z0)

=
∑

i∈I

F+
i (1|z0)

1 + F+
i (1|z0)

.

In order to finish the proof, we verify that z∗(1) = 1, from which z0 = z∗(1) = 1 follows. Indeed,
by Equation (4.4), we obtain

∑

i∈I

F+
i (1|1)

1 + F+
i (1|1) =

∑

i∈I
(1−Gi(ei, ei|ξ1(1))(1− ξi(1))).

From [9, Lemma 5.1], it follows that 1−Gi(ei, ei|ξ1(1))(1− ξi(1)) is just the probability that
a single random walk on Γ tends to an infinite word of the form x1x2 . . . ∈ Ω∞ with x1 ∈ Γ×

i ,
that is, the above sum equals 1.

The next result completes the proof of Theorem 3.10(2):

Lemma 4.19. For all λ ∈ [1, R], HD(Λ) � 1
2HD(Ω).

Proof. Define the function

F (2)(λ|z) :=
∑

x∈Γ

F (e, x|λ)2 zl(x),
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whose radius of convergence is denoted by z∗2 . The Cauchy–Schwarz Inequality then gives

1

z∗
= lim sup

m→∞

⎛
⎝ ∑

x∈Γ:l(x)=m

F (e, x|λ)

⎞
⎠

1/m

� lim sup
m→∞

√√√√√
⎛
⎝ ∑

x∈Γ:l(x)=m

F (e, x|λ)2
⎞
⎠

1/m

· lim sup
m→∞

√√√√√
⎛
⎝ ∑

x∈Γ:l(x)=m

12

⎞
⎠

1/m

=

√
1

z∗2
·
√

1

z∗S
.

To prove the claim of the lemma it suffices (by the formulas given in Theorems 3.5 and 3.8) to
show that z∗2 � 1. First,

F (2)(λ|1) =
∑

x∈Γ

F (e, x|λ)2 =
1

G(e, e|λ)2
∑

x∈Γ

G(e, x|λ)2

=
1

G(e, e|λ)2
∑

x∈Γ

⎛
⎝∑

n�0

p(n)(e, x)λn

⎞
⎠

2

.

For given x ∈ Γ, the coefficient of λn in the inner squared sum can (by symmetry) be
rewritten as

1

G(e, e|λ)2
n∑

m=0

p(m)(e, x)p(n−m)(x, e). (4.13)

Thus, every path [x0 = e, x1, . . . , xn = e] of length n (consisting of n+ 1 vertices) from e to e
is counted n+ 1 times, since every xi can play the role of x in Equation (4.13). That is,

F (2)(λ|z) = 1

G(e, e|λ)2
∑

n�0

p(n)(e, e) · (n+ 1) · λn =
λG′(e, e|λ)
G(e, e|λ)2 +

1

G(e, e|λ) .

From this follows z∗2 � 1, whenever λ < R or G′(e, e|R) <∞, and thus HD(Λ) � 1
2HD(Ω), for

λ < R. By Lemma 4.18, the proposed inequality holds (due to continuity from the left) also in
the case λ = R.

In order to prove Theorem 3.10(3), we start with the following lemma:

Lemma 4.20. For all i ∈ I, G′
i(ei, ei|ξi(R)) <∞.

Proof. From [25, Proposition 9.18], it follows ξi(R) � Ri, where Ri is the radius of
convergence of Gi(ei, ei|z). If ξi(R) < Ri, then the claim of the lemma is obvious. Assume
now that ξi(R) = Ri. Then, by Woess [25, Lemma 17.1.(a)], RG(e, e|R) = RiGi(ei, ei|Ri)/αi.
Therefore, Gi(ei, ei|Ri) <∞ since G(e, e|R) <∞ by non-amenability of Γ. If G′

i(ei, ei|Ri) = ∞
would hold, we would get a contradiction to ξi(R) = Ri by Woess [25, Equation (9.14),
Theorem 9.22, Lemma 17.1(a)].
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Let us remark that F ′
i (ei, x|ξi(R)) = F ′

i (x, ei|ξi(R)) <∞, for all x ∈ Γ×
∗ ; this can be easily

verified with the help of the inequality

μ
(n+|x|)
i (ei) � μ

(|x|)
i (x) · P[Y (i)

n = ei,∀m < n : Y (i)
m �= ei | Y (i)

0 = x] for all n ∈ N,

where (Y
(i)
n )n∈N is a random walk on Γi governed by μi. We proceed now with expanding the

Green function G(z) := G(e, e|z) in a neighbourhood of z = R. By [25, Propositon 17.4] and
[4, Sections 3 & 4], we have

G(z) =

{
G(R) + g1 ·

√
R− z + o(

√
R− z) if G′(R) = ∞,

G(R)−G′(R) · (R− z) + o(R− z) if G′(R) <∞.

We write in the following c := 1
2 , if G′(R) = ∞, and c := 1, otherwise. The next aim is to show

that the functions F (e, x|z), x ∈ Γ \ {e}, have the same expansions.

Lemma 4.21. For all x ∈ Γ \ {e}, there are constants fx �= 0 such that

F (e, x|z) = F (e, x|R) + fx · (R− z)c + o((R− z)c).

Proof. We consider the case c = 1 first. By Candellero and Gilch [4, Lemma 3.2], we have
0 < ξ′i(R) <∞, that is, we can write

ξi(z) = ξi(R)− ξ′i(R) · (R− z) + o(R− z).

In the following, we write Fi(ei, x|z) =
∑

n�1 fn(x)z
n, for x ∈ Γ×

i . Therefore,

F (e, x|z) = Fi(ei, x|ξi(z)) =
∑

n�1

fn(x)(ξi(R)− ξ′i(R) · (R− z) + o(R− z))n. (4.14)

The coeffcient of (R− z) is given by

−ξ′i(R) ·
∑

n�1

n · fn(x) · ξi(R)n−1 = −ξ′i(R)F ′
i (ei, x|ξi(R)) ∈ (−∞, 0).

Recall that, for x = x1 . . . xn ∈ Γ \ {e},

F (e, x1 . . . xn|z) =
n∏

j=1

Fτ(xj)(eτ(xj), xj | ξτ(xj)(z)).

Now, plugging the expansion (4.14) into the above formula gives us the coefficient of (R− z):

fx =
n∑

j=1

− ξ′τ(xj)
(R)F ′

τ(xj)
(eτ(xj), xj | ξτ(xj)(R))

×
n∏

k=1,
k 	=j

Fτ(xk)(eτ(xk), xk | ξτ(xk)(R)) ∈ (−∞, 0).

This yields the claim in the case c = 1.
We now turn to the case c = 1

2 . By Woess [25, Equation (9.20)], we have

αizG(z) = ξi(z)Gi(ξi(z)). (4.15)
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Write ξi(z) = ξi(R) +Xi(z) with Xi(R) = 0. Our aim is to show that Xi(z) is of order
√
R− z,

from which we can derive the proposed expansion of F (e, x|z). We rewrite (4.15) as

αi(R− (R− z)) · (G(R) + g1
√
R− z + o(

√
R− z))

= (ξi(R) +Xi(z)) ·
∑

n�0

μ
(n)
i (ei)(ξi(R) +Xi(z))

n.

The constant term on the left-hand side of the equation is αiRG(R), which equals the constant
term on the right-hand side ξi(R)Gi(ξi(R)) by (4.15). The coefficient of

√
R− z on the left-hand

side is αiRg1 �= 0. The coefficient of X1(z) on the right-hand side is given by

ξi(R)G
′
i(ei, ei|ξi(R)) +Gi(ei, ei|ξi(R)) ∈ (0,∞).

Thus, X1(z) ∼
√
R− z as z ↑ R, and therefore

Fi(ei, x|ξi(z)) =
∑

n�1

fn(x) (ξi(R) + ξ̂i ·
√
R− z + o(R− z))n,

for some ξ̂i < 0. The rest follows analogously to the case c = 1 by replacing (R− z) with√
R− z.

Consider now the following difference for i ∈ I:
Fi(R|z∗(R))−Fi(λ|z∗(λ)) =

∑

m�1

z∗(R)m
∑

x∈Γi:
l(x)=m

F (e, x|R)−
∑

m�1

(z∗(R)− (z∗(R)− z∗(λ)))m

×
∑

x∈Γi:
|x|=m

[F (e, x|R) + fx(R− λ)c + o((R− λ)c)]

=
∑

m�1

z∗(R)m
∑

x∈Γi:
l(x)=m

(−fx(R− λ)c − o((R− λ)c))

+ (z∗(R)− z∗(λ))
∂

∂z
F+

i (λ|z∗(R)) + o(z∗(R)− z∗(λ)).

Moreover,

0 =
∑

i∈I

Fi(R|z∗(R))
1 + Fi(R|z∗(R))

−
∑

i∈I

Fi(λ|z∗(λ))
1 + Fi(λ|z∗(λ))

=
∑

i∈I

∑

n�0

(−Fi(λ|z∗(λ)))n+1 − (−Fi(R|z∗(R)))n+1. (4.16)

Write

(−Fi(λ|z∗(λ)))n+1 − (−Fi(R|z∗(R)))n+1 = (Fi(R|z∗(R))−Fi(λ|z∗(λ))) · gn(λ), (4.17)

where gn(R) �= 0, for every n ∈ N. Plugging the decomposition of Fi(R|z∗(R))−Fi(λ|z∗(λ))
into (4.16) and comparing all error terms yields in view of (4.17) the following behaviour:

z∗(R)− z∗(λ) ∼
{
Ĉ1 · (R− λ) if G′(R) <∞,

Ĉ2 ·
√
R− λ if G′(R) = ∞

for suitable constants Ĉ1 and Ĉ2, respectively. The statement (3) of Theorem 3.10 follows now
from

log z∗(λ)− log z∗(R) = log

(
1− 1

z∗(R)
(z∗(R)− z∗(λ))

)

and by the Taylor expansion of log(1− x) at x = 0.
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4.5. Proof of Corollary 3.16

In a first step, we show the following lemma:

Lemma 4.22.

BDfin(Λ) � − log θ

logα
and BDfin(Ω) = − log 

logα
.

Proof. First, we define the matrices M0 = (m0(i, j))i,j∈I and D0 = (d0(i, j))i,j∈I by

m0(i, j) :=

{
F+

i (λ) if i = j,

0 otherwise,
and d0(i, j) :=

{
|Γi| − 1 if i = j,

0 otherwise.

For m ∈ N, denote by Hfin
m the random number of visited words of the form w1 . . . wm ∈ Γ.

Then

E|Hfin
m | �

∑

x∈Hfin
m

EZ∞(x) �
∑

x∈Γ:‖x‖=m

F (e, x|λ) = 1TM0M
m−11

and

Ŝ(m) = |{x ∈ Γ | ‖x‖ = m}| = 1TD0D
m−11.

Let u ∈ Rr be an eigenvector with respect to the eigenvalue θ such that u � 1. Then:

E|Hfin
m | �

⎛
⎜⎝
F1(λ)

...
Fr(λ)

⎞
⎟⎠

T

Mm−1
1 u �

⎛
⎜⎝
F1(λ)

...
Fr(λ)

⎞
⎟⎠

T

θm−1u.

Thus, lim supm→∞(EHfin
m )1/m � θ. Similarly, one can show that limm→∞ Ŝ(m)1/m =  by

taking eigenvectors v1 � 1 and v2 � 1. Analogously to the proofs of Lemma 4.8 and
Propositions 4.9 and 4.17, we obtain the claim.

Proof of Corollary 3.16. First, we remark that we dropped the assumption on symmetry
of the laws μi in the case of free products of finite groups. This assumption is needed in the
general case to ensure F (e, x|λ) < 1. This inequality holds also in the present setting: by Woess
[25, Equation (9.20)],

αizG(e, e|z) = Gi(ei, ei|ξi(z))ξi(z).

Since G(e, e|R) <∞ and Gi(ei, ei|1) = ∞, we must have ξi(R) < 1, and consequently,

F (e, x1 . . . xk|λ) =
k∏

j=1

Fτ(xj)(eτ(xj), xj |ξτ(xj)(λ)) <

k∏

j=1

Fτ(xj)(eτ(xj), xj |1) = 1.

In order to show that − log θ/ logα is a lower bound for HDfin(Λ), we can follow the reasoning
in [13, Section 6] or also as in Section 4.2.2. Analogously to the proof of Theorem 3.8, we
obtain that HDfin(Ω) = BDfin(Ω).
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4.6. Proof of Corollary 3.18

First, we prove the following lemma:

Lemma 4.23.

BD(H)(Λ) � − log θH
logα

and BD(H)(Ω) = − log H
logα

.

Proof. First, we define the matrices N0 = (n0(i, j))i,j∈I and D0,H = (d0,H(i, j))i,j∈I by

n0(i, j) :=

{
F (H)

i (λ) if i = j,

0, otherwise,
and d0,H(i, j) :=

{
[Γi : Hi]− 1 if i = j,

0 otherwise.

For m ∈ N, we denote by H(H)
m the set of words of the form g1 . . . gmh ∈ Γ in the sense of (3.3).

Since every path from e to g1 . . . gmh ∈ Γ has to pass through points g1 . . . gjhj ∈ Γ, where
hj ∈ H with hm = h, we have

∑

g1...gmh∈Γ

FH(g1 . . . gmh|z) =
∑

g1...gmh∈Γ

∑

h1,...,hm−1∈H

m∏

i=1

FH(gihi|z) = 1TN0N
m−11.

Choose now an eigenvector v = (v1, . . . , vr)
T � 1 with respect to the eigenvalue θH of N . Then

E|H(H)
m | � 1TN0N

m−11 � 1TN0N
m−1v = θm−1

H ·
(∑

i∈I
viF (H)

i (λ)

)
,

and therefore, lim supm→∞ E|H(H)
m |1/m � θH . Furthermore, we remark that ŜH(m) =

|{x1 . . . xm | xi ∈
⋃

j∈I Rj \ {ej}, xi ∈ Rj ⇒ xi+1 /∈ Rj}| can be written as

ŜH(m) = 1TD0,HD
m−1
H 1.

Taking eigenvectors v1 � 1 and v2 � 1 with respect to H leads to limm→∞ |ŜH(m)|1/m = H .
The same reasoning as used in the proofs of Lemma 4.8 and Propositions 4.9 and 4.17 yields
the proposed claim.

Proof of Corollary 3.18. It is sufficient to show that − log θH/ logα is also a lower bound
for HD(H)(Λ). First, we remark that, for m ∈ N,

∑

g1...gmh∈Γ:g1 /∈R1

EZ∞(g1 . . . gmh) =
∑

g1...gmh∈Γ:g1 /∈R1

F (e, g1 . . . gmh|λ)

=
∑

g1...gmh∈Γ:g1 /∈R1

∑

h0∈H

FH(g1 . . . gmh0|λ)F (e, h−1
0 h|λ).

Since |H| <∞, there are constants d,D > 0 such that d � F (e, h|λ) � D, for all h ∈ H. We
write 10 := (0, 1, . . . , 1)T ∈ Rr and obtain:

⎛
⎝ ∑

g1...gmh∈Γ:g1 /∈R1

EZ∞(g1 . . . gmh)

⎞
⎠

1/m

� (D · 1T
0N0N

m−11)1/m
m→∞−−−−→ θH

and ⎛
⎝ ∑

g1...gmh∈Γ:g1 /∈R1

EZ∞(g1 . . . gmh)

⎞
⎠

1/m

� (d · 1T
0N0N

m−11)1/m
m→∞−−−−→ θH .
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This can easily be verified by substituting 1 by an eigenvector v1 � 1 of θH , by an eigenvector
v2 � 1 of θH , respectively. With the help of this convergence behaviour and the last lemma,
we can prove once again analogously to the reasoning in [13, Section 6] or Section 4.2.2 that
the upper bounds in Lemma 4.23 equal the Hausdorff and the Box-Counting dimensions.
Analogously to the proof of Theorem 3.8, we obtain that HD(H)(Ω) = BD(H)(Ω).
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ASYMPTOTIC ENTROPY OF RANDOM WALKS ON REGULAR
LANGUAGES OVER A FINITE ALPHABET

LORENZ A. GILCH

Abstract. We prove existence of asymptotic entropy of random walks on regular lan-
guages over a finite alphabet and we give formulas for it. Furthermore, we show that
the entropy varies real-analytically in terms of probability measures of constant support,
which describe the random walk. This setting applies, in particular, to random walks on
virtually free groups.

1. Introduction

Let A be a finite alphabet and let A∗ be the set of all finite words over the alphabet A,
where o denotes the empty word. Consider a transient Markov chain (Xn)n∈N0 on A∗ with
X0 = o such that at each instant of time the last K ∈ N letters of the current word may be
replaced by a word of length of at most 2K and the transition probabilities depend only on
the last K letters of the current word and on the replacing word. For better visualization
and ease of presentation, we also consider the random walk on A∗ as a random walk on
an undirected graph G. Denote by πn the distribution of Xn. We are interested whether
the sequence 1

nE[− log πn(Xn)] converges, and if so to describe the limit. If it exists, it is
called the asymptotic entropy, which was introduced by Avez [1]. The aim of this paper
is to prove existence of the asymptotic entropy, to describe it as the rate of escape w.r.t.
the Greenian distance and to prove its real-analytic behaviour when varying the transition
probabilities of constant support.

We outline some background on this topic. Random Walks on regular languages have
been studied by e.g. Lalley [16] and Malyshev [19] amongst others. Concerning asymptotic
entropy it is well-known by Kingman’s subadditive ergodic theorem (see Kingman [15])
that the entropy exists for random walks on groups if E[− log π1(X1)] < ∞. In contrast
to this fact existence of the entropy on more general structures is not known a priori. In
our setting we are not able to apply the subadditive ergodic theorem since we neither have
subadditivity nor a global composition law of words if the random walk is performed on a
proper subset of A∗ (that is, not every word w ∈ A∗ can be reached from o with positive
probability). This forces us to use other techniques like generating functions techniques.
These generating functions are power series with probabilities as coefficients, which describe
the characteristic behaviour of the underlying random walks. The technique of our proof
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2 LORENZ A. GILCH

of existence of the entropy was motivated by Benjamini and Peres [2], where it is shown
that for random walks on groups the entropy equals the rate of escape w.r.t. the Greenian
distance; compare also with Blachère, Haïssinsky and Mathieu [3]. In particular, we will
also show that the asymptotic entropy h is the rate of escape w.r.t. a distance function in
terms of Green functions, which in turn yields that h is also the rate of escape w.r.t. the
Greenian distance. Moreover, we prove convergence in probability and convergence in L1 of
the sequence − 1

n log πn(Xn) to h, and we show also that h can be computed along almost
every sample path as the limes inferior of the aforementioned sequence. The question of
almost sure convergence of − 1

n log πn(Xn) to some constant h, however, remains open.
Similar results concerning existence and formulas for the entropy are proved in Gilch and
Müller [9] for random walks on directed covers of graphs and in Gilch [8] for random walks
on free products of graphs. Furthermore, we give formulas for the entropy which allow
numerical computations and also exact calculations in some special cases. The main idea
in our proofs is to fix a priori a sequence of nested cones in the associated graph G and to
track the random walk’s way to infinity through these cones. Similar ideas have been used
independently by Woess [23] for context-free pairs of groups. The techniques in our proofs
are restricted to the case of bounded range random walks: in the case of unbounded range
the situation gets much more complicated since Martin and Gromov boundaries may differ
even under assumption of some exponential moments to be finite; compare with Gouëzel
[10].

