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Abstract. We derive a characterization of rational numbers in terms of their unique
p-adic Engel series expansions. Thereafter we investigate metric properties for the ratio-
nal digits occurring in these p-adic Engel expansions. In particular, we obtain limiting
distributions for the p-adic order of the digits and the p-adic order of approximation by
the partial sums of the series expansions.

1. Introduction

Let Q be the field of rational numbers, p a prime number and Qp the completion of Q
with respect to the p-adic absolute value | |p defined on Q by (cf. Koblitz [8] or Schikhof
[12])

(1.1) |0|p = 0 and |A|p = p−a if A = pa
r

s
, where p ∤ rs.

The exponent a in this definition is the p-adic valuation of A, which we denote by vp(A).
It is well known that every A ∈ Qp has a unique series representation

A =

∞
∑

n=vp(A)

cnp
n, cn ∈ {0, 1, 2, . . . , p− 1}.

In the discussion below we call the finite sum 〈A〉 =
∑

vp(A)≤n≤0 cnp
n the fractional part

of A. Then 〈A〉 ∈ Sp, where we define Sp = {〈A〉 : A ∈ Qp} ⊂ Q. This set Sp is neither
multiplicatively nor additively closed.

Recently the fractional part 〈A〉 was used by A. Knopfmacher and J. Knopfmacher
[5, 6], to derive some new unique series expansions for any element A ∈ Qp, including in
particular analogues of certain “Sylvester”, “Engel” and “Lüroth” expansions of arbitrary
real numbers into series with rational terms (cf. [10], Chap. IV).

In the corresponding case of p-adic Lüroth type expansions ergodic and other metric
properties have recently been investigated by A. and J. Knopfmacher [7]. For both the
p-adic continued fractions and Lüroth expansions, ergodicity of the corresponding trans-
formations were used to derive the results. However, in the case of Engel expansions the
underlying transformation is not ergodic. The growth conditions satisfied by the digits
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suggest that an approach via Markov chains could be used. A similar approach was used
to study metric properties of Engel expansions over the field of formal Laurent series over
a finite field in [4].

Given A ∈ Qp, now note that 〈A〉 = a0 ∈ Sp iff vp(A1) ≥ 1 where A1 = A − a0. As in
[5], if An 6= 0(n > 0) is already defined, we then let

(1.2) an =

〈

1

An

〉

and put An+1 = anAn − 1.

If some Am = 0, this recursive process stops. It was shown in [5] that this algorithm leads
to a finite or convergent (relative to vp) Engel-type series expansion

(1.3) A = a0 +
1

a1
+
∑

r≥2

1

a1 · · ·ar
,

where ar ∈ Sp, a0 = 〈A〉, and vp(ar+1) ≤ vp(ar)− 1 for r ≥ 1. Furthermore this expansion
is unique for A subject to the preceding conditions on the “digits” ar. For notational
convenience we set

pn
qn

= a0 +
n

∑

r=1

1

a1 · · · ar
, where qn = a1 . . . an .

In [6] it was claimed (see Proposition 4.2) that rational numbers are characterized by
finite p-adic Engel expansions. However, the following example of an infinite p-adic Engel
expansion for a rational number shows that this result is incorrect. For convenience in the
sequel we denote the p-adic Engel expansion

1

a1
+

1

a1a2
+

1

a1a2a3
+ · · · by (a1, a2, a3, . . .).

Then the rational number −p has the infinite expansion

(1.4) −p =

(

p2 − 1

p
,
p3 − 1

p2
,
p4 − 1

p3
, . . .

)

.

More generally, if β, r ∈ N, then, if pr+1 > β, the rational number −pr

β
has the expansion

(1.5) −pr

β
=

(

pr+1 − β

pr
,
pr+2 − β

pr+1
,
pr+3 − β

pr+2
, . . .

)

.

These expansions follow by induction from the Engel algorithm above with A = A1 = −pr

β
,

An = −pn+r−1

β
, and an = pr+n−β

pr+n−1 .
It turns out that rational numbers with infinite Engel expansions all have digits that

ultimately follow the pattern in (1.5).

