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Abstract. Let G = (Gn)n be a strictly increasing sequence of positive integers with
G0 = 1. We study the system of numeration defined by this sequence by looking at the
corresponding compactification KG of N and the extension of the addition-by-one map τ
on KG (the ‘odometer’). We give sufficient conditions for the existence and uniqueness of
τ -invariant measures on KG in terms of combinatorial properties of G.

1. Introduction and notation
1.1. Systems of numeration. Throughout the paper, N denotes the set of non-negative
integers, that is {0, 1, 2, . . .}.

Let (A,6) be a totally ordered set, called an ‘alphabet’; in most cases the alphabet is a
subset of N. We denote by A∗ the set of finite words over A, A∗ = {a0a1 · · · an | ai ∈ A}
∪ {ε}, where ε denotes the empty word. The basic idea of ‘numeration’ is to give a
bijection between N and a set of words W ⊂ A∗, which respects a suitable ordering on W
inherited from the ordering on A. Before we give the precise definitions of this bijection
and the set W , we introduce some basic notation about words. For more information on
word combinatorics we refer to the book [27].

For finite words v and w we write vw for their concatenation and v(k) for the
concatenation of k times the word v; we write the exponent in parentheses to avoid
confusion with powers of numbers. Absolute values denote the length of a word. We
have |v(k)| = k|v|.

We shall use two different orders on W: first we write v
pref
4 w if v is a prefix of w, i.e.

if there exists a word u such that vu = w. In particular, for |x |> m, we denote by x[m]
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the prefix of x of length m. By convention, x[0] = ε. Secondly, we consider the ‘reverse
genealogical order’ on W (inherited from the ordering on A): for v, w ∈W with |v| = |w|

we have v
gen
6 w if v = w or if there exists some index 06 k < |v| such that vk <wk and

v j = w j for all |v|> j > k. If |v|< |w|, then v
gen
6 w. As opposed to the lexicographical

order, this order takes the length of the words into account. The word ‘reverse’ refers to
the fact that we read the digits from right to left.

A system of numeration is given by an increasing sequence of integers (Gn)n with
G0 = 1, called the scale. In this system, any non-negative integer n can be represented as
a (finite) sum

n =
∑
k>0

εk(n)Gk . (1.1)

The digits εk(n) are computed by the so-called greedy algorithm: if n = 0, then εk(n)= 0
for all k. If n 6= 0, let L(n) be the smallest k such that n < Gk and proceed with the
Euclidean division n = εL(n)−1(n)GL(n)−1 + n′. Apply the same procedure to n′ and
repeat it recursively. After finitely many steps, the remainder of the Euclidean division
is zero. Finally, set εk(n)= 0 for all those k that did not occur during the process. With
the computed values, the relation (1.1) holds. Obviously, for an arbitrary n, one has that

for all m ∈ N :
∑
k<m

εk(n)Gk < Gm; (1.2)

notice that these conditions imply εk(n) < (Gk+1/Gk). These inequalities are called
‘Yaglom conditions’ (cf. [13]); they characterise the expansions and provide a necessary
and sufficient condition for their uniqueness in the following sense: if n =

∑
xk Gk with∑

k<m xk Gk < Gm for all m, then xk = εk(n) for all k (cf. [35]). In other words, the greedy
algorithm provides a bijection between N and the set of expansions. Let W be the set of
admissible words

W =
{
w = w0w1 · · · wm | m > 0, wm 6= 0, ∀k 6 m + 1,

∑
j<k

w j G j < Gk

}
∪ {ε}.

We introduce the two maps ‘representation’ and ‘value’

rep : N → W
n 7→ ε0(n) · · · εL(n)−1(n)

val : W → N

w0 · · · wm 7→

m∑
i=0

wi Gi

with rep(0)= ε. The order
gen
6 is defined so that the maps rep and val are mutually

inverse order preserving bijections between (N,6) and (W,
gen
6 ). Such representations

of the positive integers for various base sequences have been investigated from different
points of view. As a general reference for systems of numeration in this generality, we
refer to [13]. In the general case of an increasing base sequence (Gn)n the corresponding
language does not have any nice structural properties, like recognisability or even
factoriality.

For sequences (Gn)n with bounded sequence of quotients (Gn+1/Gn)n the alphabet A
is finite; for such sequences the recognisability of the language W by a finite automaton
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and the representability of arithmetic operations by finite automata are natural questions.
The most prominent and best investigated sequences of this type are linear recursive
sequences; i.e. sequences satisfying a recurrence relation

Gn+d = ad−1Gn+d−1 + · · · + a1Gn+1 + a0Gn for n > 0

with fixed non-negative integer coefficients a0, . . . , ad−1. Numeration based on linear
recurrent scales have been studied in [14–20] with respect to the representability of
the addition-by-one map by a finite automaton. In the context of linear recursive base
sequences the case when the characteristic polynomial

xd
− ad−1xd−1

− · · · − a1x − a0

is the minimal polynomial of a Pisot-number (i.e. an algebraic integer all of whose
conjugates have modulus < 1) plays a special role. The underlying language W can
then be related to β-expansions (cf. [29]) of real numbers. In this case the language
W is recognised by a finite automaton (cf. [18]). For a more detailed discussion of
recognisability of W in the context of linear recursive base sequence (Gn)n we refer
to [18].

The special case of the sequence Gn = (n + 1)2 and some properties of the according
representations have been studied in [28].

A different approach to number representation is based on substitutions over a finite
alphabet (cf. [11, 12]). In this context the non-negative integer n is represented as the
prefix of length n of the fixed point of a substitution on a finite alphabet. This prefix
is expressed in a unique way as a concatenation of iterates of the substitution applied to
certain prefixes of the fixed point. This finite number of prefixes plays the role of digits
in this numeration. We remark here that numeration systems with linear recurrent base
sequence can be seen as special cases of this type of numeration.

In a similar vein, let L be a regular language endowed with the genealogical order
originating from an ordered alphabet. Then the integer n can be represented as the nth
word in L. This language- and automata-theoretic approach has been used in [26, 31] to
define abstract numeration systems. Again, numeration systems with linear recurrent scale
are a special case.

1.2. Odometer. For convenience, we introduce a further notation of rep*(n)=
rep(n)0(∞). We introduce the compact set

KG =

{
(xn)n∈N ∈

∏
n

{0, 1, . . . , dGn+1/Gne − 1} | ∀m ∈ N :
∑
k<m

xk Gk < Gm

}
, (1.3)

which is the closure in
∏

n{0, 1, . . . , dGn+1/Gne − 1} of the set of infinite expansions
rep*(N) with respect to the product topology. For an infinite word x = x0x1x2 . . . ,
we denote by x[m] = x0x1 · · · xm−1 the prefix of x of length m, extending the previous
notation. Furthermore, we extend concatenation vw for infinite words w as well. Notice
that v ∈W and w ∈KG does not imply that vw ∈KG . The function rep* is the
embedding of N into KG , and the image of N is dense in KG .
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In order to describe cylinders in KG , we first define

W ′ = {w ∈ A∗ | ∃x ∈KG , w
pref
4 x},

the set of prefixes of elements of KG . By the properties of greedy numeration this set
satisfies

W ′ = {w0(k) | w ∈W, k ∈ N} = {w ∈ A∗ | ∃v ∈W, w
pref
4 v} ⊃W.

The map val as defined on W extends readily to W ′; notice that val is no longer injective
on W ′, but it is still injective on words of fixed length. For a finite wordw ∈W ′, we denote

by [w] the cylinder associated with w, that is [w] = {x ∈KG | w
pref
4 x}; by convention

we set [ε] =KG . Let w ∈W ′, w 6= 0|w|. The word w− is defined to be the word v ∈
W ′ satisfying |v| = |w| and val(v)= val(w)− 1; by the above discussion such a word
exists and is unique. It is the predecessor of w for the reverse genealogical order among
the elements of length |w| in W ′.

As proved in [2, 21], the operation τ : n 7→ n + 1 can be extended from N to KG by

τ(x)= lim
n→∞

rep*(val(x[n])+ 1).

Notice that the addition of 1 either affects only the digit x0, which yields τ(x)= (x0 + 1)
x1x2 . . . , or there occurs a carry, which means that the sequence (xi )i has a prefix of the
form rep(Gm − 1). If m is the largest value with this property, then the addition of 1 gives
τ(x)= (0(m), xm + 1, xm+1, . . .); if there are infinitely many m with this property, then
τ(x)= 0(∞). That yields a dynamical system (KG , τ ), called an odometer, the subject of
this paper. We emphasise that the odometer need not be continuous; the set of discontinuity
points has been determined in [2] as

Disc(τ )= {rep*(Gn − 1) | n ∈ N}′ \ τ−1({0}),

the set of accumulation points of the sequence (rep*(Gn − 1))n , which are not mapped
to 0 by τ . The set of accumulation points of (rep*(Gn − 1))n can even be the whole
space; an example of such an odometer is given in [2, Example 15]. In that example the
odometer is even uniquely ergodic. Notice that the set τ−1({0}) has measure 0 for any
invariant probability measure as a consequence of Proposition 3. This lack of continuity
makes the existence of invariant measures of (KG , τ ) an important question in the context
of odometers. For instance, Example 7 in §5 provides a family of examples of odometers,
which do not admit an invariant measure.

In the classical case of b-adic numeration, KG is Zb, the topological group of b-adic
integers. Addition by one is then a group rotation. The general theory has been developed
in [21]. The paper [6] inter alia gives an example of an odometer with continuous
spectrum, disproving a conjecture stated in [21]. For systems of numeration arising from
regular languages as in [26], the according odometer has been introduced and studied
in [5]. A different approach related to Bratelli diagrams and Markov compacta has been
pursued in [34] (see also [33]). For a survey on the subject we refer to [9]. For a general
survey on dynamics and numeration we refer to [1].

A further classical example of a numeration system, which has been studied intensively
in the context of Diophantine approximation, is Ostrowski numeration. Given an irrational
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real number 0< α < 1
2 and its continued fraction expansion α = [0; a1, a2, . . .] the

denominators (qn)n of the convergents satisfy the recursion

qn+1 = an+1qn + qn−1, q0 = 1, q1 = a1.

Taking (qn)n as the base sequence gives the Ostrowski numeration system. This has been
studied from the dynamical point of view in [4]. In particular, it has been shown that the
system (KG , τ ) is conjugate to the rotation by α on R/Z and is therefore uniquely ergodic.

