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Abstract

Recently, Fialova and Strauch, Uniform Distribution Thed(1):101-125, 2011, calculated the
asymptotic distribution function (adf) of the two-dimemisal sequencéps, (n), ¢p(n + 1)), >0, Where
(¢(n))n>0 denotes the van der Corput sequence in basethe present paper we solve the general
problem asking for the limit distribution dfps(n), ¢s(n + 1),...,¢s(n + s — 1))n>0. We use the
fact that the van der Corput sequence can be seen as the bth# origin under the ergodic von
Neumann-Kakutani transformation.

1 Introduction

In the open problem collection on the web sitelofiform distribution theonthe following problem is
stated:

Let (¢p(n))n>0 denote the van der Corput sequence in bHagdénd the distribution of the
sequencép,(n), gp(n +1),...,¢p(n+ s —1)),>0 in [0,1)5.2

The cases = 2 has recently been solved by Fialova and Strauch [3]. Thewstidhat every point
(¢p(n), Pp(n + 1))n>0 lies on the line segment
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for k > 0. Furthermore they could give an explicit formula for the mgyotic distribution function of
(pp(n), dp(n + 1))n>0 to calculate the limit

lim D s(n) = dup(n+1)] = Q(bbif)
=0

N—oco N
n

previously demonstrated by Pillichshammer and Steingdyefl12]. They also noted that the adf of
(¢p(n), dp(n + 1))n>0 is a copula.
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In this article we solve the problem for the sequetiign), gp(n+1),...,pp(n+s—1))p>0 fors > 2. A
multi-dimensional extension of the van der Corput sequéng@) ), >0, is given by the so-called Halton
sequencepy, (n), éb, (1), - . ., b, (n))n>0 Which is uniformly distributed if and if the baséd <i < s

are co-prime (see [7]). These sequences are well-studjedtslin discrepancy theory, since they belong
to the class of so-called low discrepancy sequences. Fssicd results in discrepancy theory, on low
discrepancy sequences and the van der Corput sequencg.9éé¢, §2] or [8].

Recently, several authors investigated the ergodic ptiegesf low discrepancy sequences, see e.g. [6]
and [14]. In the case of van der Corput sequences this can e uking the so-called von Neumann-
Kakutani transformation, which will be discussed in theassetsection.

The outline of this article is as follows: in the second sattive define the van der Corput sequence and
the von Neumann-Kakutani transformation and recall thagidproperties. In the third section we state
our main results on the distribution &b, (n), gp(n + 1),...,¢p(n+ s — 1))n>0-

2 van der Corput sequence and von Neumann-Kakutani transfor
mation

Letb € NandNy, = NU {0}. Then for evenyn € Ny, we can write

n= Znibi

i>0

wheren; € {0,1,...,b — 1}, > 0. The above sum is calleldadic representation of. Then; are
uniquely determined and at most a finite number.pére non-zero. Furthermore, every reat [0, 1)
has a-adic representation of the following form

T = Z xb 1 (1)

i>0

wherez; € {0,1,...,b— 1},i > 0. We callz ab-adic rational ifx = ab~¢, wherea andc are positive
integers and) < a < b°. For all b-adic integers there are exactly two representations ofahe (1),
one wherer; = 0,7 > ig and one where; = b — 1,47 > iq for sufficiently largeiy € N. If we restrict
ourselves to representations with £ b — 1 for infinitely manysi, then the coefficients; in (1) are
uniquely determined for alt € [0,1).

Forn € Ny we define the so-called radical-inverse function or Monna mdn): No — [0, 1) by

op(n) = oy Znibi = Znibﬂ’l.

i>0 i>0

Note thatp, (n) mapsNj to the set ob-adic rationals irj0, 1), and therefore the image b underg, (n)
is dense irf0, 1).

Definition 2.1 The van der Corput sequence in basge defined ag¢,(n))n>0-

It is a classical result that the van der Corput sequenceifsrarly distributed in[0, 1), see e.g. [8].
Furthermore, its-dimensional extension, the Halton sequence givefghy(n), . .., ¢p, (n))n>o for co-
prime base$;,1 < i < s, is uniformly distributed orf0, 1)*. Properties of the van der Corput and the
Halton sequence are very well-understood, since they acalted low discrepancy sequences, which are
central objects in Quasi-Monte Carlo integration.



A second approach to define the van der Corput sequence isrgythe von Neumann-Kakutani trans-
formationT;: [0,1) — [0,1). For any integeb > 2 the inductive construction df; is as follows:
at first [0, 1) is split into b intervalsI} = [, ) for i = 0,1,...b — 1. Then the transformation
Tip: [0,%2) — [$,1) is defined as translation dff into I}/, for i = 0,1,...,b — 1. The next

step is to divide all interval$} into b subintervals of the forni? = [%, 5t) fori = 0,1,...6% — 1.