Theorem 1. Let A ∈ pZp \{0}. Then A is rational, A = α
β
, if and only if either the Engel

expansion of A is finite, or there exists an n and an r ≥ n, such that

(1.6) an+j =
pr+j+1 − γ

pr+j
for j = 0, 1, 2, . . .
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where γ | β.
Let I denote the valuation ideal pZp in the ring of p-adic integers Zp and let P denote

probability with respect to the Haar measure on (Qp,+) normalized by P(I) = 1. The
Haar measure on I is the product measure on {0, . . . , p− 1}N defined by P

(

{x}
)

= p−1 for
each factor and any element x ∈ {0, . . . , p− 1}.

We now state our main results

Theorem 2. The following assertions hold:

(i) The valuations of the Engel-digits an obey a law of large numbers; more precisely,
for almost all x ∈ I

lim
n→∞

vp(an)

n
= − p

p− 1
.

(ii) The valuations of the Engel-digits an obey a central limit theorem:

lim
n→∞

P

[

x ∈ I :
vp(an) +

p
p−1

n
√
np/(p− 1)

< t

]

=
1√
2π

∫ t

−∞
e−u2/2 du.

(iii) For almost all x ∈ I,

lim sup
n→∞

−vp(an+1(x)) + vp(an(x))

logp n
= 1 ,

and

lim inf
n→∞

(−vp(an+1(x)) + vp(an(x))) = 1 .

(iv) vp(x− pn
qn
) obeys a law of large number; more precisely, for almost all x ∈ I,

1

n2
vp

(

x− pn
qn

)

→ p

2(p− 1)
, as n → ∞ .

(v) vp(x− pn
qn
) obeys central limit theorem

lim
n→∞

P



x ∈ I :
vp

(

x− pn
qn

)

− p
p−1

(n+1)(n+2)
2

√

V(vp(qn+1))
< t



 =
1√
2π

∫ t

−∞
e−u2/2 du.

where V(vp(qn+1)) =
(n+1)(n+2)(2n+3)

6
p

(p−1)2
.

In particular we see from (i) that for almost all x ∈ I, |an|1/np → p
p

p−1 , as n → ∞.
Regarding (i), (ii), (iv), and (v) above we note the similar but weaker results shown in [5]
holding for all x in I,

vp(an) ≤ −n

and
∣

∣

∣

∣

x− pn
qn

∣

∣

∣

∣

p

≤ p−
(n+1)(n+2)

2 , n = 1, 2, 3, . . . .
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Furthermore, we consider the random variables
∣

∣

∣

ar+1(x)
ar(x)

∣

∣

∣

p
≡ p∆r , r = 1, 2, 3, . . . . These

are independent and identically distributed with infinite expectation. However, the follow-
ing result holds.

Theorem 3. For any fixed ε > 0,

lim
n→∞

P

[

x ∈ I :

∣

∣

∣

∣

∣

1

n logp n

n
∑

r=1

∣

∣

∣

∣

ar+1(x)

ar(x)

∣

∣

∣

∣

p

− (p− 1)

∣

∣

∣

∣

∣

> ε

]

= 0 ,

i.e. 1
n logp n

∑n
r=1

∣

∣

∣

ar+1(x)
ar(x)

∣

∣

∣

p
→ (p− 1) in probability over I.

Remark 1. Since a theorem in Galambos [3] (p. 46), implies that either

lim sup
n→∞

1

n logp n

n
∑

r=1

∣

∣

∣

∣

ar+1(x)

ar(x)

∣

∣

∣

∣

p

= ∞ a.e.

or

lim inf
n→∞

1

n logp n

∑

∣

∣

∣

∣

ar+1(x)

ar(x)

∣

∣

∣

∣

p

= 0 a.e.,

the conclusion of Theorem 3 does not carry over to validity with probability one.

The paper is organized into sections, which split the proofs of the theorems. Section 2
treats rationality criteria and the proof of Theorem 1. Section 3 gives some elementary
probabilities, which will be used in the subsequent proofs, Section 4 gives the proof of
Theorem 2 and Section 5 gives the proof of Theorem 3.

