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Abstract

We consider the problem of estimatifigif (U*, ..., U)], where(U", ..., U?) denotes a random
vector with uniformly distributed marginals. In generahtin hypercube sampling (LHS) is a powerful
tool for solving this kind of high-dimensional numericategration problem. In the case of dependent
components of the random vect@, . .., U¢) one can achieve more accurate results by using Latin
hypercube sampling with dependence (LHSD). We state aaidimiit theorem for thel-dimensional
LHSD estimator, by this means generalising a result of Patkbnd Schmidt. Furthermore we give
conditions on the functioif and the distribution ofU*, . . ., U?) under which a reduction of variance
can be achieved. Finally we compare the effectiveness oftd1Garlo and LHSD estimators numeri-
cally in exotic basket option pricing problems.

1 Introduction

In this article we consider the problem of reducing the vareéaof a Monte Carlo (MC) estimator for
special functionals of a random vector with dependent corepts. Several different techniques can be
used for this kind of problem, with different advantages sindrtcomings (for a detailed comparison, see
[Glasserman, 2004, Section 4]). A well-known techniquieain hypercube samplin@HS), which is a
multi-dimensional version of thstratified samplingnethod and has been introduced by [McKay et al.,
1979]. Although this method is well applicable to many diffiet types of problems, it cannot deal with
dependence structures among the components of randonrscetherefore, we considémtin hyper-
cube sampling with dependenggHSD), which was introduced by [Stein, 1987] and providagance
reduction for many problems, especially in financial matagcs.

Consider the problem of estimatifi@jf (U?, ..., U?)] for a Borel-measurable an@integrable function
f:10,1] — R, where(U?, ..., U%) is a random vector with uniformly distributed marginals @ogula
C.Let(U},...,U%), 1 < i < n, denote an i.i.d. sample from this distribution. The stadddonte
Carlo estimator, which is given by/n >0 | f(UL,...,UZ), is strongly consistent, and by the central
limit theorem for sums of independent random variables thteidution of the scaled estimator converges
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to a normal distribution, ie:

% Z[f(U}, L UD —ERIFUY, . U B N(0,0%,0),

whereo?,, = Var(f(U,...,U%). In particular this means that the standard deviation og#tenator
converges to zero with rate-.

The aim of this paper is to establish a similar result for tH¢SD estimator, under some additional
conditions on the copul@' and the functionf. This has already been done in the bivariate case by
[Packham and Schmidt, 2010] by using a result of [Fermartiah,2004]. Packham and Schmidt [2010,
Proposition 5.9] also showed that under more restrictivelt@mns on the copula functiofi, the variance

of the bivariate LHSD estimator does not exceed the variahtiee standard Monte Carlo estimator.

An important application of Monte Carlo integration teaumés lies in the field of financial mathematics.
Many problems in finance result in the numerical computatibhigh-dimensional integrals, for which
MC methods provide an efficient solution. Two examples aeepiticing of Asian and discrete lookback
options on several possibly correlated assets. We willstigate these special derivatives in numerical
examples in the last section.

This paper is organised as follows: in the second sectiomweduce the main ideas of LHSD and recall
some important results. Our main results are presenteeithitd section, where we state a central limit
theorem and show under which conditions a reduction of magacompared to the standard Monte Carlo
method, is possible. The last section is dedicated to a ciosgueof the effectiveness of LHSD and MC
in numerical examples.

2 Preliminaries

In this section, we recall the concept of stratified sampding its extensions to Latin hypercube sampling
and Latin hypercube sampling with dependence. We alsoattasistency result, which was proved by
[Packham and Schmidt, 2010].

2.1 Stratified sampling and LHS

Suppose that we want to estim&@tef (U)), whereU is an uniformly distributed random variable on the
interval [0, 1] (from now on denoted b¥/ ([0, 1])), and wheref : [0,1] — R is a Borel-measurable and
integrable function. By the simple fact that

n

E(f(U)) =Y E(f(U)IU € A)P(U € 4)),

=1

where the intervalsly, ..., A, (the so-calledstrata) form a partition of|0, 1], we get an estimator for
E(f(U)) by samplingy conditionally on the eventfJ € A;},i = 1,...,n. Choosing strata of the form
A; = [=1, 1) we can simply transform independent samglés. .., U™ from U ([0, 1]) by setting

1—1 U

V= + —, i=1,...,n,
n n

which impliesV; € A;,i = 1,...,n. The resulting estimator fdE(f(U)) given by 3" | f(V;) is
consistent, and by the central limit theorem for sums of peafelent random variables the limit variance
is smaller than the limit variance of a standard Monte Castkingator. For a more detailed analysis of
stratified sampling techniques, see [Glasserman, 2004p8eic3.1].



