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Abstract

We consider the integration of two-dimensional, piecewise constant
functions with respect to copulas. By drawing a connection to linear as-
signment problems we can give optimal upper and lower bounds for such
integrals and construct the copulas for which these bounds are attained.
Furthermore we show how our approach can be extended in order to ap-
proximate extremal values in very general situations. Finally we apply our
approximation technique to problems in financial mathematics and uni-
form distribution theory, for example to the model-independent pricing of
first-to-default swaps.

1 Introduction

In the last decades, the importance of copulas in mathematical modeling was
recognized by many researchers, see e.g. [1, 2, 3]. Many applications come from
actuarial and financial mathematics, where the joint distribution of a vector
of random variables is studied frequently. Typical problems are the pricing of
basket options or the derivation of the Value at Risk of a portfolio. In this con-
text an interesting question concerns the best or worst case when the marginal
distributions are given but the dependence structure of the underlying random
vector is unknown or only partially known. Such situations appear frequently
since dependence structures are in general more difficult to calibrate from em-
pirical data than marginal distributions. Thus we are interested in maximizing
the value of an integral by considering all possible copulas as integrators.

The underlying problem is in general open, however there exist solutions for
some particular classes of integrand functions f . For instance Rapuch and Ron-
calli [4] consider basket option pricing when no information on the dependence
of the underlying random variables is available. They derive bounds for the
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prices of several options of European type in the Black-Scholes model, where
the integrand function has a mixed second derivative with constant sign on
the unit square. Tankov [1] extends these results to the greater class of two-
increasing (or supermodular) functions f , a definition will be given in the next
section. Furthermore the author gives an extension to option pricing problems
under partial information on the dependence of the underlying random vari-
ables. Note that the above results are based on classical findings due to Tchen
[5].

Similar results and applications in number theory are presented by Fialová and
Strauch [6]. They consider bounds for functionals which depend on two uni-
formly distributed point sequences. Under similar conditions as in [4] they
show that the Fréchet-Hoeffding bounds W and M are the copulas for which
the extremal values are obtained. We remark that the underlying problem was
formulated as an open problem in the unsolved problem collection of Uniform
Distribution Theory 1. A more detailed introduction to applications in uniform
distribution theory is given in Section 3.1 of this article.

A list of results for a different class of functions f exists in the context of finan-
cial risk theory see e.g. Puccetti and Rüschendorf [2] or Albrecher et al. [7]. In
[2] the authors derive sharp bounds for quantiles of the loss of a portfolio, rep-
resented by a finite sum of dependent random variables, when no or only partial
information on the dependence structure within the portfolio is available. Such
quantities play an important role in actuarial and financial mathematics, for
example in the computation of the Value at Risk. Recently this approach has
been generalized to derive optimal bounds for the expected shortfall of a port-
folio, see Puccetti [8]. Many of these results rely on the so-called rearrangement
method due to Rüschendorf [9]. Note that the application of the rearrangement
method requires a rather strong regularity of the integrand function see e.g.
[8]. The optimal bounds in the articles mentioned above are attained by using
so-called shuffles of M , which we define in the next section.

The structure of our paper is the following: in the next section, after a short in-
troduction to copulas, we present our main results, which are bounds on integrals
of piecewise constant functions. Furthermore we formulate an approximation
technique for a very general class of integrand functions. In the third section
we apply our results to problems in uniform distribution theory and financial
mathematics.

2 Main Results

In the sequel we consider expectations,

E[f(X,Y )], (1)

where f is a function on [0, 1)2 and X,Y are uniformly distributed random
variables on the unit interval. In this situation the joint distribution function
C of X and Y is a copula.

1Problem 1.29 in the open problem collection as of 19. January 2013
(http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf)
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Definition 2.1 (Copula). Let C be a positive function on the unit square. Then
C is called (two)-copula if for every x, y ∈ [0, 1)

C(x, 0) = C(0, y) = 0,

C(x, 1) = x and C(1, y) = y

and for every x1, x2, y1, y2 ∈ [0, 1) with x2 ≥ x1 and y2 ≥ y1

C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0. (2)

A function which satisfies (2) is called two-increasing or supermodular. In the
sequel we denote by C the set of all two-copulas.