TransformationZy p : [0, bzb—gl) — [4,1) is given as the extension df, ; which translates?, _,
into 11722—b+i+1 fori = 0,1,...,b— 1. Such a construction is called splitting-and-stackingstauction
and is illustrated in Figure 1 fdr = 2. Finally we define the von Neumann-Kakutani transformasisn
Ty, = limy,_,o0 Th5- A plot of the transformatiorf is given in Figure 2. By an observation of Lam-

bert [9], [10] (see also Hellekalek [7]) the van der Corpujsence in basé is exactly the orbit of the
origin underT}, which means that

(T3'0)n>0 = (¢6(n))n>0, b =2, 2)

whereT 'z denotes the value af under aftem iterations ofT3.

—
3

- 1
4

——

1 1

;_| 4 2

- T emmpmmm > .

1 3 1 3

—_ —_ 1 — —_

2 4 2 4

] | | — ——

0 1 1 1 1 1

0 - 1 0 - - 0 -

2 4 2 4

Figure 1: The first two steps of a splitting-and-stackingstouction in basé = 2.



Figure 2: The von Neumann-Kakutani transformation in base2.

For a proof of the ergodicity and measure-preserving ptaseof the von Neumann-Kakutani transfor-
mation, see e.g. [4] or [5]. It follows from the ergodicity thfe von Neumann-Kakutani transformation
that (7}'x),>o is uniformly distributed for almost every € [0, 1). Furthermore, it can be shown that the
von Neumann-Kakutani transformation is uniquely ergodicich implies that(7;"x),,>¢ is uniformly
distributed for everyx € [0,1), see e.g. [6]. Moreover, Pagés [11] showed that the orbihefvon
Neumann-Kakutani transformation starting at an arbitpeipta € [0, 1) is a low discrepancy sequence.
Another possible generalization of the van der Corput secgiés the so-called randomized van der Cor-
put sequencél}' X ), >o whereX is uniformly distributed on0, 1), see [13].

Recently, Fialova and Strauch solved the problem of caliigiahe limit distribution of the sequence
(pp(n), dp(n+1)),>0. They also concluded that the limit distribution is a copMi&@ consider the multi-
dimensional extension of this problem. By (2)

(¢p(n), op(n +1))ns0 = (T7°0, T 10) >0 = (T30, Ty (T70))ns0-

By the fact tha{7;'0),>0 is uniformly distributed orj0, 1) one can show theip,(n), ¢p(n + 1)),>0 iS
uniformly distributed on

I'={(z,y):y = Tpx}.

Note thatl" coincides with the graph of the von Neumann-Kakutani tramsétion in Figure 2. In the
next section we use this approach to find the limit distrimutf (5 (n), gy (n+1), ..., dp(n+s—1))n>0
for arbitrarys > 2.



3 The limit distribution of consecutive elements of the van dr Cor-
put sequence

In the sequel we assume thiats are fixed. Letl” denote the von Neumann-Kakutani transformation in
baseb as described in Section 2. We define amép: [0,1) — [0,1)° by setting

t
Tt

Wy =] T

T5—1¢

and

Figure 3: Function graphs daft, 7% andT°t. These curves appear as the two-dimensional projections
of I for larges.

The Lebesgue measuke on [0, 1) induces a measureonT" by setting
v(A) = ({t: () € A}), AcCT.

Furthermorey induces a measure on [0, 1)° by embedding” into [0,1)°. More precisely for every
measurable subsét C [0, 1)° we set
pw(B)=v(BNT).

Theorem 3.1 The limit measure ofpy (n), gp(n +1),...,¢p(n + 5 —1))p>0 IS p.

Proof:
As mentioned in Section 2, we can rewrite

(¢b(n)a ¢b(n + 1)5 sy ¢b(n +s— 1))7’120 = (Tnoa Tn+107 ceey Tn+5710)n20
= (T"0,T(T"0),...,T* 1 (T"0))n>0.

Since (10),,>0 is uniformly distributed or0, 1) andT is a measure-preserving transformation with
respect to\, it follows immediately that(7*(7™0)),>o is uniformly distributed on[0,1) for i =
1,...,s — 1. Moreover, by constructio(d™0, T'(T"0), ..., T~ 1(T"0)),>0 € I forall n > 0.



Now consider a measurable sBte [0,1)®. We define the empirical measure of the firstpoints of
(T™0, ..., T*"YT"0)),>0 @s

un(B) = %#{0 <n<N:(T"0,T(T"0),...,T°"1(T"0)) € B}.