This approach can be extended to the multivariate caseferelift ways. If we require that there has to be
exactly one sample in every stratum, we need to didsamples, which is not feasible for a high number
of dimensiongl. One way to avoid this problem is Latin hypercube samplirgsuiAine we want to estimate
E(f(U',...,U%), wheref : [0,1]? — R is a Borel-measurable and integrable function. For fixede
generaten independent samples denoted @y, ...,U¢),i = 1,...,n, where theU/,j = 1,...,d
are uniformly distributed of0, 1]. Additionally, we generaté independent permutations 6f, ..., n},
denoted byry, ..., 74, drawn from a discrete uniform distribution on the set opalssible permutations.
Denote byr! the value to whichi is mapped by thg-th permutation. Then thgth component of a Latin
hypercube sample is given by

7T{ —1 Uij

V)= — 45 j=l..dii=1..n

By fixing a dimensionj, the component$1/1j, ..., VJ) form a stratified sample with strata of equal
length. It can be shown that the resulting estimatorE¢f (U)) is consistent, and by assuming that
f(UL,...,U%) has a finite second moment it follows that the variance of tH& kestimator

is smaller than the variance of the standard MC estimatoxiged the number of sample points is suf-
ficiently large, see [Stein, 1987]. If is bounded a central limit theorem for the LHS estimator can b
shown, see [Owen, 1992]. Berry-Esseen-type bounds aré&madsun, see [Loh, 1996]. A detailed discus-
sion of LHS is given in [Glasserman, 2004, Section 4.4].

This technigue is not suitable for dealing with random vesteith dependent components since the ran-
dom variabled’’, j = 1,...,d, are independent. One way to extend the LHS method to ranéotors
with dependent components is to apply LHS to independenpooents and then introduce dependen-
cies through a transformation of the LHS points. Such a phoeeis tedious in general, and we will not
pursue this approach any further.

2.2 Latin hypercube sampling with dependence

In this subsection, we introduce Latin hypercube sampliritty Wependence. The main difference to
the LHS method is that instead of random permutationae use rank statistics, which are defined as
follows:

Definition 2.1 (Rank statistics) Let X1, ..., X,, be i.i.d. random variables with a continuous distribu-
tion function. Denote the ordered random variables¥y, < --- < X, P-a.s. We call the index of;;
within X3y < --- < X(,,) thei-th rank statistic, given by

Tin = Tin(X1,. .., Xp) 1= Z Tix<xiy 1)
k=1

Consider a random vectéf = (U',...,U?), where every component’ is uniformly distributed on
[0, 1] and the dependence structurdbis modeled by a copuld. Let (U}, ..., U8),i = 1,...,n denote
a sequence of independent sampleddf, ..., U?), and let’ . be thei-th rank statistic of U7 . .., UJ)
fori=1,...,nandj =1,...,d. Then a LHSD is given by

V = ) +_7, 7]:1,_,_7’/},,V‘]:17...,d, (2)

nLn n n




Wherenl{n are random variables ifo, 1]. It is clear that(V; ,...,VJ ) forms a stratified sampling in
every dimensiorj, where every stratum has equal Iength'.. '

Packham and Schmidt [2010] consider different choicegfgito obtain special properties. For example,
by choosing alky/, uniformly distributed o0, 1] and independent df’/, the distribution of thel//,,
within their strata is uniform. This choice has the disadage of necessitating the generation2af
random variables instead of only An effective choice in terms of computation timeﬂgh = 1/2, which

means that every’ifn is located exactly in the centre of its stratum. In the remiairof this section, we
briefly recall a result of [Packham and Schmidt, 2010] conicegythe consistency of the LHSD estimator
for E(f(U)), which is defined by

1 n
SV V). ©)
=1

The usual law of large numbers for sums of independent randoiables does not apply in this case

for two reasons: firstly in each dimension the samples fdileondependent because of the application
of the rank statistic, and secondly, increasing the sangites: by one changes every term of the sum

instead of just adding one. Nevertheless, it can be showrtbdollowing consistency result holds, see

[Packham and Schmidt, 2010, Proposition 4.1]:

Proposition 2.1 Let f : [0,1]¢ — R be bounded and continuous C-a.e. . Then the LHSD estir(@}e
strongly consistent, ie :

n

1 a.s.
— E fOV, . v Las, E(f(U,...,UY), asn — oo.
n ’ ’

i=1

3 Central limit theorem and variance reduction

In this section we investigate the speed of convergencesof HED estimator and discuss situations in
which the use of LHSD results in a reduction of variance. Has already been done for the bivariate
case by [Packham and Schmidt, 2010]. They have also gudssddgher-dimensional version of the

main theorem, but no rigorous proof was given. Because ofabiethat most problems in finance for

which Monte Carlo techniques are suitable are high-dinmeradiintegration problems, it is reasonable to
investigate the speed of convergence and the (asymptaticg wf the variance also in the multivariate
case.

In the sequel, le€’,, denote the empirical distribution of the LHSD sample givgn b

1

Val 1 dy ._ §

Cn(u yeees U ) = E 1{Vi1n§u1a---vv-;dn§ud}’
=1

which is a distribution function. Furthermore, we defig as

1 n
Co(u',.. ut) = -~ Z Lipiuny<ur,.. Fa(U)<udys (4)
=1
where
, 1 &
Fj(u) = 521{@@}, ue 0,1,
are the one-dimensional empirical distribution functibased orU{, ...,Ujforj =1,...,d. To for-

mulate a central limit theorem we will need some regularitgditions on the integranfland the copula
C.