Note that the restriction to uniformly distributed marginals is insignificant since
by Sklar’s Theorem, see e.g. [10, Theorem 2.3.3], we can write every continuous
two-dimensional distribution function H as

H(x, y) = C(F (x), G(y)),

where F,G denote the marginal distributions of H and C is a copula. Moreover
if F and G are continuous then C is unique and we have that∫

[0,1)2
f(x, y)dH(x, y) =

∫
[0,1)2

f(F−1(x), G−1(y))dC(x, y),

where F−1, G−1 denote the inverse distribution functions of the marginals.

Copulas can be ordered stochastically, where the upper and lower bounds are
called Fréchet-Hoeffding bounds (see e.g. [10, Theorem 2.2.3]). More precisely,
for every two-copula C we have that

max(x+ y − 1, 0) ≤ C(x, y) ≤ min(x, y), for all (x, y) ∈ [0, 1)2. (3)

It is also well-known that the two Fréchet-Hoeffding bounds W (x, y) = max(x+
y − 1, 0) and M(x, y) = min(x, y) are copulas in the two dimensional setting.
For higher dimensions an analogon of (3) exists, however the lower bound is in
general not a copula, see [11, Theorem 3.2 and 3.3]. For a detailed introduction
to copulas see [10, 11].

Thus, according to the discussion in the beginning of Section 1, we are interested
in bounds of the form∫

[0,1)2
f(x, y)dCmin(x, y) ≤

∫
[0,1)2

f(x, y)dC(x, y) ≤
∫
[0,1)2

f(x, y)dCmax(x, y),

(4)
for all C ∈ C, where Cmin, Cmax are copulas. As mentioned above a particularly
interesting subclass of copulas for our problems are so-called shuffles of M , see
[10, Section 3.2.3].

Definition 2.2 (Shuffles of M). Let n ≥ 1, s = (s0, . . . , sn) be a partition of
the unit interval with 0 = s0 < s1 < . . . < sn = 1, π be a permutation of Sn =
{1, . . . , n} and ω : Sn → {−1, 1}. We define the partition t = (t0, . . . , tn), 0 =
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t0 < t1 < . . . < tn = 1 such that each [si−1, si) × [tπ(i)−1, tπ(i)) is a square. A
copula C is called shuffle of M with parameters {n, s, π, ω} if it is defined in the
following way: for all i ∈ {1, . . . , n} if ω(i) = 1, then C distributes a mass of
si − si−1 uniformly spread along the diagonal of [si−1, si) × [tπ(i)−1, tπ(i)) and
if ω(i) = −1 then C distributes a mass of si − si−1 uniformly spread along the
antidiagonal of [si−1, si)× [tπ(i)−1, tπ(i)).

Note that the two Fréchet-Hoeffding bounds W,M are trivial shuffles of M with
parameters {1, (0, 1), (1),−1} and {1, (0, 1), (1), 1}, respectively. Furthermore
it is well-known that every copula can be approximated arbitrarily close with
respect to the supremum norm by a shuffle of M , see e.g. [10, Theorem 3.2.2].
In the sequel we denote by In the partition of the unit interval which consists
of n intervals of equal length.

In the next theorem we illustrate the close relation of (4) to problems in opti-
mization theory, namely linear assignment problems of the form

max
π∈P

n∑
i=1

ai,π(i), (5)

where P is the set of all permutations of {1, . . . , n}. Such problems are well
understood and can be solved efficiently, for example by using the celebrated
Hungarian Algorithm due to Kuhn [12]. For a detailed description of assignment
problems and related solution algorithms we refer to [13].

Theorem 2.1. Let n ≥ 1, A = {ai,j}i,j=1,...,n be a real-valued n×n matrix and
let the function f be defined as

f(x, y) := ai,j , (x, y) ∈
[
i− 1

n
,
i

n

)
×
[
j − 1

n
,
j

n

)
.