2. Rationality Criteria (Proof of Theorem 1)

Firstly, if A ∈ pZp \ {0} has an infinite Engel expansion, which satisfies (1.6) then

A =
n−1
∑

k=1

1

a1 · · · ak
+

1

a1 · · · an−1

(

1

an
+

1

anan+1
+ · · ·

)

=
n−1
∑

k=1

1

a1 · · · ak
+

1

a1 · · · an−1

(

−pr

β

)

∈ Q,

using (1.5) and the uniqueness of the Engel expansion.
Now suppose A = α

β
∈ Q. By the algorithm for each n ≥ 1, for which An 6= 0,

An+1 = anAn − 1 and it follows that An ∈ Q for each n ≥ 1. We will make use of the
elementary inequality

(2.1) 0 < an <
∞
∑

k=0

(p− 1)p−k = p for all an ∈ Sp.

By (2.1) we can write an = bnp
vp(an), where bn ∈ N and

(2.2) 0 < bn < p−vp(an)+1.
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Furthermore, each An can be represented in the form An = αn

βn
p−vp(an), where αn ∈ Z,

βn ∈ N, (αn, βn) = 1, and p ∤ αnβn. An analogous representation holds also for An+1,
provided An+1 6= 0. Substituting these representations into (1.2) leads to

(2.3)
αn+1p

−vp(an+1)

βn+1

=
bnαn − βn

βn

.

Since (αn+1p
−vp(an+1), βn+1) = 1 it follows that βn+1 | βn. Thus by (2.1) and using vp(an) ≤

−n we have

(2.4) |αn+1| ≤ pvp(an+1)(bn|αn|+βn) < pvp(an+1)−cp(an)+1|αn|+pvp(an+1)βn < |αn|+βnp
−n−1.

By choosing N large enough, so that |β1|p−N−1 < 1, we have for all n ≥ N that |αn+1| ≤
|αn|. Suppose that αn 6= 0 for all n. Then for all n sufficiently large we have |αn| = α and
βn = γ, where α, γ ∈ N and γ | β1. Substituting this into (2.3) yields

±αp−vp(an+1)

β
=

±bnα− γ

γ

which implies that

±bn =
γ

α
± p−vp(an+1).

Since bn ∈ N and (α, γ) = 1, we must have α = 1.
In the case that αn = +1 we get that bn = γ ± p−vp(an+1). Since −vp(an+1) ≥ n + 1 and

bn > 0 we conclude that

bn = γ + p−vp(an+1) ≥ γ + p1−vp(an) > p1−vp(an),

which contradicts (2.2).
In the case αn = −1 it follows from (2.3) that αn+1 = −1 as well and hence bn =

p−vp(an+1) − γ < p1−vp(an) only if vp(an+1) = vp(an) − 1 for n ≥ N , since γp−vp(aN )−1 < 1.
Consequently, in order for an infinite Engel expansion to exist it is necessary that αN+j =

−1 (j = 0, 1, . . .), vp(aN+j) = vp(aN ) − j, AN+j = −pvp(aN )

γ
, and aN+j = bN+jp

vp(aN+j) =
p−vp(aN )+j+1−γ

p−vp(aN )+j , which proves (1.6) with n = N and r = −vp(aN) ≥ n.

Remark 2. If there exists m ∈ N such that An < 0 then by (2.3) An+j < 0 for every
j ≥ 1. In particular, this implies that every negative rational number A ∈ pZp has an
infinite p-adic Engel expansion of type (1.6).

Remark 3. For positive rational numbers A ∈ pZp, both terminating and infinite expan-
sions can occur. However, in the special case, when A ∈ N we see by induction that An ≥ 0
for all n and it then follows from the proof of Theorem 1 that every positive integer A has
a finite Engel expansion.