1.3. Content of the paper. The subject of the present paper is a deeper understanding
of the dynamical properties of the odometer based on the combinatorial structure of the
underlying base sequence (Gn)n . Section 2 will define an infinite triangular array of
coefficients that we call greedy recurrence coefficients. These coefficients are obtained
from the greedy expansion of the numbers Gn − 1 and provide a linear recursive
expression of Gn in terms of its preceding values G0, . . . , Gn−1. Most of our results
will be formulated in terms of these coefficients. Our approach is more direct than the one
chosen in [3]: there, instead of considering the expansions of the non-negative integers and
studying the associated compactification KG , the G-valuation

vG(n)=min{k ∈ N | εk(n) > 0} ∈ N ∪ {∞}

is introduced. The valumeter is then the dynamical system ((N ∪ {∞})N, σ ) obtained
as the orbit closure of the sequence (vG(n))n under the shift σ in the compact space
(N ∪ {∞})N. The valumeter is then shown to be conjugate to the odometer. Results on
the existence and uniqueness of invariant measures are then obtained for the valumeter
and translated to the odometer. For instance, it is shown that the convergence of the series∑

n G−1
n is sufficient for the existence of an invariant measure on (KG , τ ), whereas the

relation lim supn Gn/n =∞ provides a necessary condition. Furthermore, it is shown that
limn(Gn+1 − Gn)=∞ plus boundedness of the sequence (Gn

∑
k>n G−1

k )n is sufficient
for unique ergodicity.

In §3 we discuss in more detail a condition for the existence and uniqueness of an
invariant measure on (KG , τ ) given in [3, Théorème 8], namely the boundedness of
the sequence (Gn

∑
k>n G−1

k )n . We relate this condition to combinatorial properties of
the greedy recurrence coefficients, namely a weak non-lacunarity of these coefficients.
Furthermore, we show that this condition implies exponential growth of the base sequence
(Gn)n in the sense that

lim inf
n→∞

log Gn

n
> 0.

Section 4 is the heart of the paper. Here we relate the existence of an invariant measure
to the existence of a solution of an infinite linear system of equations (Theorem 1). These
equations are built from the greedy recurrence coefficients introduced in §2. In §4.2
we give a sufficient condition for the existence of invariant measures (Corollary 2) and
describe all invariant measures in terms of cluster points of certain combinatorially defined
measures (Theorem 2). In §4.3 we derive an explicit and computable sufficient condition
for the uniqueness of the invariant measure (Theorem 3). Our approach of using the greedy
recurrence coefficients allows less restrictive conditions (compared to [3, Théorème 8])
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which ensure uniqueness of the invariant measure, especially as our conditions for unique
ergodicity do not imply exponential growth of the base sequence (Gn)n .

Several simple examples are given throughout the paper to illustrate notation and
theorems. The last section, §5, is devoted to families of more elaborate examples, which
show that the sufficient conditions given in the present paper are weaker than those given
in [3], but that they are still not necessary. Furthermore, we give examples of odometers
which are not uniquely ergodic. The examples are worked out using the greedy recurrence
coefficients associated to the base sequence and computing the invariant measures as
solutions of the linear system of equations derived in §4.1. This allows for a very direct
and explicit understanding of the combinatorial structure of the odometer and the invariant
measure.

2. Greedy recurrence coefficients
It will turn out that the expansions of the integers Gm − 1 play an important role in the
description of the invariant measures on the odometer. The coefficients ak,m we introduce
below are related to these expansions; they consist in non-admissible expansions of the Gn ,
which can be read as a recurrence relation for the base sequence (Gn)n . They will be used
in §4 to build τ -invariant measures. Those coefficients are constructed from a so-called
descent function introduced in [2] as

T (m)=max{k < m | rep(Gk − 1)
pref
4 rep(Gm − 1)}, for m > 1. (2.1)

In particular, T (m)= 0, if rep(Gm − 1) has no non-empty prefix of the form
rep(Gk − 1). The motivation for this definition is that the addition of 1 to x ∈KG

produces a carry, if and only if there exists a k > 0 such that rep(Gk − 1)
pref
4 x , as

mentioned in the definition of τ above. We will provide examples illustrating this definition
in the end of this section.

Remark 1. In [2], a tree of carries has been introduced as follows. The set of the vertices is
N; the edges are given by the relations T (m)= n. Then, it turns out that the transformation
τ on the odometer is continuous if and only if the tree is of finite type, that is all vertices
have finite degree (cf. [2, Théorème 5]).

For m > 1, using the definition of T , the expansion of Gm − 1 can be written as

Gm − 1=
T (m)−1∑

j=0

ε j (GT (m) − 1)G j +

m−1∑
j=T (m)

ε j (Gm − 1)G j , (2.2)

which can be understood in two ways:

rep(Gm − 1)= rep(GT (m) − 1)εT (m)(Gm − 1) · · · εm−1(Gm − 1) (2.3)

as a concatenation of expansions, and as numerical equality. We now define coefficients
ak,m by

ak,m =


εk(Gm − 1) if T (m)+ 16 k 6 m − 1,

εT (m)(Gm − 1)+ 1 if k = T (m),

0 if k < T (m) or k > m.

(2.4)
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We call them the greedy recurrence coefficients of the scale (Gn)n ; they will be used
throughout the paper to describe the combinatorial structure of the system of numeration.
Some special values of the ak,m are am−1,m 6= 0, aT (m),m 6= 0, a0,1 = G1. The following
equations are equivalent to (2.4)

k−1∑
j=0

a j,m G j =

{
0 if k 6 T (m),

val(rep(Gm − 1)[k])+ 1 if k > T (m).
(2.5)

In particular, this allows us to rewrite (2.2) as

Gm =

m−1∑
k=0

ak,m Gk =

m−1∑
k=T (m)

ak,m Gk, (2.6)

a ‘recurrence relation’ for Gm in terms of the preceding values. The expression (2.6) can be
obtained as the greedy expansion of Gm in terms of the values G0, G1, . . . , Gm−1, which
is not the expansion of Gm with respect to the scale G, since obviously rep(Gm)= 0(m)1.
Then T (m) is the smallest index of a non-zero digit in this expansion of Gm . That remark
shall be used frequently in §4.1.

Reinterpreting (1.2), we have

x = x0x1x2 · · · ∈KG ⇐⇒ for all m > 1 : x[m]
gen
< a0,ma1,m · · · am−1,m . (2.7)

Later we will need the inequality

for all m > k > 1 :
k−1∑
j=0

a j,m G j < Gk, (2.8)

which we prove by using (2.5): either the left-hand side vanishes, then the inequality
is trivial, or it equals val(rep(Gm − 1)[k])+ 16 Gk . Assume now that k < m and
val(rep(Gm − 1)[k])+ 1= Gk . This can occur if and only if k = T s(m) for some
s > 1, i.e. k and m belong to the same branch of the tree of carries. But then k 6 T (m)
and hence the left-hand side of (2.8) vanishes.

In order to make the definition of the ak,m more transparent, we present three simple
examples.

Example 1. Consider the usual d-adic expansion, where d > 2 is an integer. We have
Gn = dn and rep(Gn − 1)= (d − 1)(n). Therefore, for all k < m, we have rep(Gk −

1)
pref
4 rep(Gm − 1). For fixed m, the greatest k < m such that rep(Gk − 1)

pref
4

rep(Gm − 1) is then m − 1 and we have T (m)= m − 1. We may write

Gm − 1=
m−1∑
j=0

(d − 1)G j = dGm−1 − 1, (2.9)

Gm = dGm−1. (2.10)

Expansion (2.9) is the admissible expansion of Gm − 1, since (d − 1)(m) ∈W .
Expansion (2.10) is not admissible and corresponds to (2.6).

We have KG = {0, 1, . . . , d − 1}∞ and its elements can be characterised by

x ∈KG ⇐⇒∀m > 0 : x[m]
gen
< 0(m−1)d.
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Example 2. Consider the so-called Tribonacci sequence, given by the linear recurrence

G0 = 1, G1 = 2, G2 = 4, for all n > 0 : Gn+3 = Gn+2 + Gn+1 + Gn .

It was shown in [7, 8] that

KG = {(xn)n ∈ {0, 1}N | ∀n ∈ N : xn xn+1xn+2 6= 111}.

Then we have

rep(G3n+r − 1)=


(011)(n) if r = 0,

1(011)(n) if r = 1,

11(011)(n) if r = 2,

and T (n)= n − 3 for n > 3, and T (1)= 0, T (2)= 1. Equation (2.6) reads as

G1 = 2G0, G2 = 2G1, Gn = Gn−1 + Gn−2 + Gn−3 for n > 3. (2.11)

G. Rauzy initiated the study of dynamical systems related to substitutions and numeration,
as well as related fractals (nowadays called ‘Rauzy fractals’) in his seminal paper [30] on
the Tribonacci numeration system.

Example 3. Consider the scale of slowest possible growth. It is given by Gn = n + 1. We
have Gn = Gn−1 + G0 and T (n)= 0 for all n. Furthermore,

KG = {(xn)n ∈ {0, 1}N | #{n | xn = 1}6 1}.

3. Scales with locally slow growth
The following condition for the uniqueness of the invariant measure on (KG , τ ) was given
in [3, Théorème 8]

there exists M : for all n ∈ N : Gn
∑
k>n

1
Gk
6 M and lim

n→∞
(Gn+1 − Gn)=∞. (3.1)

These conditions are concerned with the order of growth of the sequence (Gn)n . We now
investigate in detail the boundedness of the sequence (Gn

∑
k>n G−1

k )n , giving equivalent
formulations, which shed more light on the growth conditions on the scale behind (3.1).
For that purpose, we introduce a further notation. Using (2.2), set

e(m)=

{
0 if am−1,m > 2,

` if am−1,m = 1, am−2,m = · · · = am−`,m = 0, am−`−1,m 6= 0.
(3.2)

Since Gm > Gm−1, e(m) is well defined for all m > 1. As a motivation for this definition,
we note that

e(m)= 0⇔ Gm > 2Gm−1

e(m)6 `⇔ Gm > Gm−1 + Gm−`−1;
(3.3)

the larger values e(m) attains, the slower the sequence (Gm)m grows. This is made precise
in the following proposition.
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PROPOSITION 1. Let (Gn)n be a system of numeration.
For any `> 1, let

A` = inf
n

Gn+`

Gn
and B` = lim inf

n→∞

Gn+`

Gn
.

Then both sequences (A`)` and (B`)` satisfy

for all k, ` ∈ N : Ak+` > Ak A`, Bk+` > Bk B`

and we have that
lim A` = lim B` ∈ {1,∞}. (3.4)

Furthermore, the following properties are equivalent:
(i) lim`→∞ A` =∞;
(ii) there exists `> 1 : A` > 1;
(iii) there exists `> 1 : supn min{e(n), e(n + 1), . . . , e(n + `− 1)}<∞;
(iv) the sequence (Gn

∑
k>n G−1

k )n is bounded.
If one of these properties holds, then

lim inf
n→∞

log Gn

n
> 0. (3.5)

Proof. We have for all `> 1 and all n > 0

16 A` = inf
n

Gn+`

Gn
6 lim inf

n→∞

Gn+`

Gn
= B`.