Then the copula Cmax which maximizes

max
C∈C

∫
[0,1)2

f(x, y)dC(x, y) (6)

is given as a shuffle of M with parameters {n, In, π∗, 1}, where π∗ is the per-
mutation which solves the assignment problem

max
π∈P

n∑
i=1

ai,π(i).

Moreover the maximal value of (6) is given as∫
[0,1)2

f(x, y)dCmax(x, y) =
1

n

n∑
i=1

ai,π∗(i). (7)

Proof. Let {Ck(x, y), k = 1, . . . , n! = N} be the set of all shuffles of M with
parameters of the form {n, In, πk, 1} and let tk ≥ 0, k = 1, . . . , N , where∑N
k=1 tk = 1. Then C ′(x, y) =

∑N
k=1 tkCk(x, y) is always a copula satisfying∫

[0,1)2
f(x, y)dC ′(x, y) ≤ 1

n

n∑
i=1

ai,π∗(i),
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where π∗ is given in the statement of the theorem.

For an arbitrary copula C ∈ C we define the matrix BC as

BC(i, j) = n

∫
[ i−1

n , in )×[ j−1
n , jn )

dC(x, y).

It follows by Definition 2.1 that BC is doubly stochastic and by Definition 2.2
that BCk

is a permutation matrix. Furthermore it follows by the Birkhoff-von
Neumann Theorem that the set of doubly stochastic matrices coincides with the
convex hull of the set of permutation matrices. Thus for every C there exist
tk ≥ 0, k = 1, . . . , N with

∑N
k=1 tk = 1 such that

BC(i, j) =

N∑
k=1

tkBCk
(i, j), for every i, j,

and hence∫
[0,1)2

f(x, y)dC(x, y) =

N∑
k=1

tk

∫
[0,1)2

f(x, y)dCk(x, y) ≤ 1

n

n∑
i=1

ai,π∗(i).

Note that the maximal copula in Theorem 2.1 is by no means unique, since for
instance the value of the integral in (6) is independent of the choice of ω.

Obviously, we can derive a lower bound in Theorem 2.1 by considering g(x, y) =
−f(x, y). Furthermore it is easy to see that Theorem 2.1 applies to all functions
f which are constant on sets of the form

Ii,j = [si, si+1)× [tj , tj+1) , i = 0, . . . , n− 1, j = 0, . . . ,m− 1,

where 0 = s0 < s1 < . . . < sn = 1 and 0 = t0 < t1 < . . . < tm = 1 are rational
numbers.

The following generalization of our approach applies to a wide class of functions
on the unit square.

Theorem 2.2. Let f be a continuous function on [0, 1]2, let the sets Ini,j be
given as

Ini,j =

[
i− 1

2n
,
i

2n

)
×
[
j − 1

2n
,
j

2n

)
for i, j = 1, . . . , 2n,

for every n > 1 and define the functions f
n
, fn as

f
n
(x, y) = min

(x,y)∈Ini,j
f (x, y) , for all (x, y) ∈ Ini,j ,

fn(x, y) = max
(x,y)∈Ini,j

f (x, y) , for all (x, y) ∈ Ini,j . (8)
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Furthermore let Cnmax, C
n

max be the copulas which maximize

max
C∈C

∫
[0,1)2

f
n
(x, y)dC(x, y) and max

C∈C

∫
[0,1)2

fn(x, y)dC(x, y),

respectively. Then∫
[0,1)2

f
n
(x, y)dCnmax(x, y) ≤ sup

C∈C

∫
[0,1)2

f(x, y)dC(x, y)

≤
∫
[0,1)2

fn(x, y)dC
n

max(x, y), (9)

for every n, and

lim
n→∞

∫
[0,1)2

f
n
(x, y)dCnmax(x, y) = lim

n→∞

∫
[0,1)2

fn(x, y)dC
n

max(x, y)

= sup
C∈C

∫
[0,1)2

f(x, y)dC(x, y). (10)