Kaimanovich and Erschler asked whether drift and entropy of random walks vary con-
tinuously (or even analytically) when varying the probabilities of the random walk with
keeping the support of single step transitions constantly. In view of this question we also
show in this article that h is real-analytic in terms of the parameters describing the random
walk on A∗. This fact applies, in particular, to the case of bounded range random walks
on virtually free groups, which goes beyond the scope of previous results related to the
question of analyticity. Ledrappier [17] showed that the entropy varies real-analytically for
finitely supported random walks on free groups; with the help of “barriers” (that is, nested
sequences of subsets which have to be passed successively) and the study of Martin kernels
he identifies the entropy as the boundary entropy. The present article uses also some kind
of barriers (called “cones”) to track the random walk’s path to infinity, but the approach is
different: here, we identify the entropy as the Shannon entropy of a hidden Markov chain
(see Theorem 2.5), which arises from splitting up the random walk into pieces between
the entries of these nested cones. For some special cases (e.g., free groups) we even give
a formula (see Theorem 7.4) for the entropy of the hidden Markov chain, which allows
numerical calculations. A similar idea for proving existence of the entropy has also been
used in Gilch [8] for random walks on free products of graphs by cutting the random walk
into pieces; Theorem 7.4 applies also to free products of finite graphs, but not necessarily
for free products of infinite graphs. The important difference between [8] and the present
article is that analyticity of the entropy in [8] follows directly from the formulas for the
entropy, while we have to make much more effort to show this property in the present con-
text of regular languages. Finally, let us remark that random walks on regular languages
do not only extend results from free groups or free products to the next general case like
virtually free groups but also to a wider class like context-free graphs (see Subsection 2.2).
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At this point let us summarize further papers concerning continuity and analyticity of the
drift and entropy that have been published recently: Ledrappier [18] showed that the drift
and entropy of finitely supported random walks on hyperbolic groups are Lipschitz, while
Mathieu [20] showed that the entropy of symmetric, finitely supported random walks in
hyperbolic groups are differentiable; Haïssinsky, Mathieu and Müller [11] proved analyticity
of the drift for random walks on surface groups. The recent survey article of Gilch and
Ledrappier [6] collects several results about analyticity of drift and entropy of random
walks on groups.

The basic reasoning of our proofs follows a similar argumentation as in [9] and [8], but
since a straight-forward adaption is not possible we have to do more effort in the present
setting: we will show that the entropy equals the rate of escape w.r.t. some special length
function, and we deduce the proposed properties analogously. For the proof of analyticity
of the entropy we will extract a hidden Markov chain from our random walk and we will
apply a result of Han and Marcus [12]. The plan of the paper is as follows: in Sections 2
and 3 we define the random walk on A∗ and the associated generating functions. Section
4 explains the construction of cones in the present context. In Sections 5 and 6 we prove
existence of the asymptotic entropy and give a formula for it, while in Section 7 we give
estimates and a more explicit formula in some special case. Section 8 shows real-analyticity
of the entropy.

2. Random Walks on Regular Languages

2.1. Definitions and Main Results. Let A be a finite alphabet and denote by A∗ the
set of all finite words over A. We write o for the empty word and An, n ∈ N, for the set of
all words over A consisting of exactly n letters. For two words w1, w2 ∈ A∗, w1w2 denotes
the concatenated word. A random walk on a regular language is a Markov chain (Xn)n∈N0

on the set A∗ =
⋃

n≥1 An ∪ {o}, whose transition probabilities obey the following rules:

(i) Only the last two letters of the current word may be modified.
(ii) Only one letter may be adjoined or deleted at one instant of time.
(iii) Adjunction and deletion may only be done at the end of the current word.
(iv) Probabilities of modification, adjunction or deletion depend only on the last two

letters of the current word and on the substitute letters.

Compare with Lalley [16] and Gilch [7]. In other words, at each step the last two letters
of the current word may be replaced by a non-empty word of length of at most 3 and the
transition probabilities depend only on the last two letters of the current word and the
replacing word of length of at most 3. More formally, the transition probabilities of the
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Markov chain (Xn)n∈N0 can be written as follows, where w ∈ A∗, a1, a2, b1, b2, b3 ∈ A:

P[Xn+1 = wb1b2 | Xn = wa1a2] = p(a1a2, b1b2),

P[Xn+1 = wb1b2b3 | Xn = wa1a2] = p(a1a2, b1b2b3),

P[Xn+1 = wb1 | Xn = wa1a2] = p(a1a2, b1),

P[Xn+1 = b1 | Xn = a1] = p(a1, b1), (2.1)
P[Xn+1 = b1b2 | Xn = a1] = p(a1, b1b2),

P[Xn+1 = o | Xn = a1] = p(a1, o),

P[Xn+1 = b1 | Xn = o] = p(o, b1),

P[Xn+1 = o | Xn = o] = p(o, o).

Not all of these probabilities need to be strictly positive. Initially, we set X0 := o. If we start
the random walk at w ∈ A∗ instead of o, we write Pw[ · ] := P[ · | X0 = w]. For w1, w2 ∈ A∗,
the n-step transition probabilities are denoted by p(n)(w1, w2) := Pw1[Xn = w2]. The set
of accessible words from o is given by

L =
{
w ∈ A∗ | ∃n ∈ N : P[Xn = w | X0 = o] > 0

}
.

We will also think of the random walk (Xn)n∈N0 as a nearest neighbour random walk on
an undirected graph G, where the vertices are the elements of L and undirected edges are
between two vertices if and only if one can walk from one word to the other one in a single
step. For this purpose, we need the following assumption:

Assumption 2.1 (Weak symmetry). For all u, v ∈ A∗ we assume that Pu[X1 = v] > 0
implies Pv[X1 = u] > 0. We call this property weak symmetry.

In particular, Assumption 2.1 yields irreducibility of the random walk on L. Moreover,
this assumption will be necessary for the construction of a sequence of cones in the graph
G which track the random walk’s way to infinity. As the interested reader will see, weak
symmetry can obviously be weakened in some way but for reason of better readability we
keep this natural assumption; for a discussion on this assumption, we refer to Appendix
A.2.

Since the purpose of the paper is the investigation of the asymptotic behaviour of transient
random walks, we obviously need that L is infinite in our setting. It is an easy exercise
to check that the set L is a regular language over the alphabet A, that is, the words are
accepted by a finite-state automaton. For more details on regular languages, we refer e.g. to
Hopcraft and Ullman [13]. Since we make no further use of the theory of languages, we will
not discuss this in more detail but we remark the recursive structure of regular languages.
Let us note that bounded range random walks on virtually free groups constitute a special
case of our setting, and our results directly apply; see e.g. Lalley [16]. Thus, our results
apply directly to a large class of random walks on groups and go beyond recent results for
random walks on groups.

Remark 2.2. Observe that the assumption that transition probabilities depend only on
the last two letters of the current word and that changes of the current word involve only
the last two letters may be weakened to dependence and changes of the last K ∈ N letters
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of the current word and replacements of the last K letters by words of length of at most
2K. This is done by blocking words of length of at most K to new single letters; see [16,
Section 3.3] for further details and comments. If we make further assumptions on our
random walk in the following, we will show that it does not depend on the fact if we use
the “blocked letter language” (that is, dependence on the last two letters as given by (2.1)
after an application of the “recoding trick”) or the general case (dependence on the last K
letters as given by (B.1)), that is, no required properties are lost when switching from the
K-dependent case to the “blocked letter language”; for further comments, see Appendix B. It
will turn out that the K-dependent case works completely analogously as the “blocked letter
language” case; however, the derived equations and formulas are much more complex, so
we restrict ourselves onto the case where the random walk is defined as at the beginning of
this section via (2.1). In particular, there is no additional gain in the techniques and proofs
when investigating the K-dependent case. Finally, let us note that it is not sufficient to
consider the case where the transition probabilities/changes of words involve only the last
letter in order to be able to apply this recoding trick!

We introduce some notation. The natural word length of any w ∈ A∗ is denoted by |w|. If
w ∈ A∗ and k ∈ N with |w| ≥ k then w[k] denotes the k-th letter of w, and [w] denotes
the last two letters of w when w 6= o is not a single letter.

Malyshev [19] proved that the rate of escape w.r.t. the natural word length exists for
irreducible random walks on regular languages, that is, there is a non-negative constant ℓ
such that

lim
n→∞

|Xn|
n

= ℓ almost surely.

Here, ℓ is called the rate of escape. Furthermore, by [19] follows that ℓ is strictly positive
if and only if (Xn)n∈N0 is transient. In [7] there are explicit formulas for the rate of escape
w.r.t. more general length functions.

Another characteristic number of random walks is the asymptotic entropy. Denote by πn
the distribution of Xn. If there is a non-negative constant h such that the limit

h = lim
n→∞

− 1

n
E
[
log πn(Xn)

]

exists, then h is called the asymptotic entropy. Since we only have a partial composition
law for concatenation of two words (if L ⊂ A∗) and since we have no subadditivity and
transitivity of the random walk, we are not able to apply – as in the case of random
walks on groups – Kingman’s subadditive ergodic theorem in order to show existence of
h. It is, however, easy to see that the entropy equals zero if the random walk is recurrent
(see Corollary 7.2). Therefore, from now on we will only consider transient random walks
(Xn)n∈N0 .

Remark 2.3. Observe that limn→∞− 1
n log πn(Xn) is not necessarily deterministic: take

two homogeneous trees of different degrees d1, d2 ≥ 3; identify their root with one single
root which becomes o and consider the simple random walk on this new inhomogeneous tree
with starting point o. Obviously, this random walk can be modelled as a random walk on
a regular language. Then the limit limn→∞− 1

n log πn(Xn) depends on the fact in which
of the two subtrees the random walks goes to infinity. Hence, the sequence − 1

n log πn(Xn)
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converges with probability d1/(d1 + d2) to log(d1 − 1) and with probability d2/(d1 + d2) to
log(d2 − 1); this can, e.g., be calculated by the formulas given in [8].

We have to make another assumption on the transition probabilities:

Assumption 2.4 (Suffix-irreducibility). We assume that the random walk on L is suffix-
irreducible, that is, for all w = w0a0b0 ∈ L with w0 ∈ A∗, a0b0 ∈ A2 and for all ab ∈ A2

there is n ∈ N and w1 ∈ A∗ such that

P
[
Xn = w0w1ab,∀k ≤ n : |Xk| ≥ |w|

∣∣∣X0 = w
]
> 0.

This assumption excludes degenerate cases and will guarantee existence of ℓ; compare with
[7, End of Section 2.1]. We remark that famous previous papers about random walks on
regular languages (in particular, the basic ones of [19] and [16]) require stronger assump-
tions than this non-degeneracy assumption. Later on it will be clear that one can relax
this condition in some way without needing additional techniques or ideas for the proofs.
Hence, for purpose of ease and better readability, we keep this assumption until further
notice. We will give further comments on this assumption in Appendix A.1.

The main idea behind our proofs will be the construction of an a priori fixed sequence of
cones (that is, special subsets of L), from which we extract a subsequence of nested cones
which gives the information how the random walk tends to infinity. This extraction will
be done via a hidden Markov chain (Yk)k∈N with an underlying positive recurrent Markov
chain: the asymptotic entropy H(Y) of the process (Yk)k∈N is given by (5.6). The average
distance between two nested cones will be denoted by λ which is given by (5.8): if Xek
denotes the word (i.e., the vertex in G) where the k-th nested subcone is finally entered
with no further exits of this cone, then λ = E[|Xe2 |− |Xe1 |]. Our first main result concerns
existence of the asymptotic entropy, which is finally proven in Section 6:

Theorem 2.5. Consider a transient random walk (Xn)n∈N0 on a regular language, which
satisfies Assumptions 2.1 and 2.4. Then the asymptotic entropy h of (Xn)n∈N0 exists and
equals

h =
ℓ ·H(Y)

λ
,

where H(Y) is given by (5.6) and λ by (5.8).

Recall that the random walk is described by the values in (2.1). A natural question is
whether the entropy varies regularly if the parameters in (2.1) are varied slightly and if
positive transition probabilities remain positive by this variation. The following result gives
an answer to this question, where the proof is given in Section 8:

Theorem 2.6. For transient random walks on regular languages satisfying Assumptions
2.1 and 2.4, the entropy h varies real-analytically under all probability measures of constant
support.

Moreover, we can also describe the asymptotic entropy in the following way:

PUBLICATION D. ASYMPTOTIC ENTROPY OF RAND. WALKS ON REG. LANG.

131



ASYMPTOTIC ENTROPY OF RANDOM WALKS ON REGULAR LANGUAGES 7

Corollary 2.7. We have the following types of convergence:

(1) For almost every trajectory of the random walk (Xn)n∈N0,

h = lim inf
n→∞

− 1

n
log πn(Xn).

(2) Convergence in probability:

− 1

n
log πn(Xn)

P−→ h.

(3) Convergence in L1:

− 1

n
log πn(Xn)

L1−→ h.

The Greenian distance between two words w1, w2 ∈ L is defined as

dGreen(w1, w2) := − logP[∃n ∈ N0 : Xn = w2 | X0 = w1].

Analogously to the situation for random walks on groups, we get the following result, which
is finally proven at the end of Section 6:

Corollary 2.8. The entropy is the rate of escape with respect to the Greenian distance,
that is,

h = lim
n→∞

− 1

n
dGreen(o,Xn) almost surely.

Further results are given in Section 7, where we show that h > 0 (Corollary 7.1) for non-
degenerate transient random walks, give an inequality between entropy, drift and growth
(Theorem 7.3) and give an exact formula in some special case (Theorem 7.4).

2.2. Examples. We give three classical examples for regular languages.

2.2.1. Stacks. In computer science theory stacks play an important role for modelling al-
gorithms. In this setting letters represent different procedures and words are lists of proce-
dures, which are called randomly. The last letter of the current word is the actual running
procedure which may produce more subprocedures or will finish some open procedures,
which in turn yields that the stack is getting larger or smaller randomly. Thus, this setting
can be encoded by regular languages. Compare also with Lalley [16].

2.2.2. Virtually Free Groups. An important class of examples is given by virtually free
groups, that is, groups which contain a free group as a subgroup of finite index. Let Γ be
a virtually free group which contains the free group Fd with d generators as a subgroup
of index [Γ : Fd] = k. Let Fd be generated by the elements a1, a

−1
1 , . . . , ad, a

−1
d , and let

h1, . . . , hk be representants of the k different left co-sets of Γ. That is, each element x ∈ Γ
can be written as

x1x2 . . . xmhj,

where m ∈ N0, j ∈ {1, . . . , k} and x1, . . . , xm ∈ {a1, a−1
1 , . . . , ad, a

−1
d } such that x−1

i 6= xi+1

for all i ∈ {1, . . . ,m − 1}. Now it is clear that each group invariant, finitely supported
random walk on Γ can be considered as a random walk on a regular language with alphabet
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A = {a1, a−1
1 , . . . , ad, a

−1
d , h1, . . . , hk} since multiplication from the right changes only a

bounded number of letters at the end of the current word. Compare also with the detailed
example of free products with amalgamation in [7, Section 3.1]

2.2.3. Context-Free Graphs. Another important class is given by context-free graphs, and
in particular by certain Schreier graphs, which can also be considered as random walks on
regular languages. This class justifies the study of random walks on regular languages in
its own right and not only as an extension of free groups or free products. We sketch the
concept of context-free graphs: consider a labelled, symmetric graph G with root r. Consider
the connected components of G after removing all vertices (and adjoint edges) which are
at distance less or equal than some n ∈ N to r. If there are only finitely many different
isomorphism types as labelled graphs of these connected components then the graph is
called context-free; see Muller and Schupp [22]. We give a short explanation why these
graphs fit into the setting of regular languages: later the mindful reader will notice that our
random walks are performed on some graph with finitely many different cone types (that
is, finitely many different isomorphism classes of connected components after removal of all
vertices at distance less or equal than n to r). Since there are only finitely many different
cone types one can deduce a finite-state automaton from the context-free graph, which
accepts just the words which describe the different vertices of G. As a specific example,
consider a virtually free group, a finitely generated free subgroup and an associated Schreier
graph: by Woess [23, Theorem 2.10], the Schreier graph satisfies all needed irreducibility
requirements. For further details, we refer to Muller and Schupp [21], [22] and Ceccherini-
Silberstein and Woess [4] and [23].

3. Generating Functions

For w1, w2 ∈ A∗, z ∈ C, the Green function is defined as

G(w1, w2|z) :=
∑

n≥0

p(n)(w1, w2) · zn

and the last visit generating function as

L(w1, w2|z) :=
∑

n≥0

P
[
Xn = w2,∀m ∈ {1, . . . , n} : Xm 6= w1

∣∣X0 = w1

]
· zn.

By conditioning on the last visit to w1, an important relation between these functions is
given by

G(w1, w2|z) = G(w1, w1|z) · L(w1, w2|z). (3.1)

In the following we introduce further generating functions, which also have been used
analogously in [7]. Define for a, b, c, d, e ∈ A and real z > 0

H(ab, c|z) :=
∑

n≥1

P
[
Xn = c,∀m < n : |Xm| > 1

∣∣X0 = ab
]
· zn

PUBLICATION D. ASYMPTOTIC ENTROPY OF RAND. WALKS ON REG. LANG.

133



ASYMPTOTIC ENTROPY OF RANDOM WALKS ON REGULAR LANGUAGES 9

and

L̄(ab, cde|z) :=
∑

n≥1

P
[
Xn = cde, |Xn−1| = 2,∀m ∈ {1, . . . , n} : |Xm| ≥ 2,

∣∣X0 = ab
]
· zn,

G(ab, cd|z) :=
∑

n≥0

P
[
Xn = cd,∀m ∈ {1, . . . , n} : |Xm| ≥ 2

∣∣X0 = ab
]
· zn.

We write L̄(ab, cde) := L̄(ab, cde|1). These generating functions can be computed in two
steps: first, one solves the following system of equations which arises by case distinction
on the first step:

H(ab, c|z) = p(ab, c) · z +
∑

de∈A2

p(ab, de) · z ·H(de, c|z)

+
∑

def∈A3

p(ab, def) · z ·
∑

g∈A
H(ef, g|z) ·H(dg, c|z); (3.2)

compare with [16] and [7]. The system (3.2) consists of equations of quadratic order, and
therefore the functions H(·, ·|z) are algebraic, if the transition probabilities are algebraic.
We now get the functions G(ab, cd|z) by solving the following linear system of equations
which also arises by case distinction on the first step:

G(ab, cd|z) = δab(cd) +
∑

c1d1∈A2

p(ab, c1d1) · z ·G(c1d1, cd|z) +

+
∑

c1d1e1∈A3

p(ab, c1d1e1) · z ·
∑

f∈A
H(d1e1, f |z) ·G(c1f, cd|z).

Finally, we get

L̄(ab, cde|z) =
∑

a1b1∈A2

G(ab, a1b1|z) · z · p(a1b1, cde). (3.3)

Obviously, it is sufficient to consider only those functions H(ab, ·|z), G(ab, ·|z) and L(ab, ·|z)
such that there exists some w0 ∈ A∗ with w0ab ∈ L; the remaining functions do not play
a role for our random walk. Moreover, one can compute the Green functions of the form
G(o,w|z), w ∈ L with |w| ≤ 3, by solving

G(w1, w2|z) = δw1(w2) +
∑

w3∈A∗:|w3|≤3

p(w1, w3) · z ·G(w3, w2|z) +

+13(w1) ·
∑

cde∈A3

p(w1[2]w1[3], cde) · z ·
∑

f∈A
H(de, f |z) ·G(w1[1]cf, w2|z),

where w1, w2 ∈ A∗ with |w1|, |w2| ≤ 3 and 13(w1) := 1, if |w1| = 3, and 13(w1) := 0
otherwise.

We also define for ab ∈ A2:

ξ(ab) := P
[
∀n ≥ 0 : |Xn| ≥ 2

∣∣X0 = ab
]
= 1−

∑

f∈A
H(ab, f |1).