Since the sequence (Gn)n is increasing, both (A`)` and (B`)` are non-decreasing, hence
the existence of their limits. Furthermore, taking the infimum (respectively the inferior
limit, both with respect to n) in

Gn+k+`

Gn
=

Gn+k+`

Gn+k

Gn+k

Gn
(3.6)

yields Ak+` > A`Ak (respectively Bk+` > B`Bk). Then, Fekete’s lemma yields

lim
log A`
`
= sup

log A`
`

. (3.7)

Then, we either have A` = 1 for all `, or there exist a C > 0 and `0 such that log A` > C`
for `> `0 (this will be used later). On the other hand, since Gn+` > Gn for all n, it follows
from A` = 1 that B` = 1 as well. We thus have proved both (3.4) and the equivalence
between (i) and (ii).

Assume that (iii) is true and choose m > 1 and r > 0 such that

for all n ∈ N :min{e(n), e(n + 1), . . . , e(n + m − 1)}6 r.

Given n, by (3.3) there exists 06 k 6 m − 1 such that Gn+k > Gn+k−1 + Gn+k−1−r .
From this inequality and the fact that the sequence (Gn)n is increasing, it follows that

Gn+m−1 > Gn+k > Gn+k−1 + Gn+k−r−1 > 2Gn−r−1

holds, hence (ii) holds for `= m + r .
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Assume conversely that (iii) is false. Take ` arbitrary. Then there exist infinitely many n
such that e(n + k)> ` for all 16 k 6 `, hence again by (3.3) we have Gn+k − Gn+k−1 6
Gn+k−1−`. Summing up these relations yields

Gn+` 6 Gn + `Gn−1 6 (`+ 1)Gn, (3.8)

hence A` 6 `+ 1 for all `> 1. Then we have lim` ((log A`)/`)= 0 and therefore A` = 1
for all `. Hence (ii) does not hold.

Assume now that (ii) holds with some A` > 1. Then

Gn
∑
k>n

1
Gk
= Gn

`−1∑
k=0

∞∑
s=0

1
Gn+s`+k

6 Gn

`−1∑
k=0

1
Gn+k

∞∑
s=0

1
As
`

= Gn

`−1∑
k=0

1
Gn+k

A`
A` − 1

6
`A`

A` − 1
.

This proves that (iv) follows from (ii).
Conversely, one has that

Gn
∑
k>n

1
Gk
> Gn

n+∑̀
k=n

1
Gk
> (`+ 1)

Gn

Gn+`
.

Assume that (ii) does not hold. Then, for all `, we have

lim sup
n→∞

(
Gn

∑
k>n

1
Gk

)
> (`+ 1)

1
B`
= `+ 1.

Then (iv) does not hold either.
Finally, if (ii) holds, then by the trivial inequality Gn = Gn/G0 > An we have

lim inf
n→∞

log Gn

n
> lim inf

n→∞

log An

n
> 0. (3.9)

�

Remark 2. By Proposition 1 the condition for unique ergodicity given in (3.1) implies
exponential growth of the scale (Gn)n in the sense of (3.5). Our approach, especially
Theorem 3, will allow us to show unique ergodicity for scales which increase much more
slowly. We call sequences which do not satisfy the conditions of Proposition 1 scales of
locally slow growth to indicate that we can especially allow linear growth in arbitrarily
long intervals (see §5 for examples of this type). However, in contrary to condition (3.1),
the condition (4.34) we give in Theorem 3 is not a pure growth condition, but also takes
into account the combinatorics of the scale.

Remark 3. The conditions (3.1) are satisfied, if Gn ∼ Cαn for C > 0 and α > 1. Thus an
exponential asymptotic growth of (Gn)n implies unique ergodicity of the odometer.
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4. Invariant measures on the odometer
4.1. Equations. Let µ be an invariant measure on (KG , τ ). We use the invariance of µ
to get relations between the measures of the cylinders. We denote a disjoint union by]. We

first recall that by the definition of T (n) in (2.1) we have rep(Gm − 1)
pref
4 rep(Gn − 1)

if and only if m 6 n and n and m belong to the same branch of the tree of carries, that is if
there exists r such that T r (n)= m. This observation and the definition of the addition of
1 yield

τ−1([0(k)])=
⋃

m>k

[rep(Gm − 1)] =
⊎

m>k
T (m)<k

[rep(Gm − 1)]. (4.1)

Observe that m = k always occurs in the disjoint union above. This yields

τ−1([0(k)] \ [0(k+1)
])= [rep(Gk − 1)] \

⊎
T (m)=k

[rep(Gm − 1)], (4.2)

where the disjoint union is a subset of [rep(Gk − 1)], since for T (m)= k,

rep(Gk −1)
pref
4 rep(Gm −1) by the definition of T (m). Furthermore, let w ∈W ′ be

a word of length k, w 6= 0(k), then we have

τ−1([w])= [w−] \
⋃

m>k

[rep(Gm − 1)] = [w−] \
⊎

m>k,T (m)<k

w−
pref
4 rep(Gm−1)

[rep(Gm − 1)],

(4.3)
where the disjoint union is a subset of [w−].

In the following we will use Iverson’s notation: JPK is defined to be 1 if condition P is
satisfied, and 0 otherwise. From (4.1) and (4.3) we derive

µ([0(k)])=
∑
m>k

µ([rep(Gm − 1)])JT (m) < kK (4.4)

and for |v| = k, v 6= 0(k),

µ([v])− µ([v−])=−
∑

m>k,T (m)<k

µ([rep(Gm − 1)])Jv−
pref
4 rep(Gm − 1)K. (4.5)

Summing this equation for all v ∈W ′ of length k with 0< val(v)6 val(w) we obtain

µ([w])− µ([0(k)])

=−

∑
|v|=k

J0<val(v)6val(w)K
∑

m>k,T (m)<k

µ([rep(Gm − 1)])Jv−
pref
4 rep(Gm−1)K

=−

∑
|v|=k

Jval(v)<val(w)K
∑

m>k,T (m)<k

µ([rep(Gm − 1)])Jv
pref
4 rep(Gm−1)K.

Inserting (4.4), rearranging the double sum and using (2.5) in the second line we get

µ([w])=
∑

m>k,T (m)<k

µ([rep(Gm − 1)])Jval(rep(Gm − 1)[k])> val(w)K

=

∑
m>k

µ([rep(Gm − 1)])J∑k−1
j=0 a j,m G j>val(w)K. (4.6)
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Equation (4.6) is even true for w = 0(k), since it then coincides with (4.4). Furthermore,
equation (4.5) shows that µ([w])6 µ([w−]). Therefore, we have that

µ([rep(Gk − 1)])6 µ([rep*(Gk − 2)[k]])6 · · ·6 µ([rep*(1)[k]])6 µ([0(k)]).
(4.7)

In particular, since
∑
w∈W ′,|w|=k µ([w])= 1, we have

µ([0(k)])>
1

Gk
and µ([rep(Gk − 1)])6

1
Gk
. (4.8)

To get a relation between the numbers µ([rep(Gk − 1)]), we use

[rep(Gk − 1)] =
⊎

|w|=k+1

rep(Gk−1)
pref
4w

[w]

and (4.6) to write

µ([rep(Gk − 1)])

=

∑
|w|=k+1

µ([w])Jrep(Gk − 1)
pref
4 wK

=

∑
|w|=k+1

Jrep(Gk − 1)
pref
4 wK

∑
m>k+1

µ([rep(Gm − 1)])J∑k
j=0 a j,m G j>val(w)K

=

∑
m>k+1

µ([rep(Gm − 1)])

× #
{
w ∈W ′

∣∣∣∣ |w| = k + 1, rep(Gk − 1)
pref
4 w, and

k∑
j=0

a j,m G j > val(w)

}
.

(4.9)

The words to be counted in the last line are those w satisfying

val(w)+ 1= (η + 1)Gk 6
k∑

j=0

a j,m G j .

By (2.8) the possible choices for η are exactly 0, . . . , ak,m − 1. Hence we get

µ([rep(Gk − 1)])=
∑

m>k+1,T (m)<k+1

ak,mµ([rep(Gm − 1)])

=

∑
m>k+1

ak,mµ([rep(Gm − 1)]), (4.10)

where the last expression comes from the fact that ak,m = 0 whenever k < T (m) by (2.4).
We can now summarise the results.

PROPOSITION 2. Let (Gn)n be a system of numeration and ak,m be given by (2.4). If µ
is an invariant probability measure on the odometer (KG , τ ), then µ has the following
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properties:

for all w ∈W, |w| = k : µ([w])=
∑
m>k

µ([rep(Gm − 1)])J∑k−1
j=0 a j,m G j>val(w)K, (4.6)

for all k > 0 : µ([rep(Gk − 1)])=
∑

m>k+1

ak,mµ([rep(Gm − 1)]). (4.10)

For an invariant probability measure µ on the odometer (if there exists any), we set
αm = µ([rep(Gm − 1)]) with the convention α0 = 1. By (4.8) limm αm = 0 holds.

It turns out that equation (4.10) characterises invariant measures on the odometer.

THEOREM 1. Let (Gn)n be a system of numeration and ak,m be given by (2.4). For any
finite non-negative invariant measure µ on the corresponding odometer KG , let

A(µ)= (αm)m>0 = (µ([rep(Gm − 1)]))m>0.

Then A realises a homeomorphism between the set of τ -invariant non-negative measures
on the odometer endowed with the weak topology and the set of the non-negative solutions
(αm)m>0 of the infinite system of equations

αk =
∑

m>k+1

ak,mαm (k > 0), (4.11)

endowed with the product topology.

Proof. If µ is an invariant non-negative measure and αm = µ([rep(Gm − 1)]) for all m,
it follows from (4.10) that (αm)m>0 satisfies (4.11). Obviously, αm > 0 and µ(KG)= α0.
Moreover, A is continuous by definition of both weak convergence and product topology.

On the other hand, let (αm)m>0 be a non-negative solution of (4.11). We first define a
function m on the cylinders as follows: for w ∈W ′, |w| = k > 1, set

m([w])=
∑
m>k

αmJ∑k−1
j=0 a j,m G j>val(w)K (4.12)

and m([ε])= α0. By (4.6), if µ is such that A(µ)= (αm)m , then µ and m coincide on
all cylinders. Since the set of cylinders is stable under finite intersection and generates
the Borel σ -algebra, there exists at most one measure µ with this property. The existence
of µ will follow from Kolmogorov’s consistency theorem if we prove that m defines a
consistent system.