3. Basic Probabilities

We begin by deriving some basic probabilistic results concerning the digits in p-adic
Engel expansions.
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Lemma 1. The digits an ∈ Sp form a Markov chain with initial probabilities

(3.1) P [vp(a1) = −j] = (p− 1)p−j,

and transition probabilities

(3.2) P
[

vp(an+1) = −k
∣

∣vp(an) = −j
]

=

{

(p− 1)pj−k for k > j

0 otherwise.

Proof. Firstly by the Engel algorithm A1 = x ∈ I. Then using the definition of Haar
measure P

[

vp(A1) > j
]

= P[vp(a1) < −j] = p−j. Thus P[vp(a1) = −j] = P[vp(a1) <
−(j − 1)]− P[vp(a1) < −j] = (p− 1)p−j.

Next, A2 is obtained from A1 by a system of linear congruences to successively higher
powers of p, arising from the relation A2 = a1A1 − 1. From this it follows that A2 is
uniformly distributed in pjI where j = −vp(a1). Inductively, if vp(an) = −j then An+1

is uniformly distributed in pjI for all n > 1. Since the event vp(an+1) < −k under the
condition that vp(an) = −j is just a cylinder set in the infinite product space {0, . . . , p−1}N,
which is described by fixing k− j of the digits in the p-adic expansion of A2 equal to 0, we
conclude that

P
[

vp(an+1) < −k
∣

∣vp(an) = −j
]

= pj−k

and (3.2) follows immediately. �

Remark 4. Since the probability in (3.2) depends only on the difference k− j this implies
that the random variables vp(an) − vp(an+1) are independent and identically distributed.
Thus for

n1 < n2 < · · · < nj and ki ≥ 1, i = 1, 2, . . . j ,

P
[

vp(anj+1) = vp(anj
)− kj, vp(anj−1+1) = vp(anj−1

)− kj−1, . . .

vp(an1+1) = vp(an1)− k1

]

= (p− 1)jp−(k1+···+kj).(3.3)

Corollary 4. Let ∆n = ∆n(x) denote the random variable vp(an) − vp(an+1), with ∆0 =
−vp(a1). Then

P
[

#
{

1 ≤ ℓ ≤ n|∆ℓ = 1
}

= k
]

=

(

n

k

)(

1− 1

p

)k

pk−n .

Thus the number of times that degrees of consecutive digits increase by 1 has a binomial

distribution with mean value n
(

1− 1
p

)

and variance n p−1
p2

.

In particular the lim inf result of part (ii) of Theorem 2 follows immediately.

Corollary 5. The random variables ∆n have mean value and variance

E(∆n) =
p

p− 1

and
V(∆n) =

p

(p− 1)2
.
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Proof. By Lemma 1

E(∆n) =
∞
∑

ℓ=1

ℓP[vp(an)− vp(an+1) = ℓ] = (p− 1)
∞
∑

ℓ=1

ℓp−ℓ =
p

p− 1
.

Similarly

E(∆2
n) = (p− 1)

∞
∑

ℓ=1

ℓ2p−ℓ =
p

p− 1
+ 2

p

(p− 1)2

from which the formula for V(∆n) is immediate. �

Lemma 2. The following equations hold:

(i)

(3.4) P[vp(an) = t] = (p− 1)np−t

(

t− 1

n− 1

)

and therefore

(3.5) P [∃n : vp(an) = t] = 1− 1

p
.

(ii) P[vp(an+m) = t
∣

∣vp(an) = s] = (p− 1)mps−t

(

t− s− 1

m− 1

)

.

Proof. First we prove statement (i). Since the sequence of degrees of the digits a1, a2, . . .
is strictly increasing we have by Lemma 1,

P [vp(an) = −t] =
∑

1≤j1<j2<···<jn−1<t

P
[

vp(an) = −t
∣

∣vp(an−1) = −jn−1

]

×

P
[

vp(an−1) = −jn−1

∣

∣vp(an−2) = −jn−1

]

· · ·P
[

vp(a2) = −j2
∣

∣vp(a1) = −j1
]

P [vp(a1) = −j1]

= (p− 1)n
∑

1≤j1<j2<···<jn−1<t

pjn−1−tpjn−2−jn−1 . . . pj1−j2p−j1 ,

= (p− 1)np−t
∑

1≤j1<j2<···<jn−1<t

1

= (p− 1)np−t

(

t− 1

n− 1

)

.