When starting at a word wab ∈ L, where w ∈ A∗, ξ(ab) is the probability that the process
(Xn)n∈N0 will not visit any words of length |wab| − 1 or smaller. In this case the prefix w
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will remain constant for the rest of the process. Observe that, for transient random walks,
ξ(ab) > 0 for all ab ∈ A2 due to Assumption 2.4. We define a “length function” on L by

l(w) := − logL(o,w|1) for w ∈ L. (3.4)

For n ≥ 2 and a1, . . . , an ∈ A, the functions L(o, a1 . . . an|z) can be rewritten as

∑

b,b0,c0∈A
L(o, b|z) · z · p(b, b0c0)

∑

b1,...,bn−2∈A,
c1,...,cn−2∈A

n−2∏

i=1

L̄(bi−1ci−1, aibici|z) ·G(bn−2cn−2, an−1an|z);

(3.5)
each path from o to a1 . . . an is decomposed to the last times when the sets A,A2, . . . ,An−1

are visited, that is, the factor L̄(bi−1ci−1, aibici|z) corresponds to the parts of the paths
from o to a1 . . . an between the final exits of the sets Ai and Ai+1.

4. Cones

4.1. Definitions of Cones and Properties. In this section we introduce the structure
of cones in our setting. A path in A∗ is a sequence of words 〈w0, w1, . . . , wm〉, m ∈ N, in
A∗ such that Pwi−1 [X1 = wi] > 0 for all 1 ≤ i ≤ m. By weak symmetry, we have that,
for each such path, the reversed sequence of words 〈wm, wm−1, . . . , w0〉 is also a path. For
n ∈ N, define A∗

≥n :=
{
w ∈ A∗∣∣|w| ≥ n

}
. For any w0 ∈ A∗

≥2, we define the cone rooted at
w0 as

C(w0) :=

{
w ∈ A∗

≥|w0|

∣∣∣∣∣
∃m ∈ N0 ∃ path 〈w0, w1, . . . , wm−1, w〉

with w1, . . . , wm−1 ∈ A∗
≥|w0|

}
.

In other words, when we consider the associated graph G then the cone C(w0) can be viewed
as the subgraph of G which is the connected component containing w0 after removing
all vertices w′ ∈ A \ A∗

≥|w0| and the adjacent edges to these w′. In particular, we have
w0 ∈ C(w0). If w1 ∈ C(w0) then we have C(w1) ⊆ C(w0): indeed, let be w2 ∈ C(w1);
therefore, |w2| ≥ |w1| ≥ |w0| and there are paths 〈w0, w

′
1, . . . , w

′
k, w1〉 through words

w′
1, . . . , w

′
k ∈ A∗

≥|w0| and 〈w1, w
′′
1 , . . . , w

′′
l , w2〉 through words w′′

1 , . . . , w
′′
l ∈ A∗

≥|w1| ⊆ A∗
≥|w0|.

Hence, there is a path 〈w0, w
′
1, . . . , w

′
k, w1, w

′′
1 , . . . , w

′′
l , w2〉 through words in A∗

≥|w0|, that
is, w2 ∈ C(w0) yielding C(w1) ⊆ C(w0). The cone C(w1) is then called a subcone of C(w0).

Observe that each element w ∈ C(w0) has the form w = a1 . . . am−2w̄, where w0 = a1 . . . am
with m ≥ 2, a1, . . . , am ∈ A and where w̄ ∈ A∗

≥2: indeed, by definition each w ∈ C(w0)

can be reached from w0 by a path through words of length bigger or equal than |w0|. Thus,
the first m− 2 letters are not changed along such a path.

By the suffix-irreducibility Assumption 2.4, we have the following important property
for cones: let be w ∈ A∗ and ab, cd ∈ A2; then the cone C(wab) has a proper subcone
C(wxcd) ⊂ C(wab) with a suitable choice of x ∈ A∗ \ {o}.
Recall that [w] denotes the last two letters of a word w ∈ A∗

≥2. We say that two cones
C(w1) and C(w2), w1, w2 ∈ A∗, are isomorphic if C([w1]) = C([w2]). The following lemma
explains why we call these cones “isomorphic”. Since the proof of the following lemma is
elementary, we omit the proof at this place and hand it in later in Appendix C.
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Lemma 4.1. Let be w1 = a1 . . . am, w2 = b1 . . . bn ∈ A∗
≥2 with a1, . . . , am, b1, . . . , bn ∈ A

such that C(w1) and C(w2) are isomorphic. Then:

(1) The mapping ϕ : C(w1) → C(w2) defined by

ϕ(a1 . . . am−2w̄) = b1 . . . bn−2w̄ for w̄ ∈ A∗
≥2 with a1 . . . am−2w̄ ∈ C(w1)

is a bijection which preserves the adjacency relation, that is, p(w′, w′′) > 0 if and
only if p

(
ϕ(w′), ϕ(w′′)

)
> 0 for all w′, w′′ ∈ C(w1).

(2) The cones are isomorphic as subgraphs of G.

The lemma says implicitly that the words of two isomorphic cones differ only by different
prefixes. Moreover, there is a natural 1-to-1 correspondence of paths inside C(w1) and
paths in an isomorphic cone C(w2) where obviously each such path in C(w1) and the
corresponding path in the other isomorphic cone C(w2) have the same probability: let be
〈w′

0, w
′
1, . . . , w

′
m〉 a path in C(w1); then 〈ϕ(w′

0), ϕ(w
′
1), . . . , ϕ(w

′
m)〉 is a path in C(w2) and

P
[
X1 = w′

1, . . . ,Xm = w′
m

∣∣X0 = w′
0] = P

[
X1 = ϕ(w′

1), . . . ,Xm = ϕ(w′
m)

∣∣X0 = ϕ(w′
0)].

We remark that C(w) and C(w′), w,w′ ∈ A∗
≥2, with C([w]) 6= C([w′]) can still be isomor-

phic as subgraphs of G but we will still distinguish them as elements of different isomor-
phism classes according to our definition of isomorphism of cones.

Our construction of cones ensures that different cones are either nested in each other or
disjoint as the next lemma will show; the elementary proof of the next lemma is again
omitted and will be handed in later in the Appendix C.

Lemma 4.2. Let be w1, w2 ∈ A∗
≥2. Then the cones C(w1) and C(w2) are either nested

in each other, that is, C(w1) ⊆ C(w2) or C(w2) ⊆ C(w1), or they are disjoint, that
is, C(w1) ∩ C(w2) = ∅. If we even have |w1| = |w2| then we have C(w1) = C(w2) or
C(w1) ∩ C(w2) = ∅.

At this point let us mention that the weak symmetry Assumption 2.1 is crucial here: if
this assumption is dropped then two cones C(w1) and C(w2), where w1, w2 ∈ A∗

≥2 with
|w1| = |w2| and C(w1) ∩ C(w2) 6= ∅ may be non-isomorphic. This case makes everything
much more difficult in our proofs since the property of cones from the last lemma (either
nestedness or disjointness) is lost and since we want to track the random walk’s way to
infinity by distinguishing which of the (disjoint) cones are successively finally entered on
its way to infinity. The author is however confident that one can adapt the situation if
weak symmetry does not hold but this would need much more effort with loss of good
readability of our proofs and no additional gain of the techniques; for further comments
see Appendix A.2.

Since isomorphism of cones depends only on the last two letters of their roots, we have
obviously only finitely many different isomorphism classes of cones. These isomorphism
classes can be described by two-lettered words ab ∈ A2: first, for each isomorphism class
of cones we fix some ab representing the class of C(ab). Let J ⊆ A2 be a system of
representants of the different isomorphism classes of cones. Thus, for every w ∈ A∗

≥2 there
is some unique ab ∈ J such that C([w]) = C(ab). Then we write τ

(
C(w)

)
:= ab for the
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cone type (or isomorphism class) of the cone C(w). The boundary of C(w) is given by the
set

∂C(w) =
{
w0 ∈ C(w)

∣∣ |w0| = |w|,∃w′ ∈ A∗ \ C(w) : p(w,w′) > 0
}
.

We have {[w] | w ∈ ∂C(w1)} = {[w] | w ∈ ∂C(w2)} for two ismorphic cones C(w1) and
C(w2) with w1, w2 ∈ A∗

≥2, which follows from the following fact: if x1 ∈ ∂C(w1) and
w′ ∈ A∗ \ C(w1) with p(x1, w

′) > 0, then there is, due to 4.1.(1), some x2 ∈ C(w2) with
[x1] = [x2] and p([x2], a) = p([x1], a) > 0, where a ∈ A is the last letter of w′. This implies
existence of some w′′ ∈ A∗ \ C(w2) with p(x2, w

′′) > 0.

We say that the graph G is expanding if each cone C(w0), w0 ∈ L, contains two proper
disjoint subcones, that is, if there exist subcones C(w1), C(w2) ( C(w0), w1, w2 ∈ L,
with C(w1) ∩ C(w2) = ∅. We call the random walk expanding if the associated graph G is
expanding. The results below do not depend on whether the random walk is expanding or
not. At the end, however, we will see that the non-expanding case leads to zero entropy.

Finally, let us remark that in the case of K-dependent random walks on A∗ suffix-irreducibi-
lity can be defined analogously and cones can be defined in the exactly same way; the
different cone types would be defined by words of length K. In Appendix B we will check
that suffix-irreducibility and the the “expanding” property are inherited by the blocked
letter language if these properties are satisfied for the K-dependent random walk.

4.2. Covering of Cones by Subcones. The next task is to cover (up to a finite comple-
ment) any cone C(w), w ∈ L, by a finite set of pairwise disjoint subcones C1, . . . , Cn(w) ⊂
C(w) such that

{
τ(C1), . . . , τ(Cn(w))

}
= J and

∣∣∣C(w) \
n(w)⋃

i=1

Ci

∣∣∣ < ∞,

that is, every cone type appears among these subcones and the subcones cover C(w) up to
finitely many words. We then call C1, . . . , Cn(w) a covering of C(w). In the next subsection
we show how to construct this covering when G is expanding; in Subsection 4.2.2 we consider
the case when G is not expanding.

4.2.1. Covering for Expanding Random Walks. Suppose we are given a cone C(w) with
w = w0a0b0 ∈ L, where w0 ∈ A∗ and a0b0 ∈ A2. Inside this cone we can find subcones of
the form C(w0w

′ab) for each ab ∈ A2 with suitable w′ ∈ A∗ \ {o} depending on ab due
to suffix-irreducibility. Now we want to find subcones of each type ab ∈ J which are even
pairwise disjoint. We proceed as follows to find these pairwise disjoint cones of all types:
since we assume in this subsection that G is expanding there are paths from w = w0a0b0
inside A∗

≥|w| to words w0w1a1b1 and w0w2a2b2, where w1, w2 ∈ A∗ \ {o}, a1b1, a2b2 ∈ A2

and C(w0w1a1b1) ∩ C(w0w2a2b2) = ∅. Then we have found a subcone of type τ(C(a1b1)),
and we search for other cone types in the subcone C(w0w2a2b2) in the same way. Obviously,
a subcone in C(w0w2a2b2) does not intersect C(w0w1a1b1). Iterating this step leads to a
finite set {C1, . . . , C|J |} of subcones of C(w) such that {τ(C1), . . . , τ(C|J |)} = J and
Ci ∩ Cj = ∅ for i, j ∈ {1, . . . , |J |} with i 6= j. After we have found these non-intersecting
subcones of all types in C(w) we cover the cone C(w) by further disjoint subcones: let be
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D = 1 + max{|w′| | w′ ∈ ⋃|J |
i=1 ∂Ci}; define MD = {w′ ∈ C(w) | |w′| = D}. Then we can

choose a subset M := {w′
1, . . . , w

′
k} ⊆ MD such that for all i, j ∈ {1, . . . , k} with i 6= j and

all n ∈ {1, . . . , |J |} we have: C(w′
i) ∩ Cn = ∅, C(w′

i) ∩ C(w′
j) = ∅ and

C(w) \
( |J |⋃

m=1

Cm ∪
k⋃

n=1

C(w′
n)

)

is finite. This is done as follows: write MD := {x1, . . . , xN} and set M0 := ∅. For every i ∈
{1, . . . , N}, perform the following steps with increasing i: if xi ∈

⋃|J |
j=1Cj ∪

⋃
x∈Mi−1

C(x),
then drop xi and set Mi := Mi−1. Otherwise, set Mi := Mi−1 ∪ {xi}. In the latter case we
cannot have Cj ⊂ C(xi) for some j ∈ {1, . . . , |J |} due to the choice of D (words in ∂Cj

have word length smaller than D and all words in C(xi) have length of at least D) and
also not C(xi) ⊂ Cj , which would lead to the contradiction xi ∈ Cj otherwise. We also
cannot have C(xj) ⊂ C(xi) for j < i because this implies, by Lemma 4.2, C(xi) = C(xj)
and therefore xi ∈ C(xj). At the end of this procedure we get some MN and set M := MN .
Since every path from w to infinity inside C(w) has to pass through a word of length D we
have ensured that each w′ ∈ C(w) with |w′| = D lies in one of the cones C1, . . . , CJ , C(x),
x ∈ M . Thus, the set C(w) \⋃|J |

m=1 Cm ∪⋃
x∈M C(x) is finite and the covering of C(w) is

given by the subcones
C1, . . . , C|J |, C(x), x ∈ M.

See Figure 1 for better visualization.

The crucial point now is that we fix a covering for each cone type such that the relative
positions of the subcones in the covering of some cone C(w) do not depend on the choice
of the specific root w ∈ L on the boundary of C(w) but only on τ(C(w)): first, for each
ab ∈ J , choose any wab ∈ A∗ such that wabab ∈ L and fix some covering for C(wabab),
say the cones C(wabv1), . . . , C(wabvk), where v1, . . . , vk ∈ A∗

≥3. If w = w0a1b1 ∈ L with
w0 ∈ A∗, a1b1 ∈ A2 and τ(C(w)) = ab = τ(C(wabab)) then we set the covering of C(w)
as the one which is inherited from the covering of C(wabab) by the relative location of the
subcones, that is, we set the covering of C(w) as the set of subcones C(w0v1), . . . , C(w0vk).

Lemma 4.3. The set of subcones C(w0v1), . . . , C(w0vk) is a covering of C(w).

Proof. First, C(w0v1), . . . , C(w0vk) are subcones of C(w) since ab ∈ C([w]) (yielding
w0ab ∈ ∂C(w)) and due to the following conclusion: for each i ∈ {1, . . . , k}, there is a
path from wabab to wabvi through words in A∗

≥|wabab|, which implies that there is a path
from ab to vi through words in A∗

≥2 yielding existence of a path from w = w0[w] via w0ab

to w0vi through words in A∗
≥|w|. That is, C(w0vi) ⊂ C(w).

Since J = {τ(C(v1)), . . . , τ(C(vk))} the set of subcones {C(w0v1), . . . , C(w0vk)} contains
all different types. The next step is to show disjointness of the cones C(w0v1), . . . , C(w0vk).
Assume w.l.o.g. that C(w0v1) ( C(w0v2). Then there exists a path from w0v2 to w0v1
through words in A∗

≥|w0v2|. This implies that there exists a path from v2 to v1 through
words in A∗

≥|v2| ⊆ A∗
≥3, which implies that there exists a path from wabv2 to wabv1 through

words in A∗
≥|wabv2| yielding C(wabv1) ⊆ C(wabv2), a contradiction to the choice of C(wabv1),
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Figure 1. Covering of cones by subcones: the numbers represent the four
different cone types; the cones with the solid boundary lines belong to the
covering of C(w). The construction of a covering is done as follows: e.g.,
we find three three cones in C(w) whose union covers C(w) up to a finite
set, say the cones C(w1) (type 1), C(w2) (type 1) and C(w3) (type 2). We
keep the cones C(w2) and C(w3) for the covering of C(w) and search for
cones of type 3 and 4 in the subcone C(w1). After having found cones of
type 3 and 4 in C(w1) (for instance, the cones C(w4) and C(w5)) we take
additional disjoint cones in C(w1) (in the picture the innermost type-1 cone
C(w6) only) into the covering such that the complement of the union of all
subcones in the covering is finite. That is, the covering of C(w) consists of
the cones C(w2), C(w3), C(w4), C(w5) and C(w6).

C(wabv2) in the covering of C(wabab). Thus, the cones C(w0v1), . . . , C(w0vk) are pairwise
disjoint.

Analogously, we show that C(w)\⋃k
i=1 C(w0vi) is finite. Assume that this set difference is

not finite. Then for every N ∈ N with N ≥ 3, there exists some w̄N ∈ A∗ with |w̄N | = N

and w0w̄N ∈ A∗∩⋃k
i=1 C(w0vi) such that there is a path from w = w0[w] to w0w̄N through

words in A∗
≥|w|. Since [w] ∈ C(ab) there is a path from ab to [w] through words in A∗

≥2

implying that there exists a path from ab to w̄N ∈ ⋃k
i=1C(vi) through words in A∗

≥2.

But this implies that there exists a path from wabab to wabw̄N ∈ ⋃k
i=1 C(wabvi) through

words in A∗
≥|wabab|. This gives a contradiction since C(wabab) \

⋃k
i=1C(wabvi) is finite and

therefore N cannot be large. This yields the claim. �

Hence, the covering of a cone depends only on its cone type, which describes the relative
location of its subcones in its interior.
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We can also cover L (up to a finite set) by a finite number of non-intersecting subcones,
where each cone type appears. To this end, we just apply the algorithm explained above
and take pairwise disjoint cones of the form C(w) with w ∈ L and |w| ≥ 2. We denote
by C

(0)
1 , . . . , C

(0)
n0 the covering of L, which contains all types in J and which satisfies∣∣L \⋃n0

i=1C
(0)
i

∣∣ < ∞.

4.2.2. Non-Expanding Random Walks. Now we explain how to proceed if G is not expand-
ing, that is, there is a cone C(w), w ∈ L, which does not contain two proper disjoint
subcones. Recall that due to suffix-irreducibility there is, for every ab ∈ J , a subcone
C(w1) ⊂ C(w) with [w1] = ab. Thus, all cones do not have two proper disjoint sub-
cones, because otherwise we get a contradiction to the choice of w. This non-expanding
case may, in particular, occur if L is a proper subset of A∗. Take now disjoint cones
C(a1b1), . . . , C(adbd), where d ∈ N, a1b1, . . . , adbd ∈ A2 with C(aibi) ∩ C(ajbj) = ∅ for all
i, j ∈ {1, . . . , d} with i 6= j and L \ ⋃d

k=1C(akbk) is finite. As already mentioned above
the cones C(aibi), i ∈ {1, . . . , d}, do not contain two proper disjoint subcones. Thus, we
can then cover any cone C(w), w ∈ A∗

≥2, by the subcone C(w1) for any w1 ∈ C(w) with
|w1| = |w| + 1 and p(w,w1) > 0.

Example 4.4. In order to illustrate this situation we give a short example for this case: let
A = {a, b}, p(o, a) = p(a, o) = p(o, b) = p(b, o) = p(a, ab) = p(b, ba) = 1

2 and p(ab, aba) =
2
3 , p(ba, b) = 1

3 , p(ba, bab) = 3
4 , p(ab, a) = 1

4 . The set L is then given by all words of the
form ababa . . . ba, ababa . . . bab, baba . . . bab and baba . . . baba. The random walk is transient
and satisfies the Assumptions 2.1 and 2.4. We have C(ab) ∩ C(ba) = ∅ and C(ab) =
C(aba) ∪ {ab} and C(ba) = C(bab) ∪ {ba}.

The next step is to show that a non-expanding random walk converges to one of finitely
many infinite words. More precisely, since we consider transient random walks, |Xn| tends
almost surely to infinity. Therefore, we must have that the prefixes of arbitrary length of Xn

stabilize for n large enough, that is, for each N ∈ N there exists almost surely some index
nN ∈ N such that the prefixes of length N of XnN

,XnN+1,XnN+2, . . . , remain constant
forever. Thus, (Xn)n∈N0 tends to some infinite (random) word X∞ ∈ AN.