For k > 1, let Fk = σ({[w] | w ∈W ′, |w| = k}). On (KG , Fk), the set-function m

induces a non-negative measure Pk . To prove the consistency of the system (KG , Fk, Pk)k ,
it is enough to show that for any w ∈W ′, the equality

Pk+1([w]) =
∑

|v|=|w|+1

Pk+1([v])Jw
pref
4 vK

=

∑
|v|=|w|+1

m([v])Jw
pref
4 vK=m([w])= Pk([w])
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holds. Indeed, for fixed w ∈W ′, |w| = k, we have∑
|v|=k+1

m([v])Jw
pref
4 vK

=

∑
|v|=k+1

Jw
pref
4 vK

∑
m>k+1

αmJ∑k
j=0 a j,m G j>val(v)K

=

∑
m>k+1

αm#
{
v

∣∣∣∣ |v| = k + 1, w
pref
4 v and

k∑
j=0

a j,m G j > val(v)

}
.

Thus we have to count the number of words v = wη ∈W ′ such that

val(v)= ηGk + val(w) <
k∑

j=0

a j,m G j =

k∑
j=T (m)

a j,m G j .

That inequality is automatically satisfied if η < ak,m ; for η = ak,m it is satisfied if and
only if

val(w) <
k−1∑
j=0

a j,m G j .

Therefore, we can write∑
|v|=k+1

m([v])Jw
pref
4 vK=

∑
m>k+1

αm
∑
v=wa

J∑k
j=0 a j,m G j>val(w)+aGkK

=

∑
m>k+1

ak,mαm +
∑

m>k+1

αmJ∑k−1
j=0 a j,m G j>val(w)K

= αk +
∑

m>k+1

αmJ∑k−1
j=0 a j,m G j>val(w)K

=

∑
m>k

αmJ∑k−1
j=0 a j,m G j>val(w)K=m([w]),

by (4.11) since Gk =
∑k−1

j=0 a j,m G j > val(w). For |w| = 0 we get for all k > 1

Pk(KG)=
∑
|v|=1

m([v])=
∑
|v|=1

∑
m>1

αmJa0,m > val(v)K

=

∑
m>1

αm
∑
|v|=1

Ja0,m > val(v)K=
∑
m>1

a0,mαm = α0.

Let µ be the extension of m on B(KG). We check τ -invariance of µ. Equations (4.1)
and (4.12) give µ(τ−1([0(k)]))= µ([0(k)]); for v 6= 0(k) we apply µ to (4.3) to obtain

µ(τ−1([v]))= µ([v−])−
∑

m>k,T (m)<k

µ([rep(Gm − 1)])Jv−
pref
4 rep(Gm − 1)K.

On the other hand, we obtain from (4.12)

µ([v−])− µ([v])=
∑
m>k

αm

(
J∑k−1

j=0 a j,m G j>val(v)−1K− J∑k−1
j=0 a j,m G j>val(v)K

)
=

∑
m>k

αmJ∑k−1
j=0 a j,m G j=val(v)K.
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For v ∈W ′ with |v| = k and v 6= 0(k) the equality
∑k−1

j=0 a j,m G j = val(v) holds, if and

only if the conditions v−
pref
4 rep(Gm − 1) and T (m) < k are satisfied. Thus we have

proved µ(τ−1([v]))= µ([v]). It follows that µ is τ -invariant. Hence we have proved that
any non-negative solution of (4.11) defines a unique invariant Borel measure on KG .

It remains to prove that A−1 is continuous. For convenience, we define `m([w])=

J∑|w|−1
j=0 a j,m G j>val(w)K if m > |w| and 0 otherwise. Every open set O can be written (not

uniquely) as a countable disjoint union of cylinders

O =
⊎

w∈A(O)
[w].

Given this decomposition of O we have for µ= A−1((αm)m)

µ(O)=
∑

w∈A(O)
µ([w])=

∞∑
m=1

αm
∑

w∈A(O)
`m([w]).

Let (α(n)) be a sequence of solutions of (4.11) converging to (αm)m . Set µn =

A−1((α
(n)
m )m) and µ= A−1((αm)m) be the corresponding measures. For any finite M

we have

µn(O)>
M∑

m=1

α(n)m

∑
w∈A(O)

`m([w]),

from which we conclude lim infn→∞ µn(O)> µ(O).
Therefore, µ(O)6 lim inf µn(O) for every open set O, which by regularity of the

measure implies that lim µn = µ weakly. For K > 0, the set of invariant measures with
µ(KG)6 K is compact. Therefore, A induces on it a homeomorphism onto the set of
solutions with α0 6 K . It follows that A realises itself a homeomorphism and the theorem
is proved. �

Remark 4. The above theorem ensures that the set of invariant probability measures is
compact. It was not clear without any topological assumption on τ that τ -invariance is
stable under weak convergence.

From now on we restrict ourselves to the study of invariant probability measures, i.e.
those such that α0 = 1. We denote by Inv(KG) the set of τ -invariant probability measures;
the set of ergodic probability measures is denoted by Erg(KG). These are the extremal
points of Inv(KG). With the introduced machinery, we easily retrieve a result of [3].

PROPOSITION 3. Any non-zero invariant probability measure on the odometer is
continuous (i.e. all countable sets have zero measure). Furthermore, every such measure
charges every open subset of KG . In other words, αk 6= 0 for any k.

Proof. Assume that µ({x}) > 0 for some x ∈KG . Then

0< µ({x})= lim
m→∞

µ([x[m]]).
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Since by (4.7) µ(x[m])6 µ([0(m)]), this implies that µ({0}) > 0. By τ -invariance it
then follows that µ({rep*(n)})> µ({0}) > 0 for all n ∈ N, which would assign infinite
measure to KG .

Assume that there is an invariant measure µ on KG and a word w ∈W ′ with
µ([w])= 0. By (4.7), we have α|w| = µ([rep(G|w| − 1)])= 0. Inserting this into (4.11)
for k = |w| and using that ak,k+1 6= 0, we get αk+1 = 0, hence α` = 0 for all `> |w| by
immediate induction. Then (4.6) shows that all cylinders of length |w| have measure 0,
hence µ(KG)= 0. �

We illustrate this section by continuing to investigate the examples of scales given in §2.

Example 1 (continued). We have already seen in (2.10) that am−1,m = d and ak,m = 0
otherwise. Hence equations (4.11) become αk = dαk+1 for k > 0. The system has a unique
solution such that α0 = 1, namely αk = d−k , and (4.6) becomes µ([w])= d−k for any
word w of length k. On KG = {0, 1, . . . , d − 1}N we get the product measure of the
uniform probability measure on {0, 1, . . . , d − 1}. Alternatively, it is also easy to extend
the addition on KG by x+̇y = lim rep*(val(x[k])+ val(y[k])), defining the compact
group (Zd , +̇) of d-adic integers. Existence, uniqueness and the description of µ of course
also follow from the properties of the Haar measure.

Example 2 (continued). From (2.11) and taking α0 = 1, we get

1= 2α1 + α3, α1 = 2α2 + α3 + α4, αk = αk+1 + αk+2 + αk+3(k > 2). (4.13)

The polynomial X3
+ X2

+ X − 1 has a real root ρ ' 0.543 689 and two complex
conjugate roots of modulus greater than 1. Since the solutions (αk)k of (4.13) we are
interested in are bounded, they have to be of the form αk = Cρk for k > 2. Inserting
this into the first two equations of (4.13) yields C = ρ, hence α1 = 1− ρ and αk = ρ

k+1

for all k > 2. This shows unique ergodicity of the odometer. Furthermore, we get
µ([0(k)])= ρk

= µ([rep(Gk−1 − 1)]). We notice that in this case the odometer does not
come from a topological group as in the previous example. This can be seen, for instance,
by observing that τ−1({0∞})= {(101)∞, (011)∞, (110)∞}.

Example 3 (continued). Equations (4.11) become

1=
∑
k>1

αk, αk = αk+1(k > 1),

which obviously does not have any solution. Therefore, there is no invariant probability
measure on this odometer.

The following proposition describes the case of equality in (4.7) for one fixed length j .

PROPOSITION 4.
(1) Let (αn)n∈N be a solution of (4.11). Let j be a non-negative integer. Then the

following statements are equivalent:
(i) α j G j = 1 holds,
(ii) for all k < j, for all m > j : ak,m = 0,
(iii) for all m > j : G j | Gm,

(iv) for all m > j : T (m)> j.
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(2) Let G = (Gn)n be a numeration system as above. Define G ′n = Gn+ j/G j for
all n > 0 and consider the numeration system G ′ = (G ′n)n . Let p and q be the
projections p(x)= (x j , x j+1, . . .) and q(x)= (x0, . . . , x j−1) on KG . Furthermore
introduce a function ϕ on Z/G jZ by ϕ(−1)= τG ′ and ϕ(a)= idKG′

if a 6= −1. On
the product KG ′ × Z/G jZ, we define a transformation T (x, a)= (ϕ(a)(x), a + 1).
Then 8 : x 7→ (p(x), q(x)) gives a homeomorphism between KG and KG ′ ×

Z/G jZ which commutes with τG and T (if (KG ′ , τG ′) is a group this is a skew
product). Furthermore, Inv(KG) and Inv(KG ′) are homeomorphic through the
transformation µG ′ 7→ µG ′ ⊗ hZ/G jZ, where h denotes the Haar measure.

Proof. (1) Assume that (i) holds. From equation (4.11) for k from 0 to j − 1 and (2.6), we
deduce

j−1∑
k=0

αk Gk =

j−1∑
k=0

Gk

∞∑
m=k+1

ak,mαm =

j∑
m=1

αm

m−1∑
k=0

ak,m Gk +

∞∑
m= j+1

αm

j−1∑
k=0

ak,m Gk

=

j∑
m=1

αm Gm +

∞∑
m= j+1

αm

j−1∑
k=0

ak,m Gk .

After simplification, we get

1= α0 = α j G j +

∞∑
m= j+1

αm

j−1∑
k=0

ak,m Gk . (4.14)

Since α j G j = 1, the sum has to vanish. Moreover, all αm are strictly positive, which
implies (ii).

If (ii) holds, then ak,m = 0 for 06 k < j < m. By (2.6), this implies

G j+1 = a j, j+1G j hence G j | G j+1.

The assertion (iii) then follows by induction using (2.6) again.
It follows from (2.6) that G j | G j+1 if and only if T ( j + 1)= j . By induction on p,

one shows using (2.6) that G j | G j+r for all r from 1 to p if, and only if, T ( j + r)> j for
all r from 1 to p, hence the equivalence between (iii) and (iv).

