- 46. Bestimmen Sie alle Möbius-Abbildungen der oberen Halbebene in den Einheitskreis. Hinweis: verwenden Sie die Spiegelungseigenschaft.
- 47. Sei für $0 < \alpha \le \pi$

$$S_{\alpha} = \{ z \in \mathbb{C} \mid |\arg(z)| < \alpha \}.$$

Geben Sie eine konforme Abbildung $\phi: S_{\alpha} \to \mathbb{U}$ an.

- 48. Sei $E \neq \mathbb{C}$ ein Elementargebiet und $z_0 \in E$. Zeigen Sie, dass es genau eine konforme Abbildung $\phi : E \to \mathbb{U}$ mit $\phi(z_0) = 0$ und $\phi'(z_0) > 0$ gibt.
- 49. Sei $f: \mathbb{U} \to \mathbb{U}$ eine holomorphe Funktion mit f(a) = 0. Geben Sie eine Abschätzung für |f'(a)| an. Hinweis: wenden Sie das Lemma von Schwarz auf eine geeignete Funktion an.
- 50. Sei E ein Elementargebiet und $\phi: E \to \mathbb{U}$ eine konforme Abbildung. Sei z_n eine Folge von Punkten aus E mit $\lim_{n\to\infty} \in \partial E$. Zeigen Sie, dass dann $\lim_{n\to\infty} |\phi(z_n)| = 1$ gilt. Verwenden Sie die in Beispiel 47 für $\alpha = \pi$ gefundene Funktion und eine geeignete Folge, um zu zeigen, dass $\lim_{n\to\infty} \phi(z_n)$ nicht existieren muss. Hinweis: Nehmen Sie an, dass $(|\phi(z_n)|)_{n\in\mathbb{N}}$ nicht gegen 1 konvergiert und führen Sie dies unter Verwendung der Konformität von ϕ auf einen Widerspruch.