Lemma 4.5. If (Xn)n∈N0 is non-expanding, then the support of X∞ is finite.

Proof. First, assume that X∞ starts with positive probability with the letter a0 ∈ A.
Assume also that P[∀n ≥ 1 : Xn ∈ C(a0b0c0) | X0 = a0b0c0] > 0 for some b0c0 ∈ A2

with a0b0co ∈ L. We denote by A the event that X∞ starts with the letter a0 and that
the random walk finally enters C(a0b0c0) on its way to infinity. Then P[A] > 0. On this
event A, assume now that the random walk tends with positive probability to some infinite
words with prefixes wa1 and wa2, where w ∈ A∗

≥2 starts with the letter a0 and a1, a2 ∈ A
with a1 6= a2. Then there must be words wa1b1c1, wa2b2c2 ∈ C(a0b0c0), b1c1, b2c2 ∈ A2,
such that

P
[
∃n ∈ N : Xn = waibici,∀m ≥ n : Xm ∈ C(waibici)

∣∣A
]
> 0 for i ∈ {1, 2}.

Obviously, C(wa1b1c1)∩C(wa2b2c2) = ∅. But this leads to the contradiction that C(a0b0c0)
has two proper disjoint subcones. Therefore, C(wa1b1c1) ∩ L = ∅ or C(wa2b2c2) ∩ L = ∅,
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yielding that the letter a1 (or a2) is deterministic on the event A. By induction, the infinite
limiting word X∞ is deterministic on the event A, and it depends only on a0 and b0c0.
Since there are only finitely many possibilities for a0 and b0c0, the limiting word X∞ can
only take finitely many values. �

The last lemma and suffix-irreducibility directly imply that the support of the random walk
is a proper subset of A∗ if (Xn)n∈N0 is non-expanding. The limiting words in Example 4.4
are ababab . . . and bababa . . ..

5. Last Entry Times

In this section we prove a law of large numbers, which turns out to describe the asymptotic
entropy in the later section. For this purpose, we define last entry times (compare with [7]),
for which we derive a law of large numbers. In this section we will assume that (Xn)n∈N0 is
transient and we will assume Assumptions 2.1 and 2.4, where we make explicit comments
when these assumptions are essential at some points. Throughout this section, we will also
use the following notations: w0, w1, w2 ∈ A∗ \ {o} and a, b, c, d, a1, b1, a2, b2, . . . ∈ A.

5.1. Last Entry Time Process. We define the following last entry times. Let e0 be
the first time at which the random walk visits

⋃n0
i=1 ∂C

(0)
i and stays in one of the cones

C
(0)
1 , . . . , C

(0)
n0 afterwards forever, that is,

e0 := inf
{
m ∈ N0

∣∣ ∃i ∈ {1, . . . , n0} ∀n ≥ m : Xn ∈ C
(0)
i

}
.

In particular, Xe0 ∈ ⋃n(0)
i=1 ∂C

(0)
i and Xe0−1 /∈ ⋃n(0)

i=1 C
(0)
i . In other words, at time e0 the

random walk finally enters one of the cones C
(0)
i with no further exits. Inductively, if

Xek = w ∈ L for k ≥ 0 and if C(w) has the covering (determined only by the type of
C(w)) consisting of the subcones C

(k)
1 , . . . , C

(k)
n(w) as explained in Section 4, then

ek+1 := inf
{
m > ek

∣∣∃i ∈ {1, . . . , n(w)} ∀n ≥ m : Xn ∈ C
(k)
i

}
.

In particular, Xek+1
∈ ⋃n(w)

i=1 ∂C
(k+1)
i and Xek+1−1 /∈ ⋃n(w)

i=1 ∂C
(k)
i . Transience of (Xn)n∈N0

yields ek < ∞ for all k ∈ N0 almost surely. Observe that Xn, n ≥ ek, has the prefix
w0 if Xek = w0ab. Define the relative increments (Wk)k∈N0 between two last entry times
as follows: set W0 := Xe0 ; for k ≥ 1: if Xek−1

= w0ab and Xek = w0w1cd, then set
Wk := w1cd. Since we have only finitely many different cone types and the subcones of
the covering of any cone C are nested at uniformly bounded distance (w.r.t. minimal path
lengths) to ∂C, the random variables Wk can take only finitely many different values.
Observe that we can reconstruct the values of the Xek ’s from the values of the Wk’s: if
Wl = wlalbl for l ≤ k then Xek = w0w1 . . . wkakbk.

For w ∈ L, define

S(w) :=
n(w)⋃

i=1

∂Ci,
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where C1, . . . , Cn(w) is the covering of C(w) according to Section 4. Observe that S(w1) =
S(w2) if C(w1) = C(w2). Define for x = a1 . . . ak ∈ A∗ and y = a1 . . . ak−2bk−1bk . . . bk+d ∈
C(x) with d ≥ 1 and d = d(x, y) := |y| − |x|:

L(x, y) :=
∑

n≥0

P
[
Xn = y,Xn−1 /∈ C(y),∀m ∈ {1, . . . , n} : Xm ∈ C(x)

∣∣∣X0 = x
]
.

If d = 1 then L(x, y) = L̄(ak−1ak, bk−1bkbk+1). If d ≥ 2 then L(x, y) can be rewritten as

∑

y1,...,yd−1∈A3:
yi[1]=bk−2+i

L̄(ak−1ak, y1) ·
d−2∏

j=1

L̄(yj[2]yj [3], yj+1) · L̄(yd−1[2]yd−1[3], bk+d−2bk+d−1bk+d);

(5.1)
the last equation follows from the fact that L(x, y) depends on x only by its last two letters
ak−1ak and by decomposition of the paths from x to y w.r.t the last times when the sets
Ak, Ak+1, . . . ,Ak+d−1 are visited on the way from x to y. That is, the l-th factor in (5.1)
corresponds to the part of the path from x to y between the last entry of A∗

≥k+l−1 at
the word a1 . . . ak−2bk−1 . . . bk+l−3yl−1[2]yl−1[3] and the last entry to A∗

≥k+l at the word
a1 . . . ak−2bk−1 . . . bk+l−2yl[2]yl[3] (with y0[2]y0[3] = ak−1ak and yd = bk−2bk−1bk). More-
over, L(x, y) = L(ak−1ak, bk−1bk . . . bk+d).

If x1 ∈ L, x2 ∈ S(x1) and x3 ∈ S(x2) then

L(x1, x3) =
∑

y∈∂C(x2)

L(x1, y) · L(y, x3)

by decomposition w.r.t. the last visit of the set ∂C(x2) since C(x3) ⊂ C(x2) ⊂ C(x1). In
particular, if P[Xek = x1,Xek+1

= x2, . . . ,Xek+l
= xl+1] > 0 for x1, . . . , xl+1 ∈ L then we

have

P[Xek = x1,Xek+1
= x2, . . . ,Xek+l

= xl+1]

=
∑

x0∈L\C(x1)

G(o, x0|1) · p(x0, x1) · L(x1, x2) · . . . · L(xl, xl+1) · ξ([xl+1]) (5.2)

by decomposition on the final entries of the cones C(x1), . . . , C(xl+1). We obtain the fol-
lowing important observation:

Proposition 5.1. The process
(
Wk

)
k≥1

is a Markov chain with transition probabilities

q(x, y) :=

{
ξ([y])
ξ([x])L(x, y), if y ∈ S(x),
0, otherwise.

Proof. Let be w0, . . . , wk+1 ∈ A∗ \ {o} such that w0 ∈ ⋃n0
j=1 ∂C

(0)
j , wi+1 ∈ S(wi) for

all i ∈ {0, . . . , k} and P[W0 = w0, . . . ,Wk+1 = wk+1] > 0. For any such sequence
w = (w0, . . . , wk+1), we set x0(w) := w0 and inductively: if xk−1(w) = yk−1ak−1bk−1 with
yk−1 ∈ A∗ and ak−1bk−1 ∈ A2 then set xk(w) := yk−1wk. That is, if Wk = wk then
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Xek = xk(w). Then:

P
[
W1 = w1, . . . ,Wk = wk

]
=

∑

w0∈
⋃n0

j=1 ∂C
(0)
j

P
[
W0 = w0, . . . ,Wk = wk

]

=
∑

w0∈
⋃n0

j=1 ∂C
(0)
j

P
[
Xe0 = w0,Xe1 = x1(w), . . . ,Xek = xk(w)

]

=
∑

w0∈
⋃n0

j=1 ∂C
(0)
j

∑

w′∈L\C(w0)

G(o,w′|1) · p(w′, w0) ·
k∏

i=1

L(xi−1(w), xi(w)) · ξ([xk(w)])

=
∑

w0∈
⋃n0

j=1 ∂C
(0)
j

∑

w′∈L\C(w0)

G(o,w′|1) · p(w′, w0) ·
k∏

i=1

L(wi−1, wi) · ξ([wk]).

The last equation arises from (5.2) by decomposing the paths by the last entries to the
sets ∂Ci, where Ci denotes the cone with Xei ∈ ∂Ci. Now we obtain:

P
[
Wk+1 = wk+1 | W1 = w1, . . . ,Wk = wk

]

=
P
[
W1 = w1, . . . ,Wk = wk,Wk+1 = wk+1

]

P
[
W1 = w1, . . . ,Wk = wk

]

=

∑
w0∈

⋃n0
j=1 ∂C

(0)
j

∑
w′∈L\C(w0)

G(o,w′|1) · p(w′, w0) ·
∏k+1

i=1 L(wi−1, wi) · ξ([wk+1])

∑
w0∈

⋃n0
j=1 ∂C

(0)
j

∑
w′∈L\C(w0)

G(o,w′|1) · p(w′, w0) ·
∏k

i=1 L(wi−1, wi) · ξ([wk])

= q(x, y).

�

Define the set

W0 :=
{
w ∈ A∗∣∣∃w0 ∈ A∗, ab ∈ A2 with P[W0 = w0ab,W1 = w] > 0

}
⊆ A∗

≥3.

The next lemma desribes the support of the random variables Wk; since the proof contains
only elementary, tedious calculations, we omit it at this place and hand it in later in
Appendix C.

Lemma 5.2. For all k ≥ 1, supp(P[Wk = ·]) = W0.

With the last lemma we can show:

Lemma 5.3. The Markov chain (Wk)k∈N is positive recurrent and aperiodic.

Proof. Since W0 is finite it suffices to show that the process (Wk)k∈N is irreducible and
aperiodic. First we show irreducibility. Let be w1 = w′a1b1, w2 ∈ W0. Then there is some
w0a0b0 ∈

⋃n0
j=1 ∂C

(0)
j such that

P[W1 = w2] ≥ P[Xe0 = w0a0b0,W1 = w2]

=
∑

w′∈L\C(w0a0b0)

G(o,w′)p(w′, w0a0b0)L(w0a0b0, w0w2)ξ([w2]) > 0.
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In particular, L(a0b0, w2) = L(w0a0b0, w0w2) > 0. By construction of coverings, C(a1b1)
has a subcone of type τ(C(a0b0)) in its covering, say the cone C(w̃) with w̃ ∈ C(a1b1)∩W0

and L(a1b1, w̃) > 0. Then:

P[W3 = w2 | W1 = w1] ≥ q(w1, w̃) · q(w̃, w2) (5.3)

= L(a1b1, w̃)L([w̃], w2)
ξ([w2])

ξ(a1b1)
> 0,

which follows from the fact that L([w̃], w2) > 0 due to [w̃] ∈ C(a0b0) and L(a0b0, w2) > 0
(recall the remark before Lemma 5.2). This proves irreducibility and thus positive recur-
rence of (Wk)k∈N.

In order to see aperiodicity of the process (Wk)k∈N choose in the proof above w1 = w2,
which yields that the period of (Wk)k∈N is either 1 or 2. Now let be w ∈ W0 and take any
ŵ ∈ W0 with q(w, ŵ) > 0. Then according to (5.3) we get

P[W4 = w,W2 = ŵ | W1 = w] = q(w, ŵ) · P[W3 = w | W1 = ŵ] > 0,

which implies aperiodicity. �

For sake of better identification of the cones, we now switch to a more suitable repre-
sentation of cones and coverings. We identify the different cone types by numbers I :=
{1, . . . , r} ⊂ N. If C(w) is a cone of type i ∈ I , then the covering of C(w) (according to
Subsection 4.2) has n(i, j) subcones of type j ∈ I . We denote these subcones of type j by
Cji,k = Cji,k(w) ⊂ C(w) with 1 ≤ k ≤ n(i, j) or we just identify them by ji,1, . . . , ji,n(i,j),
which correspond to the subcones of type j with different locations inside C(w). In partic-
ular, we choose this enumeration of the subcones of type j in a consistent way: if C(wabvm)
belongs to the covering of C(ab), i = τ(C(ab)), with C(wabvm) being the k-th cone of type
j in the covering of C(ab) (identified by ji,k w.r.t. ab), then the k-th subcone of type j in
the covering of any cone C(w0ab) is the subcone C(w0vm); compare with the construction
of the covering of any cone C(w) starting from the covering of the cone C(wabab) in Sub-
section 4.2. That is, by this enumeration of subcones we ensure that the relative position
of Cji,k(w) in the interior of C(w) is always the same for any w ∈ L with i = τ(C(w)). We
will sometimes omit the root w in the notation of the subcones when it will be clear from
the context and when only the relative position of a subcone in some given cone will be of
importance.

We now track the random walk’s way to infinity by looking which of the cones are finally
entered successively. For this purpose, define ik := ji,l if τ(C(Xek−1

)) = i and Xek ∈
∂Cji,l(Xek−1

). If we set additionally i0 := C(Xe0), then the sequence (ik)k∈N0 tracks the
random walk’s way to infinity.

At this point we recall the relation between Wk and Xek : if Xe0 = W0 = w0a0b0 and
W1 = w1a1b1 then Xe1 = w0w1a1b1; in general, if Xek−1

= wak−1bk−1 and Wk = wkakbk
then Xek = wwkakbk. That is, there is a natural bijection of trajectories of (Wk)k∈N0 and
(Xek)k∈N0 . In particular, the values of the Wk’s determine the values of the ik’s uniquely,
since the last two letters of Wk−1 describe τ(C(Xek−1

)) and Wk describes τ(C(Xek)) and
the corresponding number in the enumeration of subcones. For a better visualization of
the values of ik, see Figure 2.
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11,1

21,1

1

1

m,n

21,1

1,1

12,4

2,1

1

1

2

2,1

2,2

2,31

Figure 2. Numbering of subcones: the cones with the solid boundary be-
long to the covering while the cone with the dotted line does not.

In other words, the random variables ik collect the information of the different cones which
are entered successively by the random walk (Xn)n∈N0 on its way to infinity, while the
Wk’s keep, in addition, the information where the single subcones are finally entered.

Define

W :=



(jm,n, x)

∣∣∣∣∣
x ∈ W0,∃w0 ∈ L : P[W0 = w0,W1 = x] > 0,
τ(C([w0])) = m, τ(C([x])) = j, 1 ≤ n ≤ n(m, j)

with x ∈ ∂Cjm,n([w0])



 .

In other words, (jm,n, x) ∈ W if x ∈ W0 with τ(C(x)) = j and if there is w0a0b0 ∈ L such
that τ(C(a0b0)) = m, P[Xe0 = w0a0b0,Xe1 = w0x] > 0 and C(x) being the n-th subcone
of type j in the covering of C(a0b0).

Proposition 5.4. The process
(
(ik,Wk)

)
k∈N is a positive recurrent, aperiodic Markov

chain on the state space W. Moreover, for (im,n, w1), (js,t, w2) ∈ W, the transition proba-
bilities are given by

P
[
(ik,Wk) = (js,t, w2)

∣∣∣(ik−1,Wk−1) = (im,n, w1)
]
=

{
q(w1, w2), if s = i,

0, if s 6= i.
(5.4)

Proof. Since the values of the ik’s are uniquely determined by the values of the Wk’s and
since the process (Wk)k∈N is a Markov chain, we also have that

(
(ik,Wk)

)
k∈N is Markovian

with the proposed transition probabilities.

It remains to prove that supp(P[(ik,Wk) = ·]) = W for k ≥ 1 and that
(
(ik,Wk)

)
k∈N is

positive recurrent and aperiodic. Since both proofs consist of tedious calculations analo-
gously to the proofs of Lemmas 5.2 and 5.3 we omit these proofs here and refer to Appendix
C, where we will hand in them later. �
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Let us recall that the values of the ik’s are uniquely determined by the values of the Wk’s;
however, we will explicitely keep the values of the ik’s in the notation of the process for
sake of convenience. Observe that the process (ik)k∈N is, in general, not Markovian. This
relies on the fact that (ik)k∈N can be seen as a function of the process (Wk)k∈N: the values
of the Wk’s determine the values of the ik’s but not vice versa.

Define the following projection for (ik,l, w1), (jm,n, w2) ∈ W:

π
(
(ik,l, w1), (jm,n, w2)

)
:=

{
(i, ji,n) =: (i, jn), if m = i,

(i, ji,1) = (i, j1), if m 6= i.
(5.5)

Here, jl represents the l-th subcone of type j in the covering of a cone of type i, namely
the cone represented by ji,l. We now define the hidden Markov chain (Yk)k∈N by

Yk := π
(
(ik,Wk), (ik+1,Wk+1)

)
.

In other words, (Yk)k∈N traces once again the random walk’s way to infinity in terms of
which subcones are entered successively without distinguishing which of the cone boundary
points are the last entry time points Xek . At this point let us mention that the second
branch in the definition of π(·, ·) is not used for defining Yk, but it will be of interest in
Section 8. Furthermore, observe that Xe0 and (Yk)k∈N allow to reconstruct (ik)k∈N.

Define
Wπ :=

{
(s, tn)

∣∣s, t ∈ I, 1 ≤ n ≤ n(s, t)
}
.

That is, tn corresponds to the n-th subcone of type t in the covering of a cone of type s.

Lemma 5.5. For all k ≥ 1, supp(P[Yk = ·]) = Wπ.

Proof. The inclusion supp(P[Yk = ·]) ⊂ Wπ is obvious by definition of Yk and Wπ. Now
we show the other inclusion. Let be (s, tn) ∈ Wπ. Take any wk−1ak−1bk−1 ∈ W0 with
P[Wk−1 = wk−1ak−1bk−1] > 0. Then there exists wkakbk ∈ W0 with τ(C(akbk)) = s and
q(wk−1ak−1bk−1, wkakbk) > 0 due to the construction of coverings. Moreover, there is
wk+1ak+1bk+1 ∈ W0 with q(wkakbk, wk+1ak+1bk+1) > 0 such that C(wk+1ak+1bk+1) is the
n-th cone of type t in C(akbk). Thus,

P[Yk = (s, tn)]

≥ P[Wk−1 = wk−1ak−1bk−1,Wk = wkakbk,Wk+1 = wk+1ak+1bk+1]

= P[Wk−1 = wk−1ak−1bk−1] · q(wk−1ak−1bk−1, wkakbk) · q(wkakbk, wk+1ak+1bk+1) > 0,

yielding (s, tn) ∈ supp(P[Yk = ·]). �

Since the process (ik,Wk)k∈N is positive recurrent, it has an invariant probability measure ν.
Let (i(ν)k ,W

(ν)
k )k∈N be a Markov chain with transition probabilities given by (5.4) but with

initial distribution ν. The corresponding hidden Markov chain (Y
(ν)
k )k∈N is given by

Y
(ν)
k := π

(
(i
(ν)
k ,W

(ν)
k ), (i

(ν)
k+1,W

(ν)
k+1)

)
.