If (iv) holds, then, again by (2.6), (ii) holds as well, which implies that the sum in (4.14)
vanishes, hence α j G j = 1.

(2) This statement relates the structure of the odometer for which α j G j = 1 for
some j to the odometer generated by the sequence G ′ = (Gn+ j/G j )n . The proof is
straightforward. �

Remark 5. The situation described in Proposition 4(2) is equivalent to the fact that
the sequence (τ n(x)[ j])n formed by the first j digits of any orbit is purely periodic.
Furthermore, all cylinders [w] (w ∈W ′) with |w| = j have the same measure.

COROLLARY 1. The sequence (α j G j ) j is constant equal to 1, if and only if G j | G j+1 for
all j . In this case KG is the group of a-adic integers with a= (G j+1/G j ) j as described
in [23].
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4.2. Invariant measures as cluster points. For m a positive integer and w ∈W ′ we
define

Ck
m = #{06 n < Gm | rep

*(n) ∈ [rep(Gk − 1)]}, (4.15)

Dm(w)= #{06 n < Gm | rep
*(n) ∈ [w]}. (4.16)

The initial values are Ck
m = 0 for m < k and Ck

k = 1. For m 6 |w|, Dm(w)=

JGm < val(w)K; in other words, for w = w10(s) with w1 ∈W , we have D0(w)= · · · =

D|w1|−1(w)= 0 and D|w1|(w)= · · · = D|w|(w)=1. Notice that Ck
m = Dm(rep(Gk −1)).

LEMMA 1. The quantities Ck
m satisfy the recursion

Ck
m =

m−1∑
`=0

a`,mCk
` + δm,k and Ck

0 = · · · = Ck
k−1 = 0. (4.17)

For m > |w| the quantities Dm(w) can be expressed in terms of Ck
m in the following way

Dm(w)=

∞∑
`=|w|

C`
mJ∑|w|−1

j=0 a j,`G j>val(w)K. (4.18)

Proof. We define

N`,m =
m−1∑
j=`

a j,m G j (06 `6 m). (4.19)

Notice that N`,m is non-decreasing in the index `, with Nm,m = 0 and N0,m = Gm by (2.6).

For m ∈ N and w ∈W ′, we have

Dm(w)=

m−1∑
`=0

∑
N`+1,m6n<N`,m

1[w](n)=
m−1∑
`=0

∑
n<a`,m G`

1[w](n + N`+1,m)

=

m−1∑
`=|w|

∑
n<a`,m G`

1[w](n)+
∑

n<Gm−N|w|,m

1[w](n + N|w|,m)

=

m−1∑
`=|w|

a`,m D`(w)+ JGm > N|w|,m + val(w)K

=

m−1∑
`=|w|

a`,m D`(w)+ J∑|w|−1
j=0 a j,m G j>val(w)K. (4.20)

In particular, for w = rep(Gk − 1), we get (4.17), and, for w = ε, we get (2.6).

We prove (4.18) by induction on m. For m = |w| the formula gives D|w|(w)= 1 and
is therefore correct. Assume that the formula holds for |w|6 ` < m and insert (4.18) into
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the right-hand side of (4.20) to obtain

Dm(w)=

m−1∑
`=|w|

a`,m
∞∑

k=|w|

Ck
` J
∑|w|−1

j=0 a j,k G j>val(w)K+ J∑|w|−1
j=0 a j,m G j>val(w)K

=

∞∑
k=|w|

J∑|w|−1
j=0 a j,k G j>val(w)K

m−1∑
`=|w|

a`,mCk
`︸ ︷︷ ︸

Ck
m−δm,k

+J∑|w|−1
j=0 a j,m G j>val(w)K

=

∞∑
k=|w|

J∑|w|−1
j=0 a j,k G j>val(w)KCk

m . �

LEMMA 2. The quantities Ck
m satisfy the equation

Ck
m =

m∑
`=k+1

ak,`C`
m + δm,k =

∑
`>k+1

ak,`C`
m + δm,k (4.21)

for all m and k.

Proof. By the definition of Dm(w) we have

Ck
m =

∑
|w|=k+1

Dm(w)Jrep(Gk − 1)
pref
4 wK.

If k > m, (4.21) is obviously fulfilled. If k < m we may apply (4.18) which gives

Ck
m =

∑
|w|=k+1

Jrep(Gk − 1)
pref
4 wK

∑
`>k+1

C`
mJ∑k

j=0 a j,`G j>val(w)K

=

∑
`>k+1

C`
m#
{
w ∈W ′

∣∣∣∣|w| = k + 1, rep(Gk − 1)
pref
4 w and

k∑
j=0

a j,`G j > val(w)

}
.

By the argument given after (4.9) the cardinality in the last line equals ak,`. This gives the
desired equation. �

LEMMA 3. The following inequalities hold for the quantities Ck
m for all k and m

Ck
m 6

Gm

Gk
. (4.22)

Proof. The inequality is obviously true for m = 0, . . . , k. Then induction using the
recursion (4.17) for the values Ck

m gives the inequality for all m. �

In the following, we are interested in a description of the set of invariant measures. For
that purpose, let us introduce the measures

νk =
1
k

∑
j<k

δ j , (4.23)

where k is a positive integer and δ j denotes for short the Dirac measure at point rep∗( j)
in KG . Let

M= {νk | k > 1} and MG = {νGn | n > 0}. (4.24)
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THEOREM 2. Let (Gn)n be a system of numeration, ak,m be given by (2.4), νk be the
measures defined in (4.23), and M and MG the sets of these measures given by (4.24).
Then the following assertions hold.
(i) The sets of cluster points of the sequences( n∑

k=1

π(k, n)νk

)
n

with for all n :
n∑

k=1

π(k, n)= 1

and for all k : lim
n→∞

π(k, n)= 0 (4.25)

as well as those of the sequences( n∑
k=0

ξ(k, n)νGk

)
n

with for all n :
n∑

k=0

ξ(k, n)= 1

and for all k : lim
n→∞

ξ(k, n)= 0 (4.26)

coincide.
(ii) All invariant measures on KG are cluster points of sequences (4.26).
(iii) If the series ∑

m>k+1

ak,m

Gm
(4.27)

converge for all k > 0, then Inv(KG) is the set of cluster points of sequences
(4.26). More precisely, if (µn)n is a sequence of measures as in (4.26), and if
(µn([rep(Gk − 1)]))n converges for all k > 0, then (µn)n converges weakly to a
τ -invariant measure on KG . Moreover, the set Inv(KG) is not empty, and Erg(KG)

is the set of extremal points of the weak closures of both M and MG .

Proof of (i). Letw ∈W ′ be a word of length at most m and take a positive integer N > Gm .
According to (1.1), we define

N =
L(N )−1∑

j=0

ε j (N )G j , Nk =

L(N )−1∑
j=k

ε j (N )G j , NL(N ) = 0. (4.28)

Setting the summation variable n = Nk+1 + r in the second line below we obtain

νN ([w])=
1
N

L(N )−1∑
k=0

∑
Nk+16n<Nk

δn([w])

=
1
N

L(N )−1∑
k=m

∑
r<εk (N )Gk

δr ([w])+O
(

Gm

N

)

=

L(N )−1∑
k=m

εk(N )Gk

N
νGk ([w])+O

(
Gm

N

)
, (4.29)

where the implied constant in the O-notation can be taken as 1. Let (µK )K be a sequence
of probability measures on KG as in (4.25) (without loss of generality the number of
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summands can be assumed to be some G K by completing if necessary with zero-weights).
We can write

µK =

G K∑
n=1

π(n, K )νn with
G K∑
n=0

π(n, K )= 1 and for all n 6 G K : lim
K→∞

π(n, K )= 0.

Assume that (µK )K converges weakly to µ, say. We shall show that the sequence (ξK )K

converges to µ as well, where

ξK =

G K∑
n=1

π(n, K )
L(n)−1∑

k=0

εk(n)Gk

n
νGk =

K∑
k=0

ρ(k, K )νGk .

By construction, we get
∑K

k=0 ρ(k, K )= 1. To prove that the sequence (ξK )K converges
to µ, let w ∈W ′ be a word of KG with length m < N < K . Then, using n =

∑
k εk(n)Gk ,

we have

|ξK ([w])− µK ([w])|6
G K∑
n=1

π(n, K )
∣∣∣∣L(n)−1∑

k=0

εk(n)Gk

n
νGk ([w])− νn([w])

∣∣∣∣
6

G N−1∑
n=1

π(n, K )
∣∣∣∣L(n)−1∑

k=0

εk(n)Gk

n
(νGk ([w])− νn([w]))

∣∣∣∣
+

G K∑
n=G N

π(n, K )
∣∣∣∣L(n)−1∑

k=0

εk(n)Gk

n
(νGk ([w])− νn([w]))

∣∣∣∣
6

G N−1∑
n=1

π(n, K )+
G K∑

n=G N

π(n, K )
Gm

n
6

G N−1∑
n=1

π(n, K )+
Gm

G N
,

where we have applied (4.29) for estimating the second sum in the middle line. We first
let K tend to infinity; then letting N tend to infinity shows that limK→∞ |ξK ([w])−

µK ([w])| = 0.

Proof of (ii). We first prove that Inv(KG)⊂ Conv(M) (the closed convex hull of M).
Assume that Inv(KG) 6= ∅ and let µ ∈ Erg(KG). By the ergodic theorem, there exists a
generic point x for the measure µ: for any cylinder [w], we have

1
N

∑
n<N

1[w](τ
n x)−−−−→

N→∞
µ([w]). (4.30)

Take a positive integer m, that we fix for a while. Let w ∈W ′ be a word of length m.
Let k1, k2, . . . be the sequence of return times of x to [0(m)] under the action of τ ; we set
k0 = 0 for convenience. We have k j+1 − k j 6 Gm for all j and

for all j > 1, for all i ∈ {0, 1, . . . , k j+1 − k j − 1} : τ k j+i (x)[m] = rep∗(i)[m]. (4.31)
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We split the counting in (4.30) according to the k j . Setting s =max{ j | k j < N } and
using (4.31) we get

∑
n<N

1[w](τ
n x)=

∑
n<k1

1[w](τ
n x)+

s−1∑
j=1

k j+1−k j−1∑
i=0

1[w](τ
k j+i (x))+

N−1∑
n=ks

1[w](τ
n x)

=O(Gm)+

s−1∑
j=1

k j+1−k j−1∑
i=0

1[w](rep
*(i))+O(Gm)

= #{16 j 6 s − 1 | k j+1 − k j > val(w)} +O(Gm)

=

Gm∑
n=1

#{16 j 6 s − 1 | k j+1 − k j = n}
∑
`<n

1[w](rep
*(`))+O(Gm).