We have

1
lim pn(B) = Jim N#{O <n<N:(T"0,T(T"0),...,T*"YT"0)) € B}

N —oc0
1
= lim —#{0<n< N :(T"0,T(T"0),...,T*"1(T™0)) € BNT}
N—oo N

o1 . o
= A}gnoo N#{O <n < N:T"0 € Projection (BNT)}
= A1 ( Projection (BNT))

—W(BNT) = u(B)

where the fourth equation holds sin€g"0),,>o is uniformly distributed on0, 1) and since the map
t — Tt is a bijection, and where ProjectipriA) denotes the projection of onto its first coordinate.]

Remark 3.1 Note that the measupeis a copula on0, 1]° for everys since every distribution function
of a multi-dimensional sequenc¢e! , ..., z%),,>¢ is a copula if the sequencés. ) ,>o, . . ., (25 ) >0 are
uniformly distributed ono, 1].

Remark 3.2 The sefl" is a collection of countably many line segmentsinl )*. Informally speaking
Theorem 3.1 means th&p, (n), ¢p(n +1),...,dp(n + s — 1)),>0 is uniformly distributed ot

Remark 3.3 By the unique ergodicity df', the conclusion of Theorem 3.1 holds also for the sequence
(T"z, T(T"x),..., TS 1 (T"x)),>0 for arbitrary z € [0, 1).

Remark 3.4 Another class of uniformly distributed sequences whichbmaseen as the orbits of certain
points under an ergodic transformation are sequences ofdha ({na}),>0, where{z} denotes the
fractional part ofx and « is irrational. In this case the corresponding transfornoatiZ’ is simply the
rotation7': x — x+a mod 1. It can easily be shown that the limit distribution of constéee elements
({na},{(n+1a},...,{(n+s—1)a}),>0 is the uniform distribution on the curdéwhich is given by

U:={(t,Tt,...., T 't),t € [0,1)}.

However, since in this case the transformatibhas a particularly simple structure, the same result can
also be easily obtained using analytic arguments.

ACKNOWLEDGEMENTS

The authors are greatly indebted to Peter Grabner for intiod them into the topic of ergodic transfor-
mations in number theory, particularly concerning proipsrof the von Neumann-Kakutani transforma-
tion and the relation to the-adic integers,;,. They also want to thank David Ralston from Ben Gurion
University for interesting discussions on this topic dgrhis visit in Graz in November 2011.



References

[1] J. Dick and F. Pillichshammemigital nets and sequences. Discrepancy and quasi-MontéoQategration

(2]

Cambridge University Press, 2010.
M. Drmota and R.F. TichySequences, Discrepancies and Applicatiddgringer Verlag, New York, 1997.

[3] J. Fialova and O. Strauch. On two-dimensional sequeccegposed by one-dimensional uniformly distributed

(4]
(5]

(6]

(7]

(8]

sequencesUniform Distribution Theory6(1):101-125, 2011.
N.A. Friedman.Introduction to Ergodic TheoryVan Nostrand Reinhold, New York, 1970.

N.A. Friedman. Replication and Stacking in Ergodic Thedr'he American Mathematical Monthi99(1):31—
41, 1992.

P. Grabner, P. Hellekalek, and P. Liardet. The dynanpoét of view of low-discrepancy sequencémiform
Distribution Theory 7(1):11-70, 2012.

P. Hellekalek and H. Niederreiter. Constructions offannly distributed sequences unsing thadic method.
Uniform Distribution Theory6(1):185-200, 2011.

L. Kuipers and H. NiederreitetJniform Distribution of Sequencegohn Wiley & Sons, New York, 1974.

[9] J.P. Lambert.Some developments in Optimal and Quasi-Monte Carlo Quadraand a New Outlook on a

[10]

[11]

[12]

[13]

[14]

Classical Chebyshev ProblerRh.D. Dissertation, The Claremont Graduate School, 1982.

J.P. Lambert. Quasi-Monte Carlo, low discrepancy segas, and ergodic transformatiodsurnal of Compu-
tational and Applied Mathematic42:419 — 423, 1985.

G. Pagés. Van der Corput sequences, Kakutani transfam one-dimensional numerical integratidaurnal
of Computational and Applied Mathematiegl:21 — 39, 1992.

F. Pillichshammer and S. Steinerberger. Average digdetween consecutive points of uniformly distributed
sequencesUniform Distribution Theory4(1):51 — 67, 2009.

X. Wang and F.J. Hickernell. Randomized Halton seqasrndathematical and Computer Modelling2:887—
889, 2000.

G. Okten. Generalized von Neumann-Kakutani transéiom and random-start scrambled Halton sequences.
Journal of Complexity25:318-331, 2009.