In the next section we will link the hidden Markov chains (Yk)k∈N and (Y
(ν)
k )k∈N.
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5.2. Entropy of the Hidden Markov Chain related to the Last Entry Time
Process. In this subsection we derive existence of the asymptotic entropy of the hidden
Markov chains (Y

(ν)
k )k∈N and (Yk)k∈N.

First, consider the hidden Markov chain (Y
(ν)
k )k∈N: this process is stationary and ergodic

since the underlying Markov chain
(
i
(ν)
k ,W

(ν)
k

)
k∈N is stationary, positive recurrent and

aperiodic. Hence, there is a constant H(Y) ≥ 0 such that

lim
k→∞

−1

k
logP[Y(ν)

1 = y
1
, . . . ,Y

(ν)
k = y

k
] = H(Y) (5.6)

for almost every realisation (y
1
, y

2
, . . . ) ∈ WN

π of (Y(ν)
k )k∈N; see e.g. Cover and Thomas [5,

Theorem 16.8.1]. The number H(Y) is called the asymptotic entropy of the (positive recur-
rent) process (Y

(ν)
k )k∈N. We now deduce an analogous statement for the process (Yk)k∈N.

Proposition 5.6. For almost every realisation (y
1
, y

2
, . . . ) ∈ WN

π of (Yk)k∈N,

lim
k→∞

−1

k
log P

[
Y1 = y

1
, . . . ,Yk = y

k

]
= H(Y).

Proof. The processes (Y
(ν)
k )k∈N and (Yk)k∈N differ only by the inital distributions of

(i
(ν)
1 ,W

(ν)
1 ) and (i1,W1). Moreover, there are constants c, C > 0 such that

c · P[(i1,W1) = (im,n, x)] ≤ ν(im,n, x) ≤ C · P[(i1,W1) = (im,n, x)]

for all (im,n, x) ∈ W. Denote by µ1 the distribution of (i1,W1). We now get for almost
every trajectory (y

1
, y

2
, . . . ) ∈ WN

π of (Yk)k∈N:

H(Y) = lim
k→∞

−1

k
logP

[
Y

(ν)
1 = y

1
, . . . ,Y

(ν)
k = y

k

]

= lim
k→∞

−1

k
log

∑

w1,...,wk+1∈W :

π(wj ,wj+1)=y
j

for 1≤j≤k

ν(w1)P[(il,Wl) = wl for 2 ≤ l ≤ k + 1 | (i1,W1) = w1]

= lim
k→∞

−1

k
log

∑

w1,...,wk+1∈W :

π(wj ,wj+1)=y
j

for 1≤j≤k

µ1(w1)P[(il,Wl) = wl for 2 ≤ l ≤ k + 1 | (i1,W1) = w1]

= lim
k→∞

−1

k
log

∑

w1,...,wk+1∈W :

π(wj ,wj+1)=y
j

for 1≤j≤k

P
[
(i1,W1) = w1, . . . , (ik+1,Wk+1) = wk+1

]

= lim
k→∞

−1

k
log P

[
Y1 = y

1
, . . . ,Yk = y

k

]
.

�

As a consequence we obtain the next statement:

PUBLICATION D. ASYMPTOTIC ENTROPY OF RAND. WALKS ON REG. LANG.

147



ASYMPTOTIC ENTROPY OF RANDOM WALKS ON REGULAR LANGUAGES 23

Corollary 5.7.

lim
k→∞

−1

k

∫
logP

[
Y1 = y

1
, . . . ,Yk = y

k

]
dP(y

1
, y

2
, . . . ) = H(Y).

Proof. Since |W| < ∞ by definition, there is ε0 > 0 such that, for all w1, w2 ∈ W,

P[(i2,W2) = w2 | (i1,W1) = w1] > 0 implies 1 ≥ P[(i2,W2) = w2 | (i1,W1) = w1] ≥ ε0.

If (y
1
, . . . , y

k
) ∈ Wk

π with P[Y1 = y
1
, . . . ,Yk = y

k
] > 0 then there are w1, . . . , wk+1 ∈ W

with π(wj , wj+1) = y
j

for 1 ≤ j ≤ k and P
[
(i1,W1) = w1, . . . , (ik+1,Wk+1) = wk+1

]
> 0.

Therefore,

0 ≤ −1

k
logP

[
Y1 = y

1
, . . . ,Yk = y

k

]

≤ −1

k
logP

[
(i1,W1) = w1, . . . , (ik+1,Wk+1) = wk+1

]

≤ −1

k
log(c · εk0) = −1

k
log c− log ε0 ≤ − log c− log ε0,

where c = minw∈W P[(i1,W1) = w]. Therefore, we may exchange integral and limit, which
yields the claim together with Proposition 5.6. �

Let be w ∈ L with |w| ≥ 2. Define

l̂(w) := − log
∑

w′∈∂C(w)

L(o,w′|1).

We obtain the following law of large numbers:

Proposition 5.8.

lim
k→∞

l̂(Xek)

k
= H(Y) almost surely.

Proof. Let be k ∈ N and assume for the moment that Wl = ylalbl, where yl ∈ A∗ \ {o}
and albl ∈ A2 for 0 ≤ l ≤ k. That is, Xel = y0y1 . . . ylalbl. Furthermore, assume that
Y1 = (j, t(1)), where j = τ(C(a1b1)), and Yl = (s(l), t(l)) for 2 ≤ l ≤ k, where the values
of s(2), . . . , s(k−1) and t(1), . . . , t(k−1) are determined by the values of Wl = ylalbl.

One can show that, for almost every realisation (x1, y1, y2, . . . ) of (Xe1 ,Y1,Y2, . . . ),

H(Y) = lim
k→∞

−1

k
log P

[
C(Xe1) = C(x1),Y1 = y

1
, . . . ,Yk = y

k

]
. (5.7)

This follows from the fact that there are only finitely many possibilities for C(Xe1) which
do not affect the resulting limit. Since the proof of this equation consists of technical
reformulations of the involved probabilities we omit it at this place and give it in Lemma
C.1 in Appendix C.
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Recall from Equation (3.1) that G(o,w|1) = G(o, o|1)L(o,w|1) for all w ∈ L and that ξ(·)
can only take finitely many (non-zero) values. We now can conclude as follows:

lim
k→∞

l̂(Xek)

k
= lim

k→∞
−1

k
log

∑

w′∈∂C(y0y1...ykakbk)

L(o,w′|1)

= lim
k→∞

−1

k
log

∑

bc∈A2:bc∈∂C(akbk)

L(o, y0y1 . . . ykbc|1)

= lim
k→∞

−1

k
log

[ ∑

w1∈∂C(y0y1a1b1)

∑

w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

∑

w′∈L:
w′ /∈C(w1)

L(o,w′|1)p(w′, w1)

k∏

i=2

L([wi−1], wi)

]

= lim
k→∞

−1

k
log

[ ∑

w1∈∂C(y0y1a1b1);
w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k;
w′∈L\C(w1)

G(o,w′|1)p(w′, w1)ξ([w1]) ·
k∏

i=2

ξ([wi])

ξ([wi−1])
L([wi−1], wi)

]

= lim
k→∞

−1

k
log

[ ∑

w1∈∂C(y0y1a1b1)

∑

w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

P[Xe1 = w1]q(y1[w1], w2)
k∏

i=3

q(wi−1, wi)

]

= lim
k→∞

−1

k
log P

[
Xe1 ∈ C(y0y1a1b1),Y1 = (j, t(1)),

Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
= H(Y).

The last equation follows from (5.7). We remark that the first coordinate of Y1 describes
only the cone type of Xe1 but there may be several distinct cones of the same type j ∈ I
with j = τ(C(Xe1)). �

Recall the definition of l(w) = − logL(o,w|1) for w ∈ L.

Corollary 5.9.

lim
k→∞

l(Xek)

k
= H(Y) almost surely.

Proof. It suffices to compare l̂(Xek) with l(Xek). Assume for a moment that Xek = wk

with wk ∈ L and that Xek is on the boundary of the cone Ck. Then, the probability of
walking inside Ck from any w′ ∈ ∂Ck to any w − k ∈ ∂Ck (or vice versa) can be bounded
from below by some constant ε0, because the probabilities depend only on [wk], [w

′] ∈ A2:
that is,

Pw′ [∃n ∈ N : Xn = wk,∀m ≤ n : Xn ∈ C(w′)] ≥ ε0.
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Therefore,

L(o,Xek |1) ≤
∑

w′∈∂Ck

L(o,w′|1) = l̂(Xek),

l̂(Xek) · ε0 ≤
∑

w′∈∂Ck

L(o,w′|1) · Pw′[∃n ∈ N : Xn = wk,∀m ≤ n : Xn ∈ C(w′)]

≤ |A2| · L(o,Xek |1).
In the second inequality chain we extended paths from o to w′ to paths from o to wk via
w′ such that each such path is counted at most |A2| times. Taking logarithms, dividing by
k and letting k tend to infinity yields the claim. �

Now we come to an important law of large numbers. Denote by ν0 the invariant probabilty
measure of the positive recurrent Markov chain (Wk)k∈N and define

λ := E[|W(ν)
1 |]− 2 =

∑

w∈W0

ν0(w) ·
(
|w| − 2

)
. (5.8)

Then:

Proposition 5.10.

lim
k→∞

l(Xn)

n
= ℓ · λ−1 ·H(Y) almost surely.

Proof. Define
êk := inf

{
m ∈ N

∣∣∀n ≥ m : |Xn| = k
}
.

Observe that êk − 1 = sup
{
m ∈ N

∣∣|Xm| = k− 1
}
. Transience yields êk < ∞ almost surely

for all k ∈ N. By [7, Proposition 2.3], k/(êk − 1) tends to the rate of escape ℓ as k → ∞;
hence, k/êk → ℓ as k → ∞. Define the maximal last entry times at time n ∈ N as

k(n) := max{k ∈ N | êk ≤ n},
t(n) := max{k ∈ N | ek ≤ n}.

Obviously, k(n) ≥ t(n) and each last entry time ek corresponds (depending on the concrete
realization) to exactly one êl with l ≥ k. First, we rewrite

l(Xn)

n
=

l(Xn)− l(Xet(n)
)

n
+

l(Xet(n)
)

t(n)
· t(n)
k(n)

· k(n)
êk(n)

· êk(n)
n

. (5.9)

Let ε1 be the minimal occuring positive single-step transition probability. Define

D := max

{
|w2| − |w1|

∣∣∣∣
∃ab ∈ A2 : C(ab) has covering C1, . . . , Cn(ab),

w1 ∈ ∂C(ab), w2 ∈ ⋃n(ab)
i=1 ∂Ci

}
< ∞.

Then we have êk(n) ≥ et(n) ≥ êk(n)−D and n/et(n) ≥ 1. This implies

1 ≤ n

et(n)
≤

êk(n)+1

êk(n)−D
=

êk(n)+1

k(n)

k(n)−D

êk(n)−D

n→∞−−−→ 1

ℓ
· ℓ = 1 a.s., (5.10)
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which in turn yields (n − et(n))/n → 0 as n → ∞. Thus, the first quotient on the right
hand side of (5.9) tends to zero since

L(o,Xn|1) · ε
n−et(n)

1 ≤ L(o,Xet(n)
|1) (due to weak symmetry),

L(o,Xet(n)
|1) · εn−et(n)

1 ≤ L(o,Xn|1).
Here we used the fact that one can walk from Xet(n)

to Xn (or vice versa) in n − et(n)
steps. By Corollary 5.9, l(Xet(n)

)/t(n) tends to H(Y). On the other hand side, êk/k tends
almost surely to 1/ℓ and êk(n)/n tends to 1 almost surely since 1 ≤ n/êk(n) ≤ n/et(n) → 1
by (5.10). It remains to investigate the limit limk→∞ k(n)/t(n). Clearly,

k(n)

t(n)
=

|Xêk(n)
|

t(n)
=

1

t(n)

(
|Xe1 |+

t(n)−1∑

i=1

(|Xei+1 | − |Xei |) + (|Xêk(n)
| − |Xet(n)

|)
)
.

Note that 0 ≤ |Xêk(n)
| − |Xet(n)

| ≤ D and 0 < |Xe1 | ≤ D1 almost surely for some suitable
constant D1. Thus, it is sufficient to consider

1

k

k∑

i=1

(|Xei+1 | − |Xei |) =
1

k

k∑

i=1

(
|Wi| − 2

)
.

Since (Wk)k∈N is positive recurrent, the ergodic theorem yields almost surely

lim
k→∞

1

k

k∑

i=1

(
|Wi| − 2

)
=

∑

w∈W0

ν0(w)
(
|w| − 2

)
= λ.

This finishes the proof and gives the proposed formula. �

6. Existence of Entropy

We now link Proposition 5.10 with the asymptotic entropy of the random walk (Xn)n∈N0 .
For this purpose, we follow the reasoning of [8]. First, we need the following lemma:

Lemma 6.1. There is R > 1 such that G(w1, w2|R) < ∞ for all w1, w2 ∈ L.

Proof. A simple adaption of the proof of [16, Proposition 8.2] shows that, for w1, w2 ∈ L,
G(w1, w2|z) has radius of convergence R(w1, w2) > 1. At this point we also need the suffix-
irreducibility Assumption 2.4; see Subsection A.1 for a comment on how to weaken this
assumption. Since we assume the random walk (Xn)n∈N0 to be irreducible, the radius of
convergence is independent from w1 and w2; hence, G(w1, w2|R) < ∞ for all w1, w2 ∈ L
and R = R(w1, w2). �

Let us remark that we have also L̄(ab, cde|R) < ∞, G(ab, cd|R) < ∞ and L(o, a|R) < ∞
for all a, b, c, d, e ∈ A, since these generating functions are dominanted by Green functions.
In the following let be ̺ ∈ [1, R).

Lemma 6.2. There are constants D1 and D2 > 0 such that for all m,n ∈ N0

p(m)(o,Xn) ≤ D1 ·Dn
2 · ̺−m.
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Proof. Denote by C̺ the circle with radius ̺ in the complex plane centered at 0. A straight-
forward computation together with Fubini’s Theorem shows for m ∈ N0 and w ∈ L:

1

2πi

∮

C̺
G(o,w|z) z−m dz

z
= p(m)(o,w);

compare with [8, Lemma 3.4]. Since G(o,w|z) is analytic on C̺, we have |G(o,w|z)| ≤
G(o,w|̺) for all |z| = ̺. Thus,

p(m)(o,w) ≤ 1

2π
· ̺−m−1 ·G(o,w|̺) · 2π̺ = G(o,w|̺) · ̺−m.

Set L := 1 ∨max
{
L̄
(
ab, cde|̺

)
| a, b, c, d, e ∈ A

}
, C0 := ̺ · G(o, o|̺) ·∑a∈A L(o, a|̺) and

C1 = max{G(ab, cd|̺) | ab, cd ∈ A2}. Equation (3.5) provides for all w ∈ L with |w| ≥ 2

G(o,w|̺) = G(o, o|̺) · L(o,w|̺) ≤ C0 · |A|2(|w|−2) · L|w|−2 · C1.

Set C2 := C0 ∨ max{G(o,w|̺)|w ∈ L, |w| ≤ 2}. Since |Xn| ≤ n, we obtain the proposed
inequality by setting D1 := C1 + C2 and D2 := |A|2 · L:

p(m)(o,Xn) ≤ D1 · |A|2|Xn| · L|Xn| · ̺−m ≤ D1 · |A|2n · Ln · ̺−m = D1 ·Dn
2 · ̺−m.

�

The following technical lemma will be used in the proof of the next theorem:

Lemma 6.3. Let (An)n∈N, (an)n∈N, (bn)n∈N be sequences of strictly positive numbers with
An = an + bn. Assume that limn→∞− 1

n logAn = c ∈ [0,∞) and that limn→∞ bn/q
n = 0

for all q ∈ (0, 1). Then limn→∞− 1
n log an = c.

Proof. A proof can be found in [8, Lemma 3.5]. �
Lemma 6.4. For n ∈ N, consider the function fn : L → R defined by

fn(w) :=

{
− 1

n log
∑n2

m=0 p
(m)(o,w), if p(n)(o,w) > 0,

0, otherwise.

Then there are constants d and D such that d ≤ fn(w) ≤ D for all n ∈ N and w ∈ L.

Proof. Let be w ∈ L and n ∈ N with p(n)(o,w) > 0. For w1 ∈ L and z > 0, define the first
return generating function as

U(w1, w1|z) :=
∑

n≥1

P
[
Xn = w1,∀m ∈ {1, . . . , n− 1} : Xm 6= w1

∣∣X0 = w1

]
· zn.

Recall the number R > 1 from Lemma 6.1. Then

G(w,w|1) ≤ 1

1− 1
R

; (6.1)

indeed, since G(w,w|z) =
(
1 − U(w,w|z)

)−1 it must be that U(w,w|z) < 1 for all w ∈ L
and all z ∈ [0, R); moreover, U(w,w|0) = 0, U(w,w|z) is continuous, strictly increasing
and strictly convex for z ∈ [0, R), so we must have U(w,w|z) ≤ 1/R for all z ∈ [0, R),
providing (6.1).
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Define F (o,w) :=
∑

n≥0 f
(k)(o,w), where f (k)(o,w) is the probability of starting at o

and with the first visit to w at time k. By conditioning on the first visit to w we get
G(o,w|1) = F (o,w)G(w,w|1). Therefore,

n2∑

m=0

p(m)(o,w) ≤ G(o,w|1) = F (o,w) ·G(w,w|1) ≤ 1

1− 1
R

,

that is,

fn(w) ≥ − 1

n
log

1

1− 1
R

≥ − log
1

1− 1
R

=: d.

For the upper bound, observe that w ∈ L with p(n)(o,w) > 0 can be reached from o in n
steps with a probability of at least εn0 , where

ε0 := min{p(w1, w2) | w1, w2 ∈ A∗, p(w1, w2) > 0} > 0

is independent from w. Thus, the sum
∑n2

m=0 p
(m)(o,w) has a value greater or equal to εn0 .

Hence, fn(x) ≤ − log ε0 =: D. �

Now we can finally prove:

Proof of Theorem 2.5. Recall Equation (3.1). We can rewrite ℓ · λ−1 ·H(Y) as
ℓ ·H(Y)

λ
=

∫
ℓ ·H(Y)

λ
dP =

∫
lim
n→∞

− 1

n
logL

(
o,Xn(ω)

∣∣1
)
dP(ω)

=

∫
lim
n→∞

− 1

n
log

G
(
o,Xn(ω)

∣∣1
)

G(o, o|1) dP(ω) =
∫

lim
n→∞

− 1

n
logG

(
o,Xn(ω)|1

)
dP(ω).

Recall that πn denotes the distribution of Xn. Since

G(o,Xn|1) =
∑

m≥0

p(m)(o,Xn) ≥ p(n)(o,Xn) = πn(Xn),

we have
ℓ ·H(Y)

λ
≤

∫
lim inf
n→∞

− 1

n
log πn

(
Xn(ω)

)
dP(ω). (6.2)

The next aim is to prove that lim supn→∞− 1
nE

[
log πn(Xn)

]
≤ ℓ ·H(Y)/λ. We now apply

Lemma 6.3 by setting

An :=
∑

m≥0

p(m)(o,Xn), an :=
n2∑

m=0

p(m)(o,Xn) and bn :=
∑

m≥n2+1

p(m)(o,Xn).

By Lemma 6.2,

bn ≤
∑

m≥n2+1

D1 ·Dn
2 · ̺−m = D1 ·Dn

2 · ̺
−n2−1

1− ̺−1
.