Thus we have

1
N

∑
n<N

1[w](τ
n x)=

Gm∑
n=1

p(n, m, N )νn([w])+O(Gm N−1), (4.32)

with

p(n, m, N )=
n#{16 j 6 s − 1 | k j+1 − k j = n}

N
.

Summing this yields ∑
16n6Gm

p(n, m, N )=
ks − k1

N
6 1.

Thus there exists an increasing sequence of integers (N j ) j such that the limits
lim j p(n, m, N j )= p(n, m) exist for all n 6 Gm . Define

µm =

Gm∑
n=1

p(n, m)νn .

Taking N = N j in (4.32), letting j tend to infinity and using (4.30) we get for all w ∈W ′
of length m, hence by additivity for all cylinders of length at most m,

µm([w])=

Gm∑
n=1

p(n, m)νn([w])= µ([w]) and
Gm∑
n=1

p(n, m)= 1.

Therefore, the sequence (µm)m converges weakly to µ.
We have proved that Erg(KG)⊂ Conv(M), hence Inv(KG)⊂ Conv(M), since

Inv(KG) is the weakly closed convex hull of Erg(KG).
We now turn to the proof that Inv(KG) is a subset of the cluster points of the sequences

in (4.25).
With the notation introduced above, we shall show that the sequence (p(n, m))m tends

to 0 when m tends to infinity. This will show that Erg(KG) is a subset of the cluster points
of the sequences in (4.25). If we prove that the latter set is convex, this will also show that
Inv(KG) is a subset of these cluster points.
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We first show convexity. Assume that we have two cluster points µi (i = 1, 2) of
sequences of the form (4.25)

µi = lim
j→∞

N (i)
j∑

k=1

πi (k, N (i)
j )νk .

Then take N j =max(N (1)
j , N (2)

j ) and observe that the definitions of µi can be rewritten
in terms of N j filling the shorter sum with zeros. Then it is clear that every convex
combination of µ1 and µ2 can be realised as a limit of a convex combination of sequences
of that form.

Let us consider a sequence of probability measures ξm =
∑m

n=1 π(n, m)νn on KG with
06 π(n, m) and

∑m
n=1 π(n, m)= 1 for all m and assume that (ξm)m converges weakly

to ξ .
Let s > 1 and m >max(n0, Gs). Then we have

ξm([rep
*(n0 − 1)[s]])

=

m∑
n=1

π(n, m)
n

#{k < n | rep*(n0 − 1)[s]
pref
4 rep*(k)}>

π(n0, m)
n0

.

Assume that, for some integer n0, the sequence (π(n0, m))m does not tend to 0 when m
tends to infinity. Then we have

ξ([rep*(n0 − 1)[s]])= lim
m→∞

ξm([rep
*(n0 − 1)[s]])> lim sup

m→∞

π(n0, m)
n0

> 0,

and letting s tend to infinity, we obtain

ξ({rep*(n0 − 1)})= lim
s→∞

ξ([rep*(n0 − 1)[s]])> lim sup
m→∞

π(n0, m)
n0

> 0.

Thus ξ is not atom free and cannot be τ -invariant by Proposition 2.

Proof of (iii). Let

µn =

n∑
k=0

ξ(k, n)νGk

and assume that, for all k, lim µn([rep(Gk − 1)])= αk . We first show that (αm)m satisfies
equation (4.11) for all k > 0. For this purpose we use νGk ([rep(G` − 1)])= C`

k/Gk and
the fact that cylinders have empty boundary to write

α` = lim
n→∞

n∑
k=0

ξ(k, n)
C`

k
Gk
.

In order to show that αk =
∑

m>k+1 ak,mαm , we write∑
m>k+1

ak,m lim
n→∞

n∑
j=0

ξ( j, n)
Cm

j

G j
= lim

n→∞

n∑
j=0

ξ( j, n)
G j

∑
m>k+1

ak,mCm
j ,

where the interchange of the limit and the summation is justified, because Cm
j /G j 6 1/Gm

by Lemma 3, which together with (4.27) implies uniformity of the convergence of the
series with respect to n. We now use Lemma 2 and the assumption on the limit of
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the ξ(k, n) to rewrite the inner sum∑
m>k+1

ak,mαm = lim
n→∞

n∑
j=0

ξ( j, n)
G j

∑
m>k+1

ak,mCm
j

= lim
n→∞

n∑
j=0

ξ( j, n)
G j

Ck
j + lim

n→∞

ξ(k, n)
Gk

= αk .

Theorem 1 now shows the existence of an invariant measure µ such that

µ([rep(Gk − 1)])= αk for all k.

It remains to show that (µn)n converges weakly to µ, i.e.

lim
n→+∞

n∑
k=0

ξ(k, n)νGk ([w])= µ([w]) (4.33)

for all cylinders [w], the existence of the limit in the left-hand side of (4.33) being part of
the statement. For this purpose we use (4.6) to write

µ([w])=
∑

m>|w|

αmJ∑|w|−1
j=0 a j,m G j>val(w)K

=

∑
m>|w|

J∑|w|−1
j=0 a j,m G j>val(w)K lim

n→∞

n∑
k=0

ξ(k, n)
Cm

k
Gk

= lim
n→∞

n∑
k=0

ξ(k, n)
Gk

∑
m>|w|

Cm
k J∑|w|−1

j=0 a j,m G j>val(w)K,

where the interchange of limit and summation is justified by the same arguments as above.
Furthermore, since Cm

k = 0 if m > k, we have
n∑

k=0

ξ(k, n)
Gk

∑
m>|w|

Cm
k J∑|w|−1

j=0 a j,m G j>val(w)K

=

n∑
k=|w|

ξ(k, n)
Gk

∑
m>|w|

Cm
k J∑|w|−1

j=0 a j,m G j>val(w)K,

hence, by Lemma 1,

µ([w])= lim
n→∞

n∑
k=|w|

ξ(k, n)
Gk

∑
m>|w|

Cm
k J∑|w|−1

j=0 a j,m G j>val(w)K

= lim
n→∞

n∑
k=|w|

ξ(k, n)
Gk

Dk(w)= lim
n→∞

n∑
k=0

ξ(k, n)
Gk

Dk(w)

= lim
n→+∞

n∑
k=0

ξ(k, n)νGk ([w])

using that limn ξ(k, n)= 0, which proves (4.33).
The theorem of Banach–Alaoglu ensures the existence of cluster points of the sequences

given by (4.25) or (4.26). By the above arguments condition (4.27) ensures that they give
invariant measures.
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Milman’s theorem [25, p. 335] asserts that if a subset M of a locally convex topological
vector space has compact closed convex hull, then the extremal points of Conv(M) lie in
M , hence are extremal points of M as well. Since ergodic invariant measures are exactly
the extremal points of the set of invariant measures, we get the last assertion of (iii). �

COROLLARY 2. If the series
∑

G−1
n is convergent, then the odometer (KG , τ ) admits at

least one invariant measure.

Proof. According to Theorem 2, we just have to prove that the series (4.27) converge for
all k. Indeed, we have

∞∑
m=k+1

ak,m

Gm
6

Gk+1

Gk

∞∑
m=k+1

1
Gm

<∞.

�

4.3. Conditions for unique ergodicity. In this section we develop the combinatorial
theory of the scale (Gn)n further to obtain a sufficient condition for unique ergodicity
in terms of the greedy recurrence coefficients ak,m .

THEOREM 3. Let (Gn)n be a system of numeration and ak,m be given by (2.4). Assume
that

lim
t→∞

lim sup
n→∞

∞∑
i=n+1

1
Gi

n−t∑
k=0

ak,i Gk = 0. (4.34)

Then the odometer (KG , τ ) is uniquely ergodic.

Proof. According to (iii) in Theorem 2, we have to prove that the sequence (Ck
m/Gm)m

converges for all k.
Fix k. Set γ−k = lim inf (Ck

m/Gm). By Lemma 3, we have 06 γ−k 6 1/Gk . Then there
exists an increasing sequence of integers (m j ) j such that lim j→∞ (Ck

m j
/Gm j )= γ

−

k . Now
let ε > 0. There exists an integer j0 such that

for all m > m j0 : Ck
m > Gm(γ

−

k − ε) and for all j > j0 : Ck
m j
6 Gm j (γ

−

k + ε).

(4.35)
We assume first that γ−k > 0. Using (4.17), we have

am j−1,m j C
k
m j−1

= Ck
m j
−

m j0∑
`=0

a`,m j C
k
` −

m j−2∑
`=m j0+1

a`,m j C
k
`

6 Gm j (γ
−

k + ε)− 0− (γ−k − ε)
m j−2∑

`=m j0+1

a`,m j G`

6 Gm j (γ
−

k + ε)− (γ
−

k − ε)

(
Gm j − am j−1,m j Gm j−1 −

m j0∑
`=0

a`,m j G`

)
6 am j−1,m j Gm j−1(γ

−

k − ε)+ 2εGm j + (γ
−

k − ε)Gm j0+1.
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Dividing by am j−1,m j Gm j−1, using Gm j < 2am j−1,m j Gm j−1 (which comes from
am j−1,m j 6= 0 and (2.8)) and taking j sufficiently large such that (Gm j0+1/Gm j )6 ε, we
get

Ck
m j−1

Gm j−1
6 (γ−k − ε)+

2εGm j

am j−1,m j Gm j−1
+

γ−k Gm j0+1

am j−1,m j Gm j−1
6 γ−k + 4ε. (4.36)

Using that ε can be chosen arbitrarily and iterating, we have proved

for all t ∈ N : lim
j→∞

Ck
m j−t

Gm j−t
= γ−k . (4.37)

In the case γ−k = 0, we replace the lower bound for Ck
m in (4.35) by 0, and obtain the same

conclusion.
We now introduce new coefficients, which are useful for the proof of the theorem. By

iteration of (2.8), we set a(1)j,m = a j,m and get

Gm = a(1)m−1,m Gm−1 + a(1)m−2,m Gm−2 + · · · + a(1)0,m G0

= a(1)m−1,m

m−2∑
j=0

a(1)j,m−1G j +

m−2∑
j=0

a(1)j,m G j =

m−2∑
j=0

(
a(1)m−1,ma(1)j,m−1 + a(1)j,m

)
G j

=

m−2∑
j=0

a(2)j,m G j .