Proof. The inequalities in (9) follow immediately from the construction of f
n
, fn

and Theorem 2.1. Furthermore since f is continuous on [0, 1]2 we have that for
every ε > 0 there exists an integer n such that

|fn(x, y)− f
n
(x, y)| < ε, for all (x, y) ∈ [0, 1]2. (11)

Moreover it follows by Theorem 2.1 that for every n we can write∫
[0,1)2

f
n
(x, y)dCn(x, y) =

1

2n

2n∑
i=1

ai,π∗(i)

for a permutation π∗ and a real valued matrix A = {ai,j}i,j=1,...,n with

ai,j = min
(x,y)∈Ini,j

f (x, y) , for i, j = 1, . . . , 2n.

Using (11) we get that∫
[0,1)2

fn(x, y)dC
n
(x, y) ≤

∫
[0,1)2

(f
n
(x, y) + ε)dCn(x, y) =

1

2n

2n∑
i=1

(ai,π∗(i) + ε)

and thus ∣∣∣∣∣
∫
[0,1)2

fn(x, y)dC
n
(x, y)−

∫
[0,1)2

f
n
(x, y)dCn(x, y)

∣∣∣∣∣ < ε.

Combing this with (9) we get (10).

The assumption that f is continuous can maybe be relaxed to the case that f
is C-continuous a.e. for all C ∈ C. This is required to make sure that∫

[0,1)2
f(x, y)dC(x, y)
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exists for all C ∈ C.

By defining the function families f
n
, fn differently we might get an approxi-

mation technique which converges faster to the optimal value, for instance we
could use

fn(x, y) = f

(
i

2n
,
j

2n

)
, for all (x, y) ∈ Ini,j .

Furthermore the mini- and maximization steps in (8) can be time-consuming,
for instance when these problems are not explicitly solvable. However the ad-
vantage of the present approach lies in the fact that we get an upper and lower
bound of the optimal value for every n, which is obviously useful for numerical
applications.

In numerical investigations where (8) could not be solved explicitly we used
mini- and maximization over a fixed grid in each Ini,j . This results in a fast
computation, however we obviously lose the property that we get upper and
lower bounds for every n.

By assuming Lipschitz-continuity of f we can describe the rate of convergence
of our method.

Corollary 2.1. Let the assumptions of Theorem 2.2 hold and, in addition as-
sume that f is Lipschitz-continuous on [0, 1]2 with parameter L. Then∣∣∣∣∣

∫
[0,1)2

fn(x, y)dC
n
(x, y)−

∫
[0,1)2

f(x, y)dC(x, y)

∣∣∣∣∣ ≤ L
√

2

2n
.

Proof. Following the proof of Theorem 2.2 and using the Lipschitz-continuity
of f we get

|fn(x, y)− f
n
(x, y)| ≤ L

√
2

2n
, for all (x, y) ∈ [0, 1]2,

and thus ∣∣∣∣∣
∫
[0,1)2

fn(x, y)dC
n
(x, y)−

∫
[0,1)2

f
n
(x, y)dCn(x, y)

∣∣∣∣∣ ≤ L
√

2

2n
.

3 Applications

In this section we present two numerical examples in which we apply the ap-
proximation technique presented in Theorem 2.2. We use an implementation of
the Hungarian Algorithm in MatLab, which makes it possible to derive the so-
lution of the linear assignment problem (5) for a given matrix A of size 210×210

within seconds. The involved mini- or maximization of the integrand function on
a given grid can be done efficiently, since the integrand functions are piecewise
smooth.
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3.1 Uniform Distribution Theory

A deterministic sequence (xn)n>1 of points in [0, 1) is called uniformly dis-
tributed (u.d.) if

lim
N→∞

1

N

N∑
n=1

1[a,b)(xn) = b− a

for all intervals [a, b) ⊆ [0, 1). Furthermore we call g the asymptotic distribution
function (a.d.f.) of a point sequence (xn, yn)n>1 in [0, 1)2 if

g(x, y) = lim
N→∞

1

N

N∑
n=1

1[0,x)×[0,y)(xn, yn),

holds in every point (x, y) of continuity of g, for a survey of classical results in
this field see [14]. In [6] Fialová and Strauch consider

lim sup
N→∞

1

N

N∑
n=1

f(xn, yn),

where (xn)n>1, (yn)n>1 are u.d. sequences in the unit interval and f is a con-
tinuous function on [0, 1)2, see also [15]. In this case the a.d.f. g of (xn, yn)n>1

is always a copula and we can write

lim
N→∞

1

N

N∑
n=1

f(xn, yn) =

∫ 1

0

∫ 1

0

f(x, y)dg(x, y). (12)