Thus we have

P [∃n : vp(an) = t] =
∞
∑

n=1

(p− 1)np−t

(

t− 1

n− 1

)

= (p− 1)p−t
t−1
∑

ℓ=0

(p− 1)ℓ
(

t− 1

ℓ

)

= 1− 1

p
.
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For the proof of (ii) we find

P
[

vp(an+m) = −t
∣

∣vp(an) = −s
]

=
∑

s<j1<j2<···<jm−1<t

P
[

vp(an+m) = −t
∣

∣vp(an+m−1) = −jm−1

]

· · ·P
[

vp(an+2) = −j2
∣

∣vp(an+1) = −j1
]

P
[

vp(an+1) = −j1
∣

∣vp(an) = −s
]

= (p− 1)mps−t
∑

s<j1<j2<···<jm−1<t

1

= (p− 1)mps−t

(

t− s− 1

m− 1

)

.

�

Remark 5. From the proof of (i) we can also deduce the joint probability distribution

P [vp(a1) = −j1, . . . , vp(an) = −jn] = (p− 1)np−jn ,

provided that the growth condition vp(ai) ≤ −i holds for each i = 1, 2, . . . , n. Otherwise
the joint probability distribution has value 0.

Lemma 3. Let Xn be a sequence of independent, identically distributed random variables
with EXn = µ and VXn = σ2. Then

(3.6) lim
n→∞

2

n(n+ 1)

n
∑

k=1

(n + 1− k)Xk = µ almost surely.

Proof. Under these hypotheses the law of large numbers

lim
n→∞

1

n

n
∑

k=1

Xk = µ almost surely

holds. Since (3.6) is just the second order Césaro mean of the random variables Xk. Since
the first order Césaro mean exists almost surely and equals µ, so does the second order
mean. �

4. Proof of Theorem 2

Since we can write vp(an) as the sum of independent random variables

vp(an) =

n−1
∑

i=1

(vp(ai+1)− vp(ai)) + vp(a1) = −
n−1
∑

i=0

∆i ,

it follows from Corollary 2 that vp(an) has mean and variance

E(vp(an)) = − p

p− 1
n .

and
V(vp(an)) = n

p

(p− 1)2
,

respectively.
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Hence by the law of large numbers and the central limit theorem (see e.g. Feller [2,
pp. 244, 253]) parts (i) and (ii) of Theorem 2 follow.

For the proof of (iii) we note that the events vp(an)− vp(an+1) > k(n) are independent
with probabilities P

[

∆n > k(n)
]

= p−k(n). The Borel-Cantelli lemmas then yield

P
[

∆n > k(n) for infinitely many n
]

=

{

0, if
∑∞

n=1 p
−k(n) converges

1 if
∑∞

n=1 p
−k(n) diverges.

By choosing k(n) = c logp n we see that with probability 1 the events (vp(an)−vp(an+1))
logp n

> c

occur infinitely often if c ≤ 1 and only finitely often if c > 1. The lim sup result then
follows. The corresponding lim inf result was already shown in Section 2.

(iv), (v) We first compute the mean and variance of vp(x− pn
qn
). In [5] it is shown that

∣

∣

∣

∣

x− pn
qn

∣

∣

∣

∣

p

= p−vp(qn+1) .

Now

E(vp(qn+1)) =

n+1
∑

r=1

E(vp(an)) =
p

p− 1

(n + 1)(n+ 2)

2
.

To compute the variance we make use of the fact that

vp(qn+1) =
n+1
∑

r=1

vp(ar) = −
n+1
∑

r=1

r−1
∑

l=0

∆l(4.1)

= −
n

∑

l=0

∆l(n+ 1− l).(4.2)

We now remark that the last sum has the same distribution as the sum

−
n

∑

l=0

(l + 1)∆l.