Therefore, bn decays faster than any geometric sequence. Applying Lemma 6.3 together
with (3.1) gives almost surely

ℓ ·H(Y)

λ
= lim

n→∞
− 1

n
logL(o,Xn) = lim

n→∞
− 1

n
logG(o,Xn) = lim

n→∞
− 1

n
log

n2∑

m=0

p(m)
(
o,Xn

)
.
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Due to Lemma 6.4 we can apply the Dominated Convergence Theorem and get:

ℓ ·H(Y)

λ
=

∫
ℓ ·H(Y)

λ
dP =

∫
lim
n→∞

− 1

n
log

n2∑

m=0

p(m)(o,Xn) dP

= lim
n→∞

∫
− 1

n
log

n2∑

m=0

p(m)(o,Xn) dP = lim
n→∞

− 1

n

∑

w∈L
p(n)(o,w) log

n2∑

m=0

p(m)(o,w).

For w ∈ L, define the following distribution µ0 on L:

µ0(w) :=
1

n2 + 1

n2∑

m=0

p(m)(o,w).

Recall that the non-negativity of the Kullback-Leibler divergence (in this context also
called Shannon’s Inequality) gives

−
∑

w∈L
p(n)(o,w) log µ0(w) ≥ −

∑

w∈L
p(n)(o,w) log p(n)(o,w).

Therefore,
ℓ ·H(Y)

λ
≥ lim sup

n→∞
− 1

n

∑

w∈L
p(n)(o,w) log(n2 + 1)− 1

n

∑

w∈L
p(n)(o,w) log p(n)(o,w)

= lim sup
n→∞

− 1

n

∫
log πn(Xn) dP.

Now we can conclude with (6.2) and Fatou’s Lemma:
ℓ ·H(Y)

λ
≤

∫
lim inf
n→∞

− 1

n
log πn(Xn)dP ≤ lim inf

n→∞

∫
− 1

n
log πn(Xn)dP

≤ lim sup
n→∞

∫
− 1

n
log πn(Xn)dP ≤ ℓ ·H(Y)

λ
.

Thus, the asymptotic entropy h := limn→∞− 1
nE

[
log πn(Xn)

]
exists and equals ℓ ·H(Y)/λ.

�

Finally, we can prove:

Proof of Corollary 2.7. The proofs of the statements in Corollary 2.7 are completely anal-
ogous to the proofs in [8, Corollary 3.9, Lemma 3.10], where [8, Lemma 3.10] holds also in
the case h = 0. �

Proof of Corollary 2.8. Recall the definition of F (o,w) from the proof of Lemma 6.4 and
the equation G(o,w|1) = F (o,w)G(w,w|1). This yields together with (3.1):

P[∃n ∈ N0 : Xn = w] = F (o,w) =
G(o,w|1)
G(w,w|1) =

G(o, o|1)
G(w,w|1)L(o,w|1).

Since 1 ≤ G(Xn,Xn|1) ≤ 1/(1− 1
R) with R from Lemma 6.1, we obtain the proposed result

due to Proposition 5.10. �
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7. Calculation of the Entropy

In this section we collect several results about the asymptotic entropy. We show how the
entropy can be calculated numerically or even exactly in some special cases, and we give
some inequalities.

7.1. Numerical Calculation and Inequalities. In order to compute h = ℓ · H(Y)/λ
we have to calculate the three factors: while there are formulas for ℓ (see [7, Theorem 2.4])
and λ (given by (5.8)), it remains to explain how to calculate H(Y). For this purpose,
define for random variables A1, . . . , An on a finite state space WA the joint entropy as

H(A1, . . . , An) := −
∑

a1,...,an∈WA

P
[
A1 = a1, . . . , An = an

]
log P

[
A1 = a1, . . . , An = an

]
,

and let the conditional entropy H(An|A1, . . . , An−1) be defined as

−
∑

a1,...,an∈WA

P
[
A1 = a1, . . . , An = an

]
logP

[
An = an

∣∣A1 = a1, . . . , An−1 = an−1

]
.

Here, we set 0 · log 0 := 0, since x log x → 0 as x → 0+. By Cover and Thomas [5, Theorem
4.2.1], we have H(Y) = limn→∞ 1

nH(Y
(ν)
1 , . . . ,Y

(ν)
n ). In general, the computation of H(Y)

is a hard task. But there is a simple way for a numerical calculation of H(Y), which follows
from the inequalities

H
(
Y(ν)

n

∣∣((i(ν)1 ,W
(ν)
1 ), (i

(ν)
2 ,W

(ν)
2 )

)
,Y

(ν)
1 , . . . ,Y

(ν)
n−1

)
≤ H(Y) ≤ H(Y(ν)

n | Y(ν)
1 , . . . ,Y

(ν)
n−1)
(7.1)

for all n ∈ N; see [5, Theorem 4.5.1]. In particular, it is even shown that

H(Y(ν)
n | Y(ν)

1 , . . . ,Y
(ν)
n−1)−H

(
Y(ν)

n

∣∣((i(ν)1 ,W
(ν)
1 ), (i

(ν)
2 ,W

(ν)
2 )

)
,Y

(ν)
1 , . . . ,Y

(ν)
n−1

) n→∞−−−→ 0.

Hence, one can calculate H(Y) numerically up to an arbitrarily small error. Obviously,
this numerical approach depends strongly on the ability to solve the system of equations
given by (3.2).

We now investigate whether the entropy is non-zero or not.

Corollary 7.1. If the random walk is expanding, then h > 0. Otherwise, h = 0.

Proof. Take any (ik,l, w1), (jp,q, w2) ∈ W with

P[(i(ν)1 ,W
(ν)
1 ) = (ik,l, w1), (i

(ν)
2 ,W

(ν)
2 ) = (jp,q, w2)] > 0.

The values (ik,l, w1), (jp,q, w2) determine the value of Y(ν)
1 uniquely. In the expanding case,

there are at least two elements (sj,m, w
′), (tj,n, w′′) ∈ W such that w′, w′′ ∈ C([w2]) with

C(w′)∩C(w′′) = ∅ and q(w2, w
′) > 0 and q(w2, w

′′) > 0, yielding π
(
(jp,q, w2), (sj,m, w′)

)
6=

π
(
(jp,q, w2), (tj,n, w

′′)
)
. Let w′ be in the m-th cone of type s in the covering of C([w2]).

Then set

P
(
(ik,l, w1), (jp,q, w2), (sj,m, w′)

)

:= P
[
Y

(ν)
2 =

(
τ(C(w2)), sm

) ∣∣ (i(ν)1 ,W
(ν)
1 ) = (ik,l, w1), (i

(ν)
2 ,W

(ν)
2 ) = (jp,q, w2)

]

≥ q(w2, w
′) > 0.
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Since q(w2, w
′′) > 0 and C(w′)∩C(w′′) = ∅, we also have P

(
(ik,l, w1), (jp,q, w2), (tj,n, w

′′)
)
>

0 implying P
(
(ik,l, w1), (jp,q, w2), (sj,m, w′)

)
< 1. From (7.1) follows then

H(Y) ≥ H
(
Y

(ν)
2

∣∣((i(ν)1 ,W
(ν)
1 ), (i

(ν)
2 ,W

(ν)
2 )

)
,Y

(ν)
1

)

≥ P
(
(ik,l, w1), (jp,q, w2), (sj,m, w′)

)
log P

(
(ik,l, w1), (jp,q, w2), (sj,m, w′)

)
> 0.

Thus, we have shown that h > 0 if (Xn)n∈N0 is expanding.

Now consider the case when the random walk on L is not expanding. Then each cone has
a covering consisting of only one single subcone. This implies that the value τ(C(W

(ν)
1 )) =

i
(ν)
1 determines uniquely the values τ(C(W

(ν)
k )) for k ≥ 2. Moreover, given the value

of τ(C(W
(ν)
1 )) the values of Y

(ν)
k , k ≥ 1, are deterministic. That is, Y

(ν)
n is uniquely

determined by Y
(ν)
1 , hence P[Y(ν)

n = · | Y(ν)
1 = (s, tn)] ∈ {0, 1}. This implies

0 ≤ H(Y) ≤ H(Y(ν)
n | Y(ν)

1 , . . . ,Y
(ν)
n−1) ≤ H(Y(ν)

n | Y(ν)
1 ) = 0,

where the last inequality follows from [5, Theorem 2.6.5]. Thus, h = 0. �

In order to get a complete picture, we show that the entropy is zero for recurrent random
walks:

Corollary 7.2. If (Xn)n∈N0 is recurrent then h = 0.

Proof. Clearly, − 1
nE

[
log πn(Xn)

]
≥ 0. Assume now that lim supn→∞− 1

nE
[
log πn(Xn)

]
=

c > 0. Then there is a (deterministic) sequence (nk)k∈N such that, for any ε1 ∈ (0, c),

− 1

nk
E
[
log πnk

(Xnk
)
]
≥ c− ε1 > 0 (7.2)

for all k ∈ N. Denote by ε0 the minimal occuring positive single-step transition probability
of (Xn)n∈N0 . Then − 1

nk
log πnk

(Xnk
) ≤ − log ε0. Choose N ∈ N with 1/N < c − ε1. Then

there is some δ > 0 with

P
[
− 1

nk
log πnk

(Xnk
) ≥ 1

N

]
≥ δ ∀k ∈ N.

To see this, assume that δ = δk depends on k with lim infk→∞ δk = 0: then we get with
(7.2)

(− log ε0) · δk + (1− δk)
1

N
≥ − 1

nk
E
[
log πnk

(Xnk
)
]
≥ c− ε1;

If δk tends to zero then we get a contradiction to the choice of N .

Choose now ε > 0 arbitrarily small with ε < δ. Since ℓ = 0 in the recurrent case, there is
some index K ∈ N such that for all k ≥ K:

δ − ε ≤ P
[
− log πnk

(Xnk
) ≥ nk/N, |Xnk

| ≤ εnk

]
≤ e−nk/N · |A|εnk

which yields the inequality
1

N
+

1

nk
log(δ − ε) ≤ ε log |A|.
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But this gives a contradiction if we make ε sufficiently small since the right hand side tends
to zero, but the left hand side to 1

N as k → ∞. Thus, lim supn→∞− 1
nE

[
log πn(Xn)

]
= 0,

yielding h = 0. �

Finally, we state an inequality which connects entropy, drift and growth. For this purpose,
define A∗

≤n = {w ∈ A∗ | |w| ≤ n} for n > 0. The growth of A∗ is then given by g :=

limn→∞ 1
n log |A∗

≤n|. Since |An| ≤ |A∗
≤n| ≤ n|An|, we have g = log |A|. We get the following

connection between entropy, drift and growth:

Theorem 7.3. h ≤ ℓ · log |A|.

Proof. Let be ε > 0. By Corollary 2.7 (1), there is some Nε ∈ N such that for all n ≥ Nε:

1− ε ≤ P
[
− log πn(Xn) ≥ (h− ε)n, |Xn| ≤ (ℓ+ ε)n

]
≤ e−(h−ε)n · |A∗

≤(ℓ+ε)n|.
Taking logarithms and dividing by n gives

(h− ε) +
1

n
log(1− ε) ≤ (ℓ+ ε) · 1

(ℓ+ ε)n
log |A∗

≤(ℓ+ε)n|.

Making ε arbirtraily small and sending n → ∞ yields the proposed claim. �

Let us remark that similar inequalities have been proved by Kaimanovich and Woess [14] for
time and space homogeneous random walks and in [8] for random walks on free products.

7.2. Exact Formula for Unambiguous Cone Boundaries. In this subsection we give
an exact formula for the asymptotic entropy in some special case. We call ab ∈ A2 un-
ambiguous if ∂C(ab) = {ab}. In other words, whenever the random walk enters a subcone
of type C(wab), w ∈ A∗, it must enter it through its single boundary point wab. We call
the cone type τ(C(ab)) also unambiguous. Existence of an unambiguous cone allows us to
“cut” the random walk into i.i.d. pieces and to obtain a formula for the entropy H(Y). For
n ∈ N, x2, . . . , xn ∈ W0 and unambiguous ab ∈ A2 define

w(ab, x2, . . . , xn) := P
[
W2 = x2, . . . ,Wn = xn, [Wn] = ab

∣∣[W1] = ab
]
,

w̃(ab, x2, . . . , xn) :=
∑

y2,...,yn∈W0:
yi∈∂C(xi)
for 2≤i≤n

P
[
W2 = y2, . . . ,Wn = yn, [Wn] = ab

∣∣[W1] = ab
]
,

In particular, w̃(ab, x2) = P
[
W2 = x2, [W2] = ab

∣∣[W1] = ab
]
. Recall that ν denotes the

invariant probability measure of the process (ik,Wk)k∈N. For unambiguous ab ∈ A2, set

νab :=
∑

(im,n,x)∈W :[x]=ab

ν(im,n, x).

Then:

Theorem 7.4. If ab ∈ A2 is unambiguous, then

H(Y) = −νab
∑

n≥1

∑

x2,...xn−1∈W0:
[xi] 6=ab for 2≤i≤n−1

∑

xn∈W0:
[xn]=ab

w(ab, x2, . . . , xn) log w̃(ab, x2, . . . , xn).
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Proof. Write α := τ(C(ab)). By Proposition 5.6, we have

− 1

n
logP[Y1 = y

1
, . . . ,Yn = y

n
]

n→∞−−−→ H(Y)

for almost every trajectory (y
1
, y

2
, . . . ) ∈ WN

π . For any such trajectory, we define

N0 := min
{
m ∈ N

∣∣τ(Wm+1) = α
}

and Nk := min
{
m ∈ N

∣∣m > Nk−1, τ(Wm+1) = α
}
.

Define d(n) := max{k ∈ N0 | Nk ≤ n}. Since YNj has the form (t, αt(n) ,m) for some cone
type t ∈ I , 1 ≤ m ≤ n(t, α), and [WNk+1] = ab for all k ∈ N we can use the strong Markov
property as follows for all n ≥ 1 and almost every trajectory (y

1
, y

2
, . . . ) ∈ WN

π :

P
[
YNj+1 = y

Nj+1
, . . . ,YNj+n = y

n
| Y1 = y

1
, . . . ,YNj = y

Nj

]

= P
[
YNj+1 = y

Nj+1
, . . . ,YNj+n = y

n
| [WNj+1] = ab

]
.

In other words, the Yk’s collect only the information which cones are entered successively,
but we know that the (Nj + 1)-th cone is entered through a boundary point with last
two letters ab; hence, one can restart the process at some word ending with ab in the
above equation without changing probabilities. Therefore, we can rewrite the following
probability P

[
Y1 = y

1
, . . . ,Yd(n) = y

d(n)

]
as

P
[
Y1 = y

1
, . . . ,YN0 = y

N0

] d(n)−1∏

i=0

P
[
YNi+1 = y

Ni+1
, . . . ,YNi+1 = y

Ni+1

∣∣[WNi+1] = ab
]
.

Observe that the terms log P
[
YNi+1 = ·, . . . ,YNi+1 = ·

∣∣[WNi+1] = ab
]
, i ∈ N, are i.i.d.,

since one can think of starting at some Wk with [Wk] = ab and stopping at the first
time l > k with [Wl] = ab. By the ergodic theorem for positive recurrent Markov chains,
d(n)/n tends almost surely to νab. Hence, if we consider only the subsequence where n
equals one of the Nk’s we obtain the following convergence for almost every trajectory
(y

1
, y

2
, . . . ) ∈ WN

π by classical ergodic theory:

− 1

n
logP

[
Y1 = y

1
, . . . ,Yd(n) = y

d(n)

]

= −d(n)

n

1

d(n)

[
log P

[
Y1 = y

1
, . . . ,YN0 = y

N0

]

+

d(n)−1∑

i=0

logP
[
YNi+1 = y

Ni+1
, . . . ,YNi+1 = y

Ni+1

∣∣[WNi+1] = ab
]]

n→∞−−−→ −νab
∑

k≥1

∑

x2,...,xk−1∈W0:
[xi] 6=ab

for 2≤i≤k−1

∑

x∈W0:
[x]=ab

w(ab, x2, . . . , xk−1, x) log w̃(ab, x2, . . . , xk−1, x).

This proves the claim. �
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8. Analyticity of Entropy

The random walk on A∗ depends on finitely many parameters which are described by the
transition probabilities p(w1, w2), w1, w2 ∈ A∗ with |w1| ≤ 2 and |w2| ≤ 3; see (2.1). That
is, each random walk on A∗ can be defined via a vector p ∈ R|B|

+ , where

B :=
{
(w1, w2)

∣∣∣w1 ∈ A ∪A2 ∪ {o}, w2 ∈
3⋃

n=1

An ∪ {o},
∣∣|w1| − |w2|

∣∣ ≤ 1
}
.

In other words, the entry of p associated with the index (w1, w2) ∈ B describes the value
of p(w1, w2). The support supp(p) of p is the set of indices in B corresponding to non-zero
entries of p. Fix now any p

0
∈ R|B|

+ such that p
0

describes a well-defined, transient random
walk on A∗, and let P(p

0
) be the set of vectors p ∈ R|B| with support supp(p

0
) which allow

well-defined, transient random walks on A∗. The set P(p
0
) can be described by an open

polygonal bounded convex set in Rd with some suitable d ≤ |B| − 1 which depends on
supp(p

0
); recall that ℓ > 0 if and only if (Xn)n∈N0 is transient, and from the formula of ℓ

in [7, Theorem 2.4] follows that ℓ varies continuously in p, yielding that there is some open
neighbourhood of p

0
in Rd where (Xn)n∈N0 remains still transient. We now ask whether

the entropy mapping p 7→ h = hp varies real-analytically on P(p
0
).

In the next subsection we will introduce a new Markov chain which is related to the
last entry time process and leads under the projection π(·, ·) to a hidden Markov chain
with same distribution as (Yk)k∈N. Afterwards we will be able to prove Theorem 2.6 in
Subsection 8.2.

8.1. Modified Last Entry Time Process. The aim of this subsection is the construction
of a Markov chain related to the last entry time process (ik,Wk)k∈N such that the transition
matrix has strictly positive entries and the modified process leads under π(·, ·) (see (5.5))
to a hidden Markov chain with same asymptotic entropy.

Let be ab, a1b1, a2b2 ∈ A2, and let Cji,1 be the first cone of type j in the covering of
C(a1b1) with τ(C(a1b1)) = i and let Cjk,l be the l-th subcone of type j in the covering
of C(a2b2) with τ(C(a2b2)) = k. Assume that y0 ∈ ∂Cjk,l with [y0] = ab. Since Cji,1 and
Cjk,l are isomorphic, there is some unique ȳ

[i,j,ab]
0 ∈ A∗ such that ȳ

[i,j,ab]
0 ab ∈ ∂Cji,1 ; see

Section 4.1. In the following we will sometimes omit the superindex [i, j, ab] and use the
notation ȳ0 = ȳ

[i,j,ab]
0 for describing this replacement.

For i, j ∈ I and ab ∈ A2 with τ(C(ab)) = j, we write

#{js,t | s 6= i, ab} :=
∣∣{(js,t, w) ∈ W

∣∣[w] = ab, s ∈ I \ {i}, 1 ≤ t ≤ n(s, j)
}∣∣.

It is not hard to see that #{js,t | s 6= i, a1b1} = #{js,t | s 6= i, a2b2} if τ(C(a1b1)) =
τ(C(a2b2)) but this will not be relevant for our proofs, so we omit further explanations. Let
be (ik,l, x), (jm,n, y) ∈ W with [y] = ab ∈ A2. This implies τ(C(x)) = i and y[i,j,ab] ∈ ∂Cji,1 ,
where Cji,1 is the first cone of type j in the covering of C([x]). Define the following transition
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probabilities on W:

q̂
(
(ik,l, x), (jm,n, y)

)
:=





1
#{js,t|s 6=i,ab}+1

ξ([y])
ξ([x])L(x, y), if m = i ∧ n = 1,

ξ([y])
ξ([x])L(x, y), if m = i ∧ n ≥ 2,

1
#{js,t|s 6=i,ab}+1

ξ([y])
ξ([x])L(x, ȳ

[i,j,ab]ab), if m 6= i.