Now we can derive upper bounds for (12) by maximizing g over the set of all

copulas. This has already been done in [6] for functions f where ∂2f
∂x∂y

(x, y) has

constant sign for all (x, y) ∈ [0, 1)2. Note that this condition is equivalent to the

two-increasing property of f provided that ∂2f
∂x∂y

(x, y) exists on the unit square.

As a numerical example we consider

lim sup
N→∞

1

N

N∑
n=1

sin(π(xn + yn)).

The numerical results are illustrated in Table 1. Note that the approximations of
the lower bound can be easily computed using the symmetry of the sine function.

A further interesting question concerns the sequences (xn)n>1, (yn)n>1 which
maximize (12). Let (xn)n>1 be a u.d. sequence and C(x, y) a shuffle of M , then
it is easy to see that (f(xn))n>1 is u.d., where f is the support of C. Thus
if C is the shuffle of M which attains the maximum in (12), an optimal two-
dimensional sequence is given as (xn, f(xn))n>1, where (xn)n>1 is an arbitrary
u.d. sequence. In Figure 1, we present the copula which attains the upper bound
for the maximum in our approximation when n = 7.

Although we can not give a rigorous proof, by increasing n it seems that the
copula C ′ which attains the maximum is the shuffle of M with parameters
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{2, (0, 0.75, 1), (1), {ω(1) = −1, ω(2) = 1}}. In this case we have∫ 1

0

∫ 1

0

sin(π(x+ y))dC ′(x, y) =

∫ 1

0

sin(π(x+ f ′(x)))dx

=

∫ 3
4

0

sin(π(x+ 0.75− x))dx+

∫ 1

3
4

sin(π2x)dx

=
3

4
√

2
− 1

2π
≈ 0.371175,

where f ′ denotes the support of C ′.

n 5 6 7 8 9 10
UB 0.3933 0.3824 0.377 0.3741 0.3727 0.3712
LB 0.3482 0.3598 0.3655 0.3684 0.3698 0.3711

Table 1: Upper and lower bounds for the maximum in (12) with respect to n.

0 1
4

1
2

3
4

1

1
4

1
2

3
4

1

x

fHx
L

Figure 1: Support of copula which attains upper bound for sin(π(X + Y )) and
n = 7.

3.2 First-to-default Swaps

A first-to-default swap (FTD) is a contract in which a protection seller (PS) in-
sures a protection buyer (PB) against the loss caused by the first default event
in a portfolio of risky assets. The PB pays regularly a fixed constant premium
to the PS, the so-called spread, until the maturity T of the contract or the first
default event, whichever occurs first. In exchange, the PS compensates the loss
caused by the default at the time of default.
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We assume that the underlying portfolio consists of two risky assets, for which
the marginal default distributions are known but the joint distribution is un-
known. We want to derive a worst case bound in this setting. For the valu-
ation of the FTD we follow the paper of Schmidt and Ward [16]. Note that
Monte Carlo methods for the evaluation of first-to-default swaps, where the
dependences within the portfolio is modeled by a copula, are e.g. presented in
Aistleitner et al. [17] and Packham and Schmidt [3].

Let τ1, τ2 denote the random default times of the two risky assets, let the no-
tional be equal to one for both assets and Ri, i = 1, 2, be the so-called recovery
rates, which are the percental amounts of money that can be liquidized in case
of the default of an asset. We assume that the distribution of τi is given as

P(τi ≤ t) = 1− e−λit, t > 0,

where the intensity λi can be derived from the credit default swap market as

λi =
si

1−Ri
,

and si is the premium of an insurance against the default of asset i.