Recursively, we get Gm =
∑m−r

j=0 a(r)j,m G j , where

a(r)j,m =

{
a(r−1)

m−r+1,ma(1)j,m−r+1 + a(r−1)
j,m if j 6 m − r ,

0 otherwise.
(4.38)

Note in particular that
a(r)m−r,m Gm−r 6 Gm . (4.39)

The crucial point is that the iteration of (4.17) gives the same formula with a(r)j,m instead of
a j,m . Indeed, we have for m > k + r

Ck
m =

m−1∑
j=0

a(1)j,mCk
j

= a(1)m−1,m

m−2∑
j=0

a(1)j,m−1Ck
j +

m−2∑
j=0

a(1)j,mCk
j =

m−2∑
j=0

(
a(1)m−1,ma(1)j,m−1 + a(1)j,m

)
Ck

j

=

m−2∑
j=0

a(2)j,mCk
j =

m−r∑
j=0

a(r)j,mCk
j .

We now write
Ck

m

Gm
=

m−r∑
j=0

a(r)j,m G j

Gm
×

Ck
j

G j
(4.40)
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and prove by induction on r that

for all s 6 m − r :
s∑

j=0

a(r)j,m G j

Gm
6

m∑
i=m−r+1

1
Gi

s∑
j=0

a j,i G j . (4.41)

For r = 1, the inequality (4.41) is an equality. Assume that it is satisfied for r − 1. For
s 6 m − r , (4.38) yields

s∑
j=0

a(r)j,m G j

Gm
=

s∑
j=0

(
a(r−1)

m−r+1,ma(1)j,m−r+1 + a(r−1)
j,m

)
G j

Gm

=
a(r−1)

m−r+1,m

Gm

s∑
j=0

a(1)j,m−r+1G j +

s∑
j=0

a(r−1)
j,m G j

Gm

6
1

Gm−r+1

s∑
j=0

a(1)j,m−r+1G j +

m∑
i=m−r+2

1
Gi

s∑
j=0

a j,i G j

6
m∑

i=m−r+1

1
Gi

s∑
j=0

a j,i G j ,

by (4.39) and the induction hypothesis, which proves (4.41). To complete the proof, we
assume that (4.34) is satisfied. Furthermore, we use the sequence (m j ) j introduced in the
first part of the proof. Take a positive integer m. There is a unique ` such that m` < m 6
m`+1. Take r = m − m` and t > 1. We use (4.40) and split the sum to get

Ck
m

Gm
=

m`−t∑
j=0

a(m−m`)
j,m G j

Gm
×

Ck
j

G j
+

m∑̀
j=m`−t+1

a(m−m`)
j,m G j

Gm
×

Ck
j

G j

= S1(m)+ S2(m). (4.42)

To get an upper bound for the S1(m), we use (4.41) with s = m` − t , which yields

S1(m)6
1

Gk

m∑
i=m`+1

1
Gi

m`−t∑
j=0

a j,i G j 6
1

Gk

∞∑
i=m`+1

1
Gi

m`−t∑
j=0

a j,i G j .

According to (4.34), we have

lim
t→∞

lim sup
m→∞

S1(m)= 0. (4.43)

We treat the second sum as follows,

S2(m)6 max
m`−t+16 j6m`

Ck
j

G j

m∑̀
j=m`−t+1

a(m−m`)
j,m G j

Gm
6 max

m`−t+16 j6m`

Ck
j

G j
. (4.44)

Finally, (4.43), (4.44) and (4.37) yield

lim sup
m→∞

Ck
m

Gm
= lim inf

m→∞

Ck
m

Gm
= γ−k ,

and the theorem is proved. And this also shows that γ−k > 0 by Theorem 2. �
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Remark 6. Assume that the conditions of Proposition 1 are satisfied. Writing

∞∑
i=n+1

1
Gi

n−t∑
k=0

ak,i Gk 6
∞∑

i=n+1

Gn−t+1

Gi
=

Gn−t+1

Gn

(
Gn

∞∑
i=n+1

1
Gi

)
,

it follows from (i) and (iv) in Proposition 1 that (4.34) holds. Therefore, the equivalent
conditions in Proposition 1 imply (4.34). Moreover, the condition that limn(Gn+1 − Gn)

=∞ is not needed any more.

5. Examples
In this section we collect a number of examples that show how the machinery developed
in this paper can be used to understand invariant measures. In §4.1 we have already given
simple and classical examples illustrating how Theorem 1 can be used to show the unique
ergodicity of the odometer (KG , τ ) or the lack of invariant measures.

The investigation of Example 4 has been the subject of [10]. The equation (4.11) have
a unique solution, which shows unique ergodicity.

Example 5 is closely related to β-numeration on the real numbers. For every β > 1 a
sequence of integers (Gn)n has been constructed in [22] using the β-numeration introduced
in [29]. This sequence grows like Cβn , ensuring unique ergodicity by Remark 3. In this
example it is not difficult to construct an explicit solution of (4.11).

The next examples are more involved and are given to show what Corollary 2 and
Theorem 3 can and cannot achieve. These examples do not correspond to classically
studied numeration systems. They are constructed using the same principle: alternating
expressions of Gn+1 where Gn+1 − Gn is small with respect to Gn or not, with the very
lacunary relations (2.6). It allows us to control both local and global growth of the scale,
constructing scales satisfying (or not) the assumptions of Proposition 1 or (4.34). The
lacunarity of the ak,m yields systems of equations (4.10) that are explicitly solvable, so
that Theorem 1 can be applied, which allows us to test the efficiency of Corollary 2 and
Theorem 3. In general, Theorem 1 is of rather theoretical interest (except for very specific
examples), whereas Corollary 2 and Theorem 3 can be checked for many scales given in
any form. It turns out that the conditions given in Corollary 2 and Theorem 3 are not
necessary, and that Theorem 3 is strictly stronger than [3, Théorème 8]. Notice by the way
that Example 9 uses Theorem 1 in both directions.

Finally, Example 10 describes an odometer with exactly two ergodic invariant
probability measures.

Example 4. The method we develop here has been used in [10]. Let q > 2 and, for all n,
Gn+1 = qGn + 1. Then, we have

a0,1 = q + 1, an,n+1 = q if n > 1 and a0,n = 1 if n > 1; Gn =
qn+1

− 1
q − 1

.

The equations give

1= α0 = (q + 1)α1 + α2 + α3 + · · ·

αn = qαn+1 for n > 1
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with the unique solution

αn =
q − 1
qn+1 for n > 1.

The odometer is thus uniquely ergodic by Theorem 1. Furthermore, the point x =
q(q− 1)(∞) ∈KG satisfies

τ n(x)= 0(n)q(q − 1)(∞)

and is therefore not dense in KG .

Example 5. Let β > 1. Parry [29] has introduced and studied the transformation Tβ :
[0, 1)→ [0, 1), Tβ(x)= βx − bβxc. Writing ε(x)= bβxc, we get a fibred number
system in the sense of [32] as described in [1]. One obtains an expansion of any
real number x ∈ [0, 1] as a convergent series x =

∑
k>0 ε(T

k
β x)β−k−1. We write ck =

ε(T k
β (1)). Then a series

∑
k>0 ξkβ

−k−1 is the expansion of a real number x if, and only
if, for any integer k, one has ξkξk+1 · · ·<lex c0c1 . . . .

One associates a system of numeration to the sequence (cn)n by setting, for every n,
Gn+1 = c0Gn + c1Gn−1 + · · · + (cn + 1)G0. It turns out that this is also the greedy
recurrence relation (2.6), and that Gn ∼ Cβn for some C > 0 (see [22] and also [18]).
Therefore, we have{

a0,m = cm−1 + 1 for m > 1,

ak,m = cm−k−1 for 16 k 6 m − 1,{
1= α0 = (c0 + 1)α1 + (c1 + 1)α2 + · · · ,

αk = c0αk+1 + c1αk+2 + · · · for k > 1.

(5.1)

By construction of the sequence (c j ) j , α j = cβ− j ( j > 0) gives a solution of the equations
αk = c0αk+1 + c1αk+2 + · · · . Inserting into the first equation yields c = 1− 1/β, which
gives an invariant measure. Furthermore, the function e(n) defined in (3.2) is stationary;
thus the scale (Gn)n satisfies (iii) in Proposition 1, hence the underlying odometer is
uniquely ergodic by Theorem 3 or even by [2, Théorème 8].

In [24, §2] the system of equation (5.1) occurs in the context of additive functions on the
above mentioned β-expansion. There the question concerning uniqueness of the solutions
has been posed as an open problem.

Example 6. We construct a scale G as follows. We choose an increasing sequence of
integers 0= k0 < k1 < k2 < · · · with k j+1 − k j > 2 and set, for all j ,{

Gk j+1 = 2Gk j ,

Gk j+`+1 = Gk j+` + Gk j for 16 `6 k j+1 − k j − 1.

The corresponding greedy recurrence coefficients given by (2.2) are
ak j ,k j+1 = 2 for j > 0,

ak j ,k j+`+1 = ak j+`,k j+`+1 = 1 for j > 0 and 16 `6 k j+1 − k j − 1,

ak,m = 0 otherwise.
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According to (4.11), we obtain the following equations for αk = µG([rep(Gk − 1)]):

αk j = 2αk j+1 + αk j+2 + · · · + αk j+1 ,

αk j+` = αk j+`+1 for 16 `6 k j+1 − k j − 1.

This gives

αk j = (k j+1 − k j + 1)αk j+1 ,

αk j+1 = · · · = αk j+1 .

Hence the solution of (4.11) is unique and the odometer (KG , τ ) is uniquely ergodic. On
the other hand we get

Gk j+` = (`+ 1)Gk j for 06 `6 k j+1 − k j ,

hence

Gkn+` = (`+ 1)
n−1∏
j=0

(k j+1 − k j + 1) for 06 `6 kn+1 − kn .

It follows from the calculations above that

Gk j+`αk j+` =
`+ 1

k j+1 − k j + 1
for 06 `6 k j+1 − k j .

Condition (iii) in Proposition 1 corresponds to the boundedness of the sequence
(k j+1 − k j ) j . Therefore, if lim sup j→∞(k j+1 − k j )=∞, then we have an example of
a continuous (by Remark 1) uniquely ergodic odometer with locally slow growth.

However, Theorem 3 does not provide a better result than [3, Théorème 8] here. Indeed,
for given t and j , and t 6 ` < k j+1 − k j , we have

∞∑
i=k j+`

1
Gi

k j+`−t∑
k=0

ak,i Gk = Gk j

k j+1∑
i=k j+`

1
Gi
, therefore (5.2)

lim sup
n→∞

∞∑
i=n+1

1
Gi

n−t∑
k=0

ak,i Gk = lim sup
j→∞

(
Gk j

k j+1∑
i=k j+t

1
Gi

)
,

noting that the left-hand side in (5.2) is 0 if ` < t . The above computation of Gk j+` yields

Gk j

k j+1∑
i=k j+t

1
Gi
=

k j+1−k j+1∑
m=t+1

1
m
= log

k j+1 − k j + 1− t
t

+O
(

1
t

)
.