Thus we have for the variance

V (vp(qn+1)) =

n
∑

l=0

(l + 1)2V∆l =
(n+ 1)(n+ 2)(2n+ 3)

6

p

(p− 1)2
.

Assertion (iv) now follows form Lemma 3.
For the proof of (v) we check that the random variables (l + 1)∆l satisfy Lindeberg’s

condition (cf. [2, p .256]): since s2n = V(vp(qn+1)) is of order of magnitude n3, we have to
compute the integrals

∫

|y|≥tn3/2

y2 dFk(y) = (k + 1)2
∫

|x|≥ tn3/2

k+1

x2 dF (x) ≤ (k + 1)2
∫

|x|≥ t
2

√
n

x2 dF (x),
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where Fk is the distribution function of (k + 1)(∆k − p
p−1

) and F = F0. Thus the last

integral is equal to the sum

∑

k≥ p
p−1

+ t
2

√
n

(

k − p

p− 1

)2

p−k = O
(

np−
t
2

√
n
)

for n sufficiently large, and we have

1

s2n

n
∑

k=0

∫

|y|≥tsn

y2 dFk(y) = O

(

1

n
p−

t
2

√
n

)

→ 0

for any t > 0. Thus

vp(qn+1)− p
p−1

(n+1)(n+2)
2

√

V(vp(qn+1))

has asymptotically normal distribution and the proof is completed.

5. Proof of Theorem 3

We first notice that by Lemma 1 the random variables |ar+1(x)
ar(x)

|p ≡ p∆r are independent

and identically distributed with infinite expectation. We write s = logp y iff y = ps and
use the truncation method of Feller [2, Chapter 10, § 2], applied to the random variables
Ur, Vr(r ≤ n) defined by

Ur(x) =
∣

∣ar+1

/

ar(x)
∣

∣

p
,Vr(x) = 0 if

∣

∣ar+1

/

ar(x)
∣

∣

p
≤ n logp n ,

Ur(x) = 0 ,Vr(x) =
∣

∣ar+1

/

ar(x)
∣

∣

p
if

∣

∣ar+1

/

ar(x)
∣

∣

p
> n logp n

Then

P

[

x ∈ I :
1

n logp n

∣

∣

∣

∣

∣

n
∑

r=1

∣

∣

∣

∣

ar+1(x)

ar(x)

∣

∣

∣

∣

p

− (p− 1)

∣

∣

∣

∣

∣

> ε

]

(5.1)

≤ P
[
∣

∣

∣
U1 + · · ·+ Un − (p− 1)n logp n

∣

∣

∣
> εn logp n

]

+(5.2)

+ P
[

V1 + · · ·+ Vn 6= 0
]

,(5.3)

and using Lemma 1,

P
[

V1 + · · ·+ Vn 6= 0
]

≤ nP

[

∣

∣

∣

∣

a2(x)

a1(x)

∣

∣

∣

∣

p

> n logp n

]

(5.4)

= n
∑

k
pk>n logp n

(p− 1)p−k ≪ 1

logp n
= o(1).(5.5)

Now note that

E(U1 + · · ·+ Un) = nE(U1), V(U1 + · · ·+ Un) = nV(U1) ,
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where

E(U1) =
∑

| a2(x)
a1(x)

|p≤n logp n

pkP[∆1 = k] =
∑

pk≤n logp n

p−k(p− 1)pk(5.6)

= (p− 1) logp
(

[n logp n]
)

,(5.7)

and
V(U1) < E(U2

1 ) =
∑

pk≤n logp n

(p− 1)pk < qn logp n .

Chebyshev’s inequality then yields

P
[

∣

∣U1 + · · ·+ Un − nE(U1)
∣

∣ > εnE(U1)
]

(5.8)

≤ nV(U1)
(

εnE(U1)
)2 <

pn2 logp n
(

ε(p− 1)n log
(

[n logp n]
)

)2 = o(1).(5.9)

Since E(U1) ∼ (p− 1) logp n as n → ∞, Theorem 2 follows.
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