Now denote by τ = min(τ1, τ2) the first default time in the portfolio, let 0 =
t0 < t1 < . . . < tn = T be the payment times of the constant spread and assume
that there exists a risk free interest rate r ≥ 0. Then, to guarantee a fair spread
s, we obtain that the expected, discounted premium and default payments are
equal, i.e.

s

n∑
i=0

e−rtiP(τ > ti) =

2∑
i=1

E
[
(1−Ri)e−rτ1{τ<T∧τ=τi}

]
.

By the above assumptions we obtain that

P(τ > ti) =

∫
[0,1)2

1{f(x,λ1)>ti ∧ f(y,λ2)>ti}dC(x, y),

2∑
i=1

E
[
(1−Ri)e−rτ1{τ<T ∧ τ=τi}

]
=∫

[0,1)2
e−rmin(f(x,λ1),f(y,λ2))

(
1{f(x,λ1)≤min(f(y,λ2),T )}(1−R1)

+ 1{f(y,λ2)≤min(f(x,λ1),T )}(1−R2)

)
dC(x, y),

where f(x, λ) = − log(1−x)
λ is the inverse distribution function of an exponential

distribution with parameter λ and 1{(x,y)∈B} denotes the characteristic function
of set B ⊆ [0, 1)2.

Now we want to calculate the maximal spread s by maximizing over all copulas.
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We obtain for the spread that

s =

∫
[0,1)2

e−rmin(f(x,λ1),f(y,λ2))∑n
i=0 e

−rti1{f(x,λ1)>ti ∧ f(y,λ2)>ti}

·
(

1{f(x,λ1)≤min(f(y,λ2),T )}(1−R1)

+ 1{f(y,λ2)≤min(f(x,λ1),T )}(1−R2)

)
dC(x, y). (13)

Note that the value of the integral is finite since the first payment is made at
t0 = 0. Furthermore note that the integrand function in this example is not
continuous, thus Theorem 2.2 cannot be applied. Nevertheless it is clear that
our technique provides upper and lower bounds for the optimal values, and since
these bounds converge to each other our approach still works.

In Table 2 we present numerical results for a concrete example with three pay-
ment times, ti = 0, 1, 2. One can observe that the resulting copulas (given in
Figures 2 and 3 for n = 7, 8, respectively) are highly irregular in left upper
quarter of the unit square. Nevertheless for n = 10 the upper and lower bounds
for the optimal values are almost equal.

λ1 λ2 R1 R2 T r ti
1
3

1
2 0.5 0.7 2 0.05 (0, 1, 2)

n 3 4 5 6 7 8 10

UB 0.3601 0.3355 0.3301 0.326 0.322 0.3202 0.3195
LB 0.2956 0.3031 0.314 0.318 0.3183 0.3189 0.3195

UB 0.1714 0.1674 0.1567 0.1535 0.1519 0.1505 0.1498
LB 0.1453 0.1456 0.1458 0.1480 0.1492 0.1492 0.1495

Table 2: Approximation of the maximal spread of a FTD, where UB and LB and
UB and LB denote the values of the upper and the lower bounds of the maximal
and minimal value of the integral, and n the fineness of the approximation
according to Theorem 2.2.
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Figure 2: Copula which attains the upper bound for the maximal value with
n = 7.
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Figure 3: Copula which attains the upper bound for the maximal value with
n = 8.

4 Conclusions

The method presented in this paper can be used to derive sharp bounds for in-
tegrals of piecewise constant functions with respect to copulas. Furthermore we
provided the construction of the copulas which attain the optimal values. This
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extends the scientific literature on this topic, that is in general still open. Fur-
thermore we presented an approximation approach for a wide class of integrals.
The numerical effectiveness of our method was illustrated in two numerical ex-
amples from different branches of applied mathematics.

A starting point for further research is an extension of the presented technique
to higher dimensional problems. Since the resulting so-called multi-index as-
signment are in general NP-hard, we plan to investigate heuristics, see e.g. [13].
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