Hence (4.34) is not fulfilled as soon as (k j+1 − k j ) j is not bounded. This gives an example
of a uniquely ergodic odometer, which does not satisfy (4.34).

Example 7. We construct a scale G as follows. We choose an increasing sequence of
integers 0= k0 < k1 < k2 < · · · with k j+1 − k j > 2 and set, for all j ,{

Gk j+1 = 2Gk j ,

Gk j+`+1 = Gk j+` + 1 for 16 `6 k j+1 − k j − 1.
(5.3)
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The corresponding greedy recurrence coefficients given by (2.2) are
ak j ,k j+1 = 2,

ak j+`,k j+`+1 = a0,k j+`+1 = 1 for j > 0 and 16 `6 k j+1 − k j − 1,

ak,m = 0 otherwise.

According to (4.11), we obtain the following equations for αk = µG([rep(Gk − 1)])

1= α0 = 2α1 +

∞∑
j=0

k j+1−k j∑
`=2

αk j+`,

αk j = 2αk j+1 for j > 1,

αk j+` = αk j+`+1 for j > 0 and 16 `6 k j+1 − k j − 1.

From the preceding equations we derive the equality

1= (k1 + 1)α1 +

∞∑
j=2

(k j − k j−1 − 1)αk j

= αk1

(
(k1 + 1)+

∞∑
j=2

k j − k j−1 − 1
2 j−1

)
= αk1

∞∑
j=1

k j

2 j . (5.4)

It turns out that either the series
∑

k j 2− j converges, hence the solution of (4.11) is unique
and the odometer (KG , τ ) is uniquely ergodic, or it diverges, hence (4.11) has no solution
and the odometer does not have any invariant probability measure.

By induction on j , the construction given in (5.3) yields

Gk j = k j + 2 j−1
j−1∑
i=1

ki

2i + 1. (5.5)

Assume now that the series c =
∑
∞

i=1 ki 2−i−1 converges. Then (5.5) shows that Gk j ∼

c2 j . For t > 1, the sums arising from condition (4.34) become

∞∑
i=n+1

1
Gi

n−t∑
k=0

ak,i Gk =

∞∑
i=n+1

1
Gi

J∀ j : i 6= k j + 1K. (5.6)

Clearly, the series
∑

i (1/Gi )Jfor all j : i 6= k j + 1K converges if, and only if, the series∑
i (1/Gi ) converges. Furthermore, using Gk j ∼ c2 j , we get

k j∑
i=k j−1+1

1
Gi
=O

(
k j − k j−1

Gk j

)
=O

(
k j

Gk j

)
, (5.7)

hence the convergence of
∑

i 1/Gi .
In this example, Theorem 3 gives the unique ergodicity in all cases where it holds.

Notice that (i) in Proposition 1 is equivalent to the fact that the sequence (k j − k j−1) j is
bounded, which is much stronger than the convergence of

∑
∞

i=1 ki 2−i .
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Example 8. The scale G is constructed as follows. Let 2= k1 < k2 < · · · be an increasing
sequence of integers. We define

G1 = 2= 2G0,

G2 = 5= 2G1 + G0,

Gn+1 = Gn + G j + G0 for k j 6 n < k j+1 and j > 1.

(5.8)

The corresponding greedy recurrence coefficients given by (2.2) are

a0,1 = 2,

a0,n = 1 for n > 2,

a1,2 = 2,

a1,2+` = 1 for 16 `6 k2 − 2,

a j, j+1 = a j,k j+` = 1 for j > 2, and 16 `6 k j+1 − k j ,

ai,m = 0 otherwise.

We obtain the following equations for the αk :

1= α0 = 2α1 +
∑
i>2

αi , (5.9)

α1 = 2α2 +

k2∑
i=3

αi , (5.10)

α j = α j+1 +

k j+1∑
i=k j+1

αi , ( j > 2). (5.11)

Note that for i > 1, ai, j = 0 for all but finitely many j ; hence condition (4.27) is satisfied
for k > 1.

We now consider the system of equations given by (5.10) and (5.11) and replace αk by
α̃k−1 for k > 2 and set α̃0 = 1,

1= α̃0 = 2α̃1 +

k2−1∑
i=2

α̃i , (5.12)

α̃ j = α̃ j+1 +

k j+2−1∑
i=k j+1

α̃i , ( j > 1). (5.13)

This gives the system of equations for the invariant measures of the odometer defined by
the scale (G̃n) given by{

G̃1 = 2= 2G̃0,

G̃n+1 = G̃n + G̃ j−1 for k j − 16 n < k j+1 − 1 and j > 1.

Then we can apply Theorem 2 to the scale (G̃n)n to obtain a non-zero solution (̃αk)k of
the equations (5.12) and (5.13), since all series (4.27) are finite, and hence convergent.
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We now observe that the equations (5.12) and (5.13) show that the sequence (̃αk)k is
strictly decreasing, thus convergent. Summing equation (5.13) for 16 j < m gives

α̃1 − α̃m =

km+2−1∑
i=k2

α̃i .

Letting m tend to∞ shows the convergence of the series
∞∑

i=k2

α̃i

and limm α̃m = 0. We now set

α̃−1 = 2α̃0 +

∞∑
i=1

α̃i .

Then
αi =

α̃i−1

α̃−1
for i > 0

gives a solution of the equations (5.9), (5.10), and (5.11). Therefore we can claim that
any choice of the sequence (k j ) j in (5.8) yields an odometer with at least one invariant
probability measure.

However, the divergence of the harmonic series ensures that we can choose the sequence
(k j ) j such that

∑k j+1
i=k j+1 1/Gi > 1 for all j (notice that the sequence (Gn)n is piecewise

linear). Then the series
∑

j (a0, j/G j ) diverges, which gives an example of an odometer
with invariant measure for which the assumptions of Theorem 2 are not fulfilled.

Example 9. The scale G is constructed as follows. We construct an increasing sequence
of integers 0= k0 < k1 < k2 < · · · . We take k1 arbitrary and define Gm for 16 m 6 k1

arbitrary as well. For a while, we consider the values of k j to be indeterminate if j > 2.
For m > Gk1 , that is for j > 1 below, the scale is defined piecewise by

Gk j+`+1 = Gk j+` + Gk j−1 for 06 `6 k j+1 − k j − 1.

The corresponding greedy recurrence coefficients given by (2.2) are
ak j+`,k j+`+1 = 1 for 06 `6 k j+1 − k j − 1 and j > 1,

ak j−1,k j+`+1 = 1 for 06 `6 k j+1 − k j − 1 and j > 1,

ai,m = 0 otherwise and if m > k1.

According to (4.11), we obtain the following recursions for αk :

1= α0 =

k1∑
m=1

a0,mαm +

k2∑
m=k1+1

αm,

α j =

k1∑
m= j+1

a j,mαm for 16 j 6 k1 − 1,

αk j = αk j+1 +

k j+2−k j+1−1∑
`=0

αk j+1+`+1 for j > 1,

αk j+` = αk j+`+1 for 16 `6 k j+1 − k j − 1 and j > 1.
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These equations transform into

1=
k1∑

m=1

a0,mαm + (k2 − k1) αk2 , (5.14)

α j =

k1∑
m= j+1

a j,mαm for 16 j 6 k1 − 1, (5.15)

αk j+` = αk j+1 for 16 `6 k j+1 − k j − 1 and j > 1, (5.16)

αk j = αk j+1 + (k j+2 − k j+1) αk j+2 for j > 1. (5.17)

The equations (5.15) form a triangular system. Therefore, we can express α j (16 j < k1)
linearly in αk1 . Hence, we obtain

α j = λ jαk1 for 16 j 6 k1 − 1,

1= cαk1 + (k2 − k1) αk2 ,

αk j+` = αk j+`+1 for 16 `6 k j+1 − k j − 1 and j > 1,

αk j = αk j+1 + (k j+2 − k j+1) αk j+2 for j > 1.

where the λ j and c are explicit positive constants depending on the greedy recurrence
coefficients ak,m for 06 m < k 6 k1. Therefore, setting u j = αk j and M j = k j − k j−1,
the previous system reduces to{

1= cu1 + M2u2,

u j = u j+1 + M j+2u j+2 for j > 1.
(5.18)

Clearly, if one fixes the value of u1, then all the u j are determined. The solution is
acceptable if and only if all values ui are positive. An easy induction shows that

un =
(−1)n

M2 · · · Mn
(Pn(M3, . . . , Mn−1)− Qn(M2, . . . , Mn−1)u1),

where Pn and Qn are polynomials with non-negative coefficients in the indicated variables
satisfying

Pn+1 = Pn + Mn Pn−1 and Qn+1 = Qn + Mn Qn−1.

The conditions that all un have to be positive translates to the inequalities

for all n > 1 :
P2n+1

Q2n+1
< u1 <

P2n

Q2n
.

We choose M2 > 1. Then we choose two sequences (an)n and (bn)n with the properties

1
c + M2

= a2 < a3 = a4 < a5 · · ·< a2n−1 = a2n < a2n+1 < lim am = α < β

α < β = lim bm < · · ·< b2n+1 = b2n < b2n−1 · · ·< b3 = b2 < b1 =
1
c
.

Note that
1

c + M2
=

P3

Q3
< a3 < b2 <

P2

Q2
=

1
c
.
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Assume now that M2, . . . , Mn−1 have been chosen such that the inequalities

Pr

Qr
< ar < bs <

Ps

Qs

are satisfied for all odd r and even s with r 6 n and s 6 n. Notice that on R+, the function
t 7→ (Pn + t Pn−1)/(Qn + t Qn−1) is increasing if n is odd and decreasing if n is even.

Then for even n we choose Mn so that

Pn+1

Qn+1
=

Pn + Mn Pn−1

Qn + Mn Qn−1
< an+1,

which is possible, since the limit for Mn→∞ of the quotient equals Pn−1/Qn−1 <

an−1 < an+1; for odd n we choose Mn so that

Pn+1

Qn+1
=

Pn + Mn Pn−1

Qn + Mn Qn−1
> bn+1,

which is possible, since the limit for Mn→∞ of the quotient equals Pn−1/Qn−1 >

bn−1 > bn+1. Given a sequence of positive integers (Mn)n as constructed above (and
therefore the sequence (k j ) j ), all values (un)n are positive, if

u1 ∈
⋂

n

(
P2n+1

Q2n+1
,

P2n

Q2n

)
⊃ [α, β].

Since every such value of u1 yields an invariant measure, we have infinitely many invariant
measures. There are exactly two ergodic invariant measures, corresponding to the extremal
values of u1.
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(2009), 149–165.
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