It is easy to see that these transition probabilities define a Markov chain (inherited from
the Markov chain (ik,Wk)k∈N): in the case m = i ∧ n ≥ 2 we just have

q̂
(
(ik,l, x), (jm,n, y)

)
= P

[
(i2,W2) = (jm,n, y) | (i1,W1) = (ik,l, x)

]
;

otherwise we have, for (ji,1, y) ∈ W,

q̂
(
(ik,l, x), (ji,1, y)

)
+

∑

(js,t,w)∈W :
s 6=i,[w]=ab,
1≤t≤n(s,j)

q̂
(
(ik,l, x), (js,t, w)

)

= P
[
(i2,W2) = (ji,1, y) | (i2,W2) = (ik,l, x)

]

since y = ȳ[i,j,ab]ab by definition. In other words, each step from (ik,l, x) to (jm,n, y) either
behaves according to (5.4) (case m = i and n ≥ 2) or the step from (ik,l, x) to (ji,1, y)
(when seen as a step of the process (ik,Wk)k∈N)) is split up into different equally likely
steps (ik,l, x) to (jm,n, ȳab) with m 6= i or m = i ∧ n = 1. Observe that the transitions
depend only on [x] in the first argument of q̂(·, ·). By Proposition 5.4, the transition matrix
Q̂ =

(
q̂((ik,l, x), (jm,n, y))

)
is stochastic and governs a positive recurrent, aperiodic Markov

chain (tk,xk)k∈N. In particular, Q̂ has strictly positive entries. The initial distribution µ̂1

of (t1,x1) is defined as

µ̂1(im,n, x) := P[(i1,W1) = (im,n, x)] > 0

for (im,n, x) ∈ W.

The process
(
(tk,xk), (tk+1,xk+1)

)
k∈N is again a positive recurrent, aperiodic Markov chain

whose transition matrix is denoted by Q̂2 (arising from Q̂). We now define a new hidden
Markov chain (Zk)k∈N by

Zk := π
(
(tk,xk), (tk+1,xk+1)

)
.

Observe that at this point the second branch in the definition of π in (5.5) comes into play
for the definition of Zk. The crucial point is the following proposition:

Proposition 8.1. For all (s(1), t(1)), . . . , (s(n), t(n)) ∈ Wπ,

P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n))

]
= P

[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n))

]
.

Since the proof of this proposition consists of an long induction with tedious calculations
we omit it at this place and give it in Appendix C.

The statement of the last proposition can be formulated in other words: the process gov-
erned by Q̂ can be seen as a last entry time process, where one has more subcones to enter
(namely, the subcones of indices jk,l, k 6= i, when being currently in a cone of type i), but
the projection π (in particular due to the second branch in its definition in (5.5)) folds
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the process down to the same hidden Markov chain (Yk)k∈N in terms of probability. With
Propositions 5.6 and 8.1 we immediately obtain:

Corollary 8.2. For almost every realisation
(
(s(1), t(1)), (s(2), t(2)), . . .

)
∈ WN

π ,

H(Y) = lim
n→∞

− 1

n
log P

[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n))

]
.

✷

The important difference between the underlying Markov chains
(
(tk,xk), (tk+1,xk+1)

)
k∈N

and
(
(ik,Wk), (ik+1,Wk+1)

)
k∈N is that the transition matrix Q̂2 has strictly positive en-

tries, while this must not necessarily hold for the transition matrix of the Markov chain(
(ik,Wk), (ik+1,Wk+1)

)
k∈N. This property will be important later.

8.2. Proof of Theorem 2.6. The crucial point will be the following lemma:

Lemma 8.3. The transition probabilities q(w1, w2), w1, w2 ∈ W0, vary real-analytically
w.r.t. p ∈ P(p

0
).

Proof. In order to show that q(w1, w2) varies real-analytically in p it suffices to show
analyticity of H(ab, c), ab ∈ A2, c ∈ A, and L̄(ab, cde), d, e ∈ A, due to Proposition 5.1.
The function z 7→ H(ab, c|z) has radius of convergence bigger than 1, which can be easily
deduced from Lemma 6.1. Thus, for δ > 0 small enough, we have

∞ > H(ab, c|1 + δ) =
∑

n≥1

Pab[Xn = c,∀m < n : |Xm| ≥ 2](1 + δ)n.

The probability Pab[Xn = c,∀m < n : |Xm| ≥ 2] can be rewritten as
∑

n1,...,nd≥1:
n1+···+nd=n

c(n1, . . . , nd)p
n1
1 · . . . · pnd

d , c(n1, . . . , nd) ∈ N0,

where p1, . . . , pd correspond to the non-zero entries of the vector p. Therefore,

H(ab, c|1 + δ) =
∑

n≥1

∑

n1,...,nd≥1:
n1+···+nd=n

c(n1, . . . , nd)(p1(1 + δ))n1 · . . . · (pd(1 + δ))nd < ∞.

Hence, p lies in the interior of the domain of convergence of H(ab, c|1) when considered
as a multivariate power series in the variables of supp(p) = {p1, . . . , pd}. This yields real-
analyticity of H(ab, c|1) in p. Analyticity of ξ(ab) follows now directly from its defini-
tion. One can show completely analogously that the functions L̄(ab, cde|1) vary also real-
analytically in p since L̄(ab, cde|z) has also radius of convergence bigger than 1, which can
also be easily deduced from Lemma 6.1. This proves the statement of the lemma. �

Now we can prove:
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Proof of Theorem 2.6. The claim follows now via the equation h = ℓ ·H(Y)/λ. By Lemma
8.3, the invariant probability measure ν0 of the process (Wk)k∈N varies real-analytically in
some neighbourhood of p

0
, since ν0 is the solution of a linear system of equations in terms

of q(·, ·); hence, λ (given in (5.8)) varies analytically.

Moreover, the transition matrix Q̂2 of the process
(
(tk,xk), (tk+1,xk+1)

)
k∈N has strictly

positive entries. Therefore, we can apply the analyticity result for entropies of hidden
Markov chains of Han and Marcus [12, Theorem 1.1] on (Zk)k∈N and obtain together with
Corollary 8.2 that H(Y) is also real-analytic in some neighbourhood of p

0
; at this point

it is crucial that Q̂2 has strictly positive entries in order to be able to apply [12, Theorem
1.1], which was our motivation for the definition of the process (tk,xk)k∈N and (Zk)k∈N.

Real-analyticity of ℓ can be shown completely analogously to the proof of Lemma 8.3 with
the help of the formula for ℓ given in [7, Theorem 2.4]. This finishes the proof. �

Appendix A. Remarks on Assumptions 2.1 and 2.4

A.1. Generalization of Suffix-Irreducibility. In this section we make a discussion on
Assumption 2.4, where we show how to relax this condition in some way and that it
cannot be dropped completely. First, recall that suffix-irreducibility leads to the fact that
the process (Wk)k∈N is irreducible. One can weaken the asssumption of suffix-irreducibility
to the assumption that

P[∀n ∈ N : |Xn| ≥ |w| | X0 = w] > 0 ∀w ∈ L, (A.1)

or equivalently that H(ab, c|1) < 1 for all a, b, c ∈ A. This means that, for every w ∈ L,
there is some ab ∈ A2 such that

P[∃n ∈ N : [Xn] = ab,∀k ≤ n : |Xk| ≥ |w| | X0 = w] > 0 and H(ab, ·|1) < 1.

In this case the process (Wk)k∈N is not necessarily irreducible any more, but it still has
a finite state space. Let C1, . . . , Cr be the essential classes of the state space of (Wk)k∈N.
Then (Wk)k∈N will almost surely take only values in one of these classes up to finitely
many exemptions for small k ∈ N; the class depends then on the concrete realization. If we
condition on the fact that (Wk)k∈N will finally enter the class Ci, then – on this event –
the entropy rate hi and the drift ℓi can be calculated as shown in the irreducible case and
as in [7]: we just have to replace (Wk)k∈N by (WT+k)k∈N, where T is the smallest index
with τ(WT ) ∈ Ci. The overall entropy rate and drift are then given by

h = lim
n→∞

1

n
E[− log π(Xn)] =

r∑

i=1

hi · P[(Wk)k∈N finally enters Ci],

ℓ = lim
n→∞

1

n
E[|Xn|] =

r∑

i=1

ℓi · P[(Wk)k∈N finally enters Ci].

Since the probabilities P[(Wk)k∈N finally enters Ci] are the solutions of a finite system of
linear equations with coefficients q(·, ·), they vary also analytically. Hence, condition (A.1)
also implies our result on analyticity of the entropy.

PUBLICATION D. ASYMPTOTIC ENTROPY OF RAND. WALKS ON REG. LANG.

162



38 LORENZ A. GILCH

If the property (A.1) does not hold, then the random walk may take some long deviations
between the last entry times ek−1 and ek such that E[ek − ek−1] = ∞; see Example A.1
below. One can show that, in the case of infinite expectation, this leads to limn→∞ k/ek = 0,
implying lim infn→∞ |Xn|/n = 0; an analogous statement is shown in [9], where the proof
can be adapted easily to the present context. This allows no conclusion on the entropy with
our techniques, since l(Xn) = − logL(o,Xn|1) can not be compared with − log πn(Xn) any
more as it was done in the proof of Proposition 5.10. But we underline that this setting
with deviations of expected infinite length constitutes a degenerate case.

Example A.1. Let be A = {a, b, c, d} and set

p(o, a1) = p(a1, o) =
1

4
∀a1 ∈ {a, b, c}, p(o, d) =

1

4
, p(d, o) =

1

2
,

p(a1, a1a2) = p(a1a3, a1) =
1

4
∀a1 ∈ {a, b, c}, a2 ∈ A \ {a1}, a3 ∈ A \ {a1, d},

p(a1a2, a1a2a3) =
1

4
∀a1, a2 ∈ {a, b, c}, a1 6= a2,∀a3 ∈ A \ {a2},

p(ad, add) = p(bd, bdd) = p(cd, cdd) =
1

2
,

p(d, dd) = p(dd, ddd) = p(dd, d) =
1

2
, p(ad, a) = p(bd, b) = p(cd, c) =

1

2
.

The associated graph G can be identified as follows: the vertex set is given by T3×N0, where
T3 = (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z) = 〈a, b, c | a2 = b2 = c2 = 1〉, and the adjacency relation is
defined via (a1 . . . ak,m) ∼ (b1 . . . bl, n) if and only if





a1 . . . ak = b1 . . . bl ∧ |m− n| = 1 or
m = n = 0 ∧ k = l + 1 ∧ a1 . . . ak−1 = b1 . . . bl ∧ ak 6= ak−1 or
m = n = 0 ∧ k + 1 = l ∧ a1 . . . ak = b1 . . . bl−1 ∧ bl 6= bl−1.

The graph G can be visualized as follows: take a homogeneous tree of degree 3, where the
vertices are described by words over {a, b, c} such that two consecutive letters are different;
attach to each vertex a half-line N, where the steps on the half-line are made with equal
probability of 1

2 ; the vertices (w, 0) correspond to the vertices of the tree and one chooses
with equal probability of 1

4 one of the four neighbour vertices for the next step. This implies
that the random walk will stay only for some finite time in each half-line before making a
step in the tree part of G. Moreover, it is not hard to see that the random walk converges to
some infinite word over the subalphabet {a, b, c}. But it is well-known that the random walk
needs in expectation infinite time to leave one of the halflines, that is, the expected time for
reaching “a” when starting at “ad” is infinite. This implies that E[ek − ek−1] = ∞.

A.2. Weak Symmetry Assumption. The purpose for introducing the weak symme-
try assumption is that the random walk becomes irreducible and that the cones become
strongly connected subgraphs. A weaker but still sufficient condition is given as follows: if
w0 ∈ L and w1, w2 ∈ C(w0) with

P[∃n ∈ N : Xn = w2,∀m ≤ n : Xm ∈ C(w0) | X0 = w1] > 0
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then P[∃n ∈ N : Xn = w1,∀m ≤ n : Xm ∈ C(w0) | X0 = w2] > 0. Under this weaker
condition the random walk still remains irreducible and the Green function’s radius of
convergence R is strictly bigger than 1. Also, the cones remain strongly connected and
C(w) = C(w′) if w′ ∈ ∂C(w).

If this connectedness of cones is not satisfied then the definition of cones and coverings
of cones by subcones gets more complicated. In that case the coverings depend on the
boundary point from which one constructs the covering yielding coverings by possibly non-
disjoint subcones. In particular, Lemma 4.2 does not necessarily hold. This would lead
to a more detailed and complicated case distinction in order to get coverings by disjoint
subcones. Since there will be no additional gain and the involving techniques remain the
same we used weak symmetry for ease of presentation.

Appendix B. Switching from the K-dependent Case to the Blocked Letter
Language

In this section we make a discussion on the transition from the K-dependent case (that
is, the transition probabilities depend on the last K letters and between two steps of the
random walk only the last K letters may be replaced by a word of length of at most 2K)
to the blocked letter language (that is, blocking words of length of at most K to new single
letters such that we are in the situation defined via (2.1)). In the K-dependent case the
general transition probabilities have the form

P
[
Xn+1 = wy | Xn = wx] = p(x, y), (B.1)

where w, x, y ∈ A∗ with x being a word consisting of K letters and y being a word consisting
of at most 2K letters.

Obviously, if the K-dependent random walk is weakly symmetric then the random walk
on the blocked letter language is weakly symmetric, too. Suffix-irreducibility in the K-
dependent case means that, for all w ∈ L and every w0 ∈ AK , the random walk starting
at w has positive probability to visit some word ending with w0 by only passing through
words in A≥|w|. However, suffix-irreducibility in the K-dependent case does, in general,
not necessarily yield suffix-irreducibility of the blocked letter language. But as already
explained in Appendix A.1 suffix irreducibility can be relaxed by the assumption (A.1),
and the blocked letter language inherits this assumption from the K-dependent case.

Finally, we want to discuss the cases when the K-dependent random walk is expanding or
not. Define cones in the K-dependent case as at the beginning of Subsection 4.1. For any
w ∈ A∗, denote by [w]K the last K letters. Two cones C(w1) and C(w2), w1, w2 ∈ A∗ are
then isomorphic if C([w1]K) = C([w2]K). The same properties of cones and coverings (that
is, nestedness or disjointness of cones, construction of coverings of cones by subcones, etc.)
from Section 4 can be transferred to the K-dependent case analogously. If the graph G is not
expanding in the K-dependent case then one can show analogously as in Subsection 4.2.2
that the random walk converges to one out of finitely many deterministic infinite words. In
the following we will show that blocked letter language random walk is expanding if G is
expanding in the K-dependent case. Recall that X∞ is the infinite limiting random word
of our K-dependent random walk.
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Lemma B.1. If the K-dependent random walk is expanding then the support of X∞ is
infinite.

Proof. Assume that X∞ has finite support. Choose N ∈ N large enough such that each
connected component of G \ {w ∈ L | |w| < N} (that is, remove from G all vertices
w ∈ L with |w| < N and their adjacent edges) contains in its closure only one point of
the support of X∞. Take any of these connected components and denote it by C, and take
any w0 ∈ C with |w0| = N . Then P[∀n ≥ 1 : |Xn| ≥ |w0| | X0 = w0] > 0. Since each
cone contains at least two proper subcones, we can find disjoint subcones C(w1), C(w2) of
C(w0) such that w1, w2 ∈ L with |w1| = |w2| > |w0|+K. Due to condition (A.1) we have
P[∀n ≥ 1 : |Xn| ≥ |wi| | X0 = wi] > 0 for each i ∈ {1, 2}. We remark that this follows also
from suffix-irreducibility. That is, if the random walk escapes to infinity inside C(w0) then
it can escape to infinity via the cone C(w1) or via the cone C(w2), which is disjoint from
C(w1). Thus, we have found two different boundary points of X∞, which lie in the closure
of C, a contradiction to our choice of N and C. Consequently, the support of X∞ cannot
be finite. �

Now we get:

Corollary B.2. If the K-dependent random walk is expanding then the associated blocked
letter language random walk is also expanding.

Proof. Assume that the blocked letter language random walk is not expanding. Denote
by X

(B)
∞ the infinite limiting word w.r.t. the blocked letter language. Then X

(B)
∞ is quasi-

deterministic, that is, its support is a finite subset of AN
B, where AB is the blocked letter

language alphabet. But this yields that X∞ has also finite support in AN, and this in turn
implies by the previous lemma that the K-dependent case cannot be expanding. �

Hence, concerning the property “expanding” we have shown that there is no gain or loss
when switching from K-dependent random walks to the blocked letter language random
walk.

Appendix C. Proofs

In this section we give the missing proofs of some lemmas and propositions, which we
omitted earlier for sake of better readability.

Proof of Lemma 4.1.
Let be w1 = a1 . . . am, w2 = b1 . . . bn ∈ A∗

≥2 with a1, . . . , am, b1, . . . , bn ∈ A such that
C(w1) and C(w2) are isomorphic.

Proof of (1): since C(w1) and C(w2) are isomorphic we have C([w1]) = C([w2]), and thus
[w1] = am−1am ∈ C([w1]) = C([w2]). Hence, there is a path 〈[w2], u1, . . . , uk, am−1am〉
through words u1, . . . , uk ∈ A∗

≥2. If w′ = a1 . . . am−2w̄ ∈ C(w1) with w̄ ∈ A∗
≥2 then there is

a path 〈w1, w
′
1, . . . , w

′
l, w

′〉 through words w′
1, . . . , w

′
l ∈ A∗

≥|w1|. This yields that w′
i has the
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form w′
i = a1 . . . am−2w

′′
i with some w′′

i ∈ A∗
≥2, that is, the path 〈am−1am, w′′

1 , . . . , w
′′
l , w̄〉

has positive probability to be performed. But this implies that

〈w2 = b1 . . . bn−2[w2], b1 . . . bn−2u1, . . . , b1 . . . bn−2uk, b1 . . . bn−2am−1am,

b1 . . . bn−2w
′′
1 , . . . , b1 . . . bn−2w

′′
l , b1 . . . bn−2w̄〉

is a path through words in A∗
≥|w2|, that is, b1 . . . bn−2w̄ ∈ C(w2). Thus, ϕ is well-defined.

Since any w ∈ C(w1) and its image ϕ(w) differ only by different (constant) prefixes the
mapping ϕ is obviously a bijection. Moreover, if w = a1 . . . am−2c1 . . . ck ∈ C(w1) with
c1, . . . , ck ∈ A, k ≥ 2, and ŵ = a1 . . . am−2c1 . . . ck−2w

′ ∈ C(w1) with w′ ∈ A∗, 1 ≤ |w′| ≤
3, and (k − 2) + |w′| ≥ 2 (otherwise ŵ /∈ C(w1)), then

p(w, ŵ) = p(ck−1ck, w
′) = p(b1 . . . bn−2c1 . . . ck, b1 . . . bn−2c1 . . . ck−2w

′) = p
(
ϕ(w), ϕ(ŵ)

)
.

This yields (1).

Proof of (2): this follows directly from (1) by the bijection ϕ and the fact that the adjacency
relation is given through positive single-step transition probabilities. Hence, C(w1) and
C(w2) are isomorphic as subgraphs of G. �
Proof of Lemma 4.2.
Let be w1, w2 ∈ A∗

≥2. W.l.o.g. assume that |w1| ≤ |w2|. Moreover, assume that the
cones C(w1) and C(w2) are not nested in each other and that C(w1) ∩ C(w2) 6= ∅.
Let be w0 ∈ C(w1) ∩ C(w2). Then there is a path 〈w1, w

′
1, . . . , w

′
k, w0〉 through words

w′
1, . . . , w

′
k ∈ A∗

≥|w1| and there is a path 〈w2, w
′′
1 , . . . , w

′′
l , w0〉 through words w′′

1 , . . . , w
′′
l ∈

A∗
≥|w2| ⊆ A∗

≥|w1|. By weak symmetry, there is a path 〈w1, w
′
1, . . . , w

′
k, w0, w

′′
l , . . . , w

′′
1 , w2〉

through words in A∗
≥|w1|, and hence w2 ∈ C(w1) which in turn implies C(w2) ⊆ C(w1), a

contradiction. This yields the first part of the lemma.

In order to prove the second part assume that |w1| = |w2| and w.l.o.g. C(w1) ⊆ C(w2).
It remains to show that we have then C(w1) = C(w2). Since w1 ∈ C(w2) there is a path
〈w2, w̄1, . . . , w̄m, w1〉 through words w̄1, . . . , w̄m ∈ A∗

≥|w2|. If w ∈ C(w2) then there is a
path 〈w2, ŵ1, . . . , ŵn, w〉 through words ŵ1, . . . , ŵn ∈ A∗

≥|w2|. Thus, there is a path

〈w1, w̄m, . . . , w̄1, w2, ŵ1, . . . , ŵn, w〉
though words in A∗

≥|w2| = A∗
≥|w1|. Hence, C(w2) ⊆ C(w1) which yields C(w2) = C(w1). �

For the next proof we need the following properties: if a1b1, a2b2 ∈ A2 with τ(C(a1b1)) =
τ(C(a2b2)) then we have C(a1b1) = C(a2b2) (see Lemma 4.2) and therefore a2b2 ∈ C(a1b1).
In this case we also have L(a1b1, w) > 0 for w ∈ A∗

≥3 if and only if L(a2b2, w) > 0. This
follows from the simple fact that a2b2 ∈ C(a1b1) implies that there are paths from a1b1 to
a2b2 (and vice versa) through words in A∗

≥2.

Proof of Lemma 5.2.
By definition, we obviously have supp(P[W1 = ·]) = W0. For k > 1 we show both inclu-
sions. Let be y ∈ W0. Then there are w0 ∈ A∗ and ab ∈ A2 with w0ab ∈

⋃n0
j=1 ∂C

(0)
j and
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w0y ∈ S(w0ab) and

P[W0 = w0ab,W1 = y] =
∑

w′∈L\C(w0ab)

G(o,w′) · p(w′, w0ab) · L(w0ab,w0y) · ξ([y])

=
∑

w′∈L\C(w0ab)

G(o,w′) · p(w′, w0ab) · L(ab, y) · ξ([y]) > 0.

Take now any w̄āb̄ ∈ supp(P[Xek−2
= ·]). Since the covering of every cone contains subcones

of all different types, the cone C(w̄āb̄) has in its covering a cone of type τ(C(ab)). Hence,
there are wk ∈ A∗, akbk ∈ A2 with w̄wkakbk ∈ S(w̄āb̄), τ(C(akbk)) = τ(C(ab)) and
mk ∈ N such that p(mk)(o, w̄wkakbk) > 0. Thus,

P[Wk = y] ≥ P[Xek−1
= w̄wkakbk,Wk = y]

=
∑

w′∈L\C(w̄wkakbk)

G(o,w′) · p(w′, w̄wkakbk) · L(w̄wkakbk, w̄wky) · ξ([y])

=
∑

w′∈L\C(w̄wkakbk)

G(o,w′) · p(w′, w̄wkakbk) · L(akbk, y) · ξ([y]).

By the remark before the lemma, we have L(akbk, y) > 0 and therefore P[Wk = y] > 0,
yielding W0 ⊆ supp(P[Wk = ·]).
For the other direction, take any y ∈ supp(P[Wk = ·]). Then there is some wk−1ab ∈ L
such that

0 < P[Xek−1
= wk−1ab,Xek = wk−1y]

=
∑

w′∈L\C(wk−1ab)

G(o,w′) · p(w′, wk−1ab) · L(wk−1ab,wk−1y) · ξ([y]).

In particular, L(ab, y) > 0. Since the initial covering of L contains a cone of type τ(C(ab))

there are w0 ∈ A∗, a0b0 ∈ A2 and some m ∈ N such that w0a0b0 ∈
⋃n0

i=1 ∂C
(0)
i , τ(C(a0b0)) =

τ(C(ab)) and p(m)(o,w0a0b0) > 0. Observe again that L(a0b0, y) > 0 by the remark before
the lemma. Therefore,

P[W1 = y] ≥ P[W0 = w0a0b0,W1 = y] = P[Xe0 = w0a0b0,W1 = y]

=
∑

w′∈L\C(w0a0b0)

G(o,w′) · p(w′, w0a0b0) · L(w0a0b0, w0y) · ξ([y])

=
∑

w′∈L\C(w0a0b0)

G(o,w′) · p(w′, w0a0b0) · L(a0b0, y) · ξ([y]) > 0.

This yields supp(P[Wk = ·]) ⊆ supp(P[W1 = ·]) = W0 and the claim of the lemma
follows. �
Proof of Proposition 5.4.
It remains to show that the support of each (ik,Wk) equals W and that

(
(ik,Wk)

)
k∈N is

positive recurrent and aperiodic.
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First, we show that supp(P[(ik,Wk) = ·]) = W for k ≥ 1. For this purpose, let be
(ji,n, x) ∈ supp(P[(ik,Wk) = ·]). Then there is some wk−1ak−1bk−1 ∈ L with

P[Xek−1
= wk−1ak−1bk−1,Wk = x]

=
∑

w′∈L\C(wk−1ak−1bk−1)

G(o,w′)p(w′, wk−1ak−1bk−1)L(ak−1bk−1, x)ξ([x]) > 0,

τ(C(ak−1bk−1)) = i and C(x) being the n-th subcone of type j in the covering of the
cone C(ak−1bk−1). If k = 1 then (ji,n, x) ∈ W. In the case k > 1 take any w0a0b0 ∈ L
with P[W0 = w0a0b0] > 0 and τ(C(w0a0b0)) = i. Since ak−1bk−1 ∈ C(a0b0) we also have
L(a0b0, x) > 0 since L(ak−1bk−1, x) > 0 (recall the remark before Lemma 5.2). Then:

P[W0 = w0a0b0,W1 = x] =
∑

w′∈L\C(w0a0b0)

G(o,w′)p(w′, w0a0b0)L(a0b0, x)ξ([x]) > 0,

yielding (ji,n, x) ∈ W.
For the other inclusion, let be (ji,n, x) ∈ W. Then there is some w0a0b0 ∈ L with

P[W0 = w0a0b0,W1 = x] =
∑

w′∈L\C(w0a0b0)

G(o,w′)p(w′, w0a0b0)L(a0b0, x)ξ([x]) > 0,

τ(C(a0b0)) = i and C(x) being the n-th subcone of type j in the covering of C(a0b0). If
k = 1 then (ji,n, x) ∈ supp(P[(i1,W1) = ·]). In the case k > 1 take any wk−2ak−2bk−2 ∈ L
with P[Xek−2

= wk−2ak−2bk−2] > 0. Then C(wk−2ak−2bk−2) has in its covering a subcone
C(wk−1ak−1bk−1) of type i. Since ak−1bk−1 ∈ C(a0b0) we have L(ak−1bk−1, x) > 0 due
to L(a0b0, x) > 0 (once again recall the remark before Lemma 5.2) and C(x) is the n-th
subcone of type j in the covering of C(ak−1bk−1) = C(a0b0). Hence,

P[(ik,Wk) = (ji,n, x)] ≥ P[Xek−1
= wk−1ak−1bk−1,Xek = wk−1x]

≥
∑

w′∈L\C(wk−1ak−1bk−1)

G(o,w′)p(w′, wk−1ak−1bk−1)L(ak−1bk−1, x)ξ([x]) > 0,

yielding W ⊆ supp(P[(ik,Wk) = ·]), and therefore W = supp(P[(ik,Wk) = ·]).
The next task is to show irreducibility, which implies positive recurrence due to finiteness
of W. Let be (im,n, w1), (js,t, w2) ∈ W. Take any w̄ ∈ W0 such that q(w1, w̄) > 0 and
τ(C(w̄)) = s, which exists by construction of coverings. Then w2 ∈ ∂Cjs,t([w̄]), that is,
C(w2) is the t-th subcone of type j in the covering of C([w̄]), yielding q(w̄, w2) > 0. Hence,

P[(i3,W3) = (js,t, w2) | (i1,W1) = (im,n, w1)] (C.1)
≥ P[W3 = w2,W2 = w̄ | (i1,W1) = (im,n, w1)]

= q(w1, w̄) · q(w̄, w2) > 0.

Here, we used the fact that i3 = js,t is uniquely determined by w1, w̄, w2 and that this prob-
ability does not depend on m and n. This yields irreducbility of the process

(
(ik,Wk)

)
k∈N.

It follows that the period of the process is at most 2. In order to see aperiodicity, take any
w1, w2 ∈ W with P[(i2,W2) = w2 | (i1,W1) = w1] > 0. Then we get analogously to (C.1):

P[(i4,W4) = w1, (i2,W2) = w2 | (i1,W1) = w1]

= P[(i2,W2) = w2 | (i1,W1) = w1] · P[(i4,W4) = w1 | (i2,W2) = w2] > 0.
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That is, the period of the process is 1. This finishes the proof. �

The following lemma was used in the proof of Proposition 5.8:

Lemma C.1. For almost every realisation (x1, y1, y2, . . . ) of (Xe1 ,Y1,Y2, . . . ),

H(Y) = lim
k→∞

−1

k
log P

[
C(Xe1) = C(x1),Y1 = y

1
, . . . ,Yk = y

k

]
.

Proof. We recall the notation from the proof of Proposition 5.8: let be k ∈ N and assume
for the moment that Wl = ylalbl, where yl ∈ A∗ \ {o} and albl ∈ A2 for 0 ≤ l ≤ k. That
is, Xel = y0y1 . . . ylalbl. We write Y1 = (j, t(1)), where j = τ(C(a1b1)), and Yl = (s(l), t(l))

for 2 ≤ l ≤ k, where the values of s(2), . . . , s(k−1) and t(1), . . . , t(k−1) are determined by the
values of Wl = ylalbl. Vice versa, given Xe1 the values of s(2), . . . , s(k−1) and t(1), . . . , t(k−1)

determine uniquely the cones C(ylalbl): indeed, Xe1 and t(1) determine uniquely C(Xe2)

and therefore also C(W2) = C(y2a2b2); inductively, given C(Xel) of type s(l) then t(l)

determines uniquely C(Xel+1
) and C(Wl+1) = C(yl+1al+1bl+1). We mark it by (∗) when

we make use of this “transition”.

Recall that the covering of L consists of n0 subcones C
(0)
i , 1 ≤ i ≤ n0. Each C

(0)
i has

again a covering consisting of n(τ(C
(0)
i ), j) subcones of type j. We enumerate all these

subcones of type j by C
(1)
j,k with 1 ≤ k ≤ Nj :=

∑n0
i=1 n(τ(C

(0)
i ), j), that is, we enumerate

all subcones of type j which appear in the coverings of all C(0)
i , 1 ≤ i ≤ n0.

Since W0 is finite, there is some constant c > 0 such that

c · P[Xe1 = x] ≤ P[Xe1 = y]

for all x, y ∈ ⋃Nj

k=1 ∂C
(1)
j,k ⊆ supp(P[Xe1 = ·]).

In the following we will show that P
[
C(Xe1) = C(x1),Y1 = y

1
, . . . ,Yk = y

k

]
is comparable

with P
[
Y1 = y

1
, . . . ,Yk = y

k

]
, which proves the claim. First, we have for k ≥ 2:

Nj · P
[
Xe1 ∈ C(y0y1a1b1),Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]

(∗)
= Nj ·

∑

x∈∂C(y0y1a1b1)

∑

w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

P[Xe1 = x,Xe2 = y0y1w2, . . . ,Xek = y0 . . . yk−1wk]

= Nj ·
∑

x∈∂C(y0y1a1b1);
w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

P[Xe1 = x]P[Xe2 = y0y1w2, . . . ,Xek = y0 . . . yk−1wk | Xe1 = x]
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= Nj ·
∑

x∈∂C(y0y1a1b1)

∑

w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

P[Xe1 = x]q(y1[x], w2)
k∏

i=3

q(wi−1, wi)

=

Nj∑

l=1

∑

x∈∂C(y0y1a1b1)

∑

w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

P[Xe1 = x]P
[
W2 = w2

∣∣[Xe1 ] = [x]
] k∏

i=3

q(wi−1, wi).

For a moment, let be ∂C(y0y1a1b1) = {y0y1c1d1, . . . , y0y1cκdκ}. Then for all l ∈ {1, . . . , Nj}
there is some vl ∈ A∗ such that ∂C

(1)
j,l = {vlc1d1, . . . , vlcκdκ}. Therefore, for every x ∈

∂C(y0y1a1b1) and each l ∈ {1, . . . , Nj} there is exactly one x̂l ∈ ∂C
(1)
j,l with [x̂l] = [x],

P[Xe1 = x] ≥ c · P[Xe1 = x̂l] and P
[
W2 = w2

∣∣[Xe1 ] = [x]
]
= P

[
W2 = w2

∣∣[Xe1 ] = [x̂l]
]

for
all w2 ∈ W0. The last equation follows from the fact that the probabilities depend on Xe1

only by its last two letters [Xe1 ] in the condition. We write x̂l for this mapping (x, l) 7→ x̂l.
Hence,

Nj · P
[

Xe1 ∈ C(y0y1a1b1),Y1 = (j, t(1)),

Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]

≥
Nj∑

l=1

∑

x∈∂C(y0y1a1b1)

∑

w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

cP[Xe1 = x̂l]P
[
W2 = w2 | [Xe1 ] = [x̂1]

] k∏

i=3

q(wi−1, wi)

=

Nj∑

l=1

∑

w∈∂C(1)
j,l

∑

w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k

c · P[Xe1 = w] · P
[
W2 = w2

∣∣[Xe1 ] = [w]
]
·

k∏

i=3

q(wi−1, wi)

= c · P
[
Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
.

Vice versa, we obviously have

P
[
Xe1 ∈ C(y0y1a1b1),Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]

≤ P
[
Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
.

This proves the claim. �

Proof of Proposition 8.1. Let be (s(1), t(1)), . . . , (s(n), t(n)) ∈ Wπ. We prove the claim by
induction on n. First, let be j, s ∈ I and t(1) = jm with 2 ≤ m ≤ n(s, j), and let
a0b0, ab ∈ A2 with τ(C(a0b0)) = s and τ(C(ab)) = j. If Cj,m is the m-th cone of type j in
the covering of C(a0b0) then there is a unique word x̄0 = x̄

[s,j,m,ab]
0 ∈ A∗ with x̄0ab ∈ ∂Cj,m.
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With this notation we get:

P
[
Y1 = (s, jm), [W2] = ab

]
=

∑

(uk,l,x)∈W :u=s

P[(i1,W1) = (sk,l, x)] · q(x, x̄0ab)

=
∑

(uk,l,x)∈W :u=s

µ̂1(sk,l, x)q̂
(
(sk,l, x), (js,m, x̄0ab)

)

= P
[
Z1 = (s, jm), [x2] = ab

]
.

Now we turn to the case t(1) = j1. Once again, if Cj,1 is the first cone of type j in the
covering of C(a0b0) then there is some unique x̄0 = x̄

[s,j,1,ab]
0 ∈ A∗ with x̄0ab ∈ ∂Cj,1. We

get:

P
[
Z1 = (s, j1), [x2] = ab

]

=
∑

(uk,l,x)∈W :u=s

µ̂1(sk,l, x)
[
q̂
(
(sk,l, x), (js,1, x̄0ab)

)
+

∑

(tp,q ,y)∈W :
t=j,p 6=s,[y]=ab

q̂
(
(sk,l, x), (jp,q, y)

)]

=
∑

(uk,l,x)∈W :
u=s

µ̂1(sk,l, x)

[
q
(
(sk,l, x), (js,1, x̄0ab)

)

#{tκ1,κ2 | κ1 6= s, ab}+ 1
+

∑

(tp,q ,y)∈W :
t=j,p 6=s,
[y]=ab

q
(
(sk,l, x), (js,1, x̄0ab)

)

#{tκ1,κ2 | κ1 6= s, ab}+ 1

]

=
∑

(uk,l,x)∈W :u=s

P
[
(i1,W1) = (sk,l, x)

]
· q(x, x̄0ab) = P

[
Y1 = (s, j1), [W2] = ab

]
.

Now, in both cases we obtain

P
[
Z1 = (s, t(1))

]
=

∑

ab∈A2

P
[
Z1 = (s, t(1)), [x2] = ab

]

=
∑

ab∈A2

P
[
Y1 = (s, t(1)), [W2] = ab

]
= P

[
Y1 = (s, t(1))

]
.

We now perform the induction step where we will use the induction assumption

P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = ab

]
(C.2)

= P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = ab

]
.

First, consider the case (s(n+1), t(n+1)) = (s, jm) with s, j ∈ I and 2 ≤ m ≤ n(s, j). This
implies that tn+1 has the form s∗,∗ and tn+2 = js,m. Let Cj,m be the m-th cone of type
j in the covering of C(a0b0), where a0b0 ∈ A2 with τ(C(a0b0)) = s. If ab ∈ A2 with
τ(C(ab)) = j then there is some unique x̄0 = x̄

[s,j,m,ab]
0 ∈ A∗ with x̄0ab ∈ ∂Cj,m. In this
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case we obtain:

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), jm), [xn+1] = a0b0, [xn+2] = ab

]

=
∑

(uk,l,w0)∈W :
u=s,[w0]=a0b0

P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), tk+1 = uk,l,xn+1 = w0

]

·q̂
(
(sk,l, w0), (js,m, x̄0ab)

)

= P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x̄0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x̄0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), jm), [Wn+1] = a0b0, [Wn+2] = ab

]
.

Now we turn to the case (s(n+1), t(n+1)) = (s, j1). This implies again that tn+1 has the
form s∗,∗. Once again, if Cj,1 is the first cone of type j in the covering of C(a0b0) (of type s)
then there is some unique x̄0 = x̄

[s,j,1,ab]
0 ∈ A∗ with x̄0ab ∈ ∂Cj,1. We get by distinguishing

whether t(n+1) = j1 arises from tn+2 = js,1 or tn+2 = jk,l with k 6= s:

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), j1), [xn+1] = a0b0, [xn+2] = ab

]

=
∑

(up,q,w0)∈W :
u=s,[w0]=a0b0

P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), tn+1 = up,q,xn+1 = w0

]

·
(
q̂
(
(sp,q, w0), (js,1, x̄0ab)

)
+

∑

(tk,l,y)∈W :
t=j,k 6=s,[y]=ab

q̂
(
(sp,q, w0), (jk,l, y)

))

= P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = a0b0

]

·
[

ξ(ab)

ξ(a0b0)

L(a0b0, x̄0ab)

#{jk,l | k 6= s, ab}+ 1
+

∑

(tk,l,y)∈W :
t=j,k 6=s,
[y]=ab

ξ(ab)

ξ(a0b0)

L(a0b0, x̄0ab)

#{jκ1,κ2 | κ1 6= s, ab}+ 1

]

= P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x̄0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x̄0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), j1), [Wn+1] = a0b0, [Wn+2] = ab

]
.
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Hence,

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1)), [xn+2] = ab

]

=
∑

a0b0∈A2

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1)), [xn+1] = a0b0, [xn+2] = ab

]

=
∑

a0b0∈A2

P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+1] = a0b0, [Wn+2] = ab

]

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+2] = ab

]
.

This proves Equation (C.2) for all n ∈ N, all ab ∈ A2 and all (s(1), t(1)), . . . , (s(n), t(n)) ∈
Wπ. Finally, we obtain:

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1))

]

=
∑

ab∈A2

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1)), [xn+2] = ab

]

=
∑

ab∈A2

P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+2] = ab

]

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1))

]
.

This finishes the proof. �
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