Definition 3.1 (Hardy-Krause bounded variation) A functionf : [0,1]¢ — R is of bounded variation
(in the sense of Hardy-Krause)lf( f) < oo with

d
V=Y > V(i)

k=11<i1<...<ix<d

Here, the functional’(*) ( f) denotes the variation in the sense of Vitalifofestricted to thet - dimen-
sional faceF' ™ (iy, ..., i) = {(u1,...,uq) € [0,1]% : u; = 1forj # iy,...,ix}. The variation of a
function f in the sense of Vitali is defined by

V) (friq, ... i) = sup Z |A(f; )],

P JEP(i1,...,ik)

where the supremum is extended over all partiti®ts,, . . ., ix) of F&) (i1,...,1k) into subintervals/
andA(f; J) denotes the alternating sum of the valueg att the vertices off. For more information on
this topic, see [Owen, 2005].

Definition 3.2 A functionf : [0,1]¢ — R is right continuous if for any sequen¢el, u2, ..., ud),cn
withwu? | w5 =1,...,d,

lim ful,u?,... ud) = f(u',u?,. .. u).

n—oo

The next statement concerning the convergence of randouesegs will be used to prove Proposition
3.1 and Theorem 3.2. For more details see eg [Jacod andPaf@3, Theorem 18.8].

Lemma 3.1 Let(X,,),>1 and(Y,,),>1 be sequences &-valued random variables, with, 2, X and
X, — V,,| 5 0. ThenY,, 2 X.

The following proposition of [Tsukahara, 2005] is a genieation of earlier results of [Stute, 1984] and
[Fermanian et al., 2004]. It is the essential ingredientofs of our main theorems.

Proposition 3.1 Assume that’ is differentiable with continuous partial derivativesC (ul, ..., u?) =
Wforj: 1,...,d. Then

J

where
1 n
1 d
Cnlu’,...,uf) =~ > < (). g <P ()
k=1

denotes the empirical copula function afl~ denote the generalised quantile functiongdffor j =
1,...,d, defined by _ _
F)~(u) = inf{x € R|F}(z) > u}.

Furthermore G is a centred Gaussian random field given by

d
Go(u!,...,u?) = Bo(u',...,u?) — ZajC(ul,...,ud)Bc(l,...,1,uj,1,...,1), (5)

j=1



Bc is a d-dimensional pinned Brownian sheet[6nl]? with covariance function

E[Bc(ul,...,u?)-Be(@,...,a%)] = C((u',...,u)A@, ..., a%)) - Ct, ..., u)C@, ... ,a%),

where(u!, ..., ud) A (@, ..., u?) denotes the componentwise minimum. ©
We can formulate a similar result for the sequetge
Proposition 3.2 Under the conditions of Proposition 3.1,

\/E(Cn(ul, ud) — Ol ,ud)) Dy Golul,. .. ud) (7)
holds, where all definitions are as in Proposition 3.1 aiig(u!, . . ., u?) is given in(4).
Proof:

We only have to show that the supremum of the differgno@pfand@n vanishes fom — oo to apply
Lemma 3.1, which completes the proof. Note thgtandC,, coincide onthe grid (i1 /n,...,i4/n),1 <
i1,...,1q < n}. It follows that

G (VLS BN LTSRS TR TS

< max )
n n

T1<il,.id<n

Thus,supy: e [Cn(ul,. .. ud) — Cp(ul, ..., ud)| — 0 for n — oo and (7) follows. O

yeeey

In the sequel, alU*,i = 1,...,d are uniformly distributed random variables {ih 1] and all integrals
have to be understood in the sense of Lebesgue-Stieltjds.tNat the next theorem is an extension of
[Fermanian et al., 2004, Theorem 6] from the case of bivat@mthe case of multi-variate random vectors
U= U, ....,U%).

Theorem 3.1 Let the copulaC of (UY, ..., U?) have continuous partial derivatives and Jet [0, 1]¢ —
R be a right-continuous function of bounded variation in tkase of Hardy-Krause. Then

L n 1771 dirdyy — 1 d D ul ul ul ul
\/ﬁ;(f(Fn(Ui),...,mUl)) E[f(U,...,U)])—>/[O,1]dGc( o udF ),

where the functiorf : [0,1]¢ — R is defined by:

~ dy 0 ifatleastonew’ =1, forj=1,...,d,
flus o ){ flut,...,u?) otherwise. (8)

Furthermore, the limit distribution is Gaussian.

Proof:
By definition f is right-continuous and of bounded variation in the sendgéastly-Krause. Furthermore,
it follows that almost surely

% S (FENWD.... B ~ BV .0%)])



- % S (FENWY..... FUUh) ~BFU....0")]).

by the fact that is continuous orf0, 1]%.
We use a multidimensional integration-by-parts technigpogposed by [Zaremba, 1968, Proposition 2].
Using the notation of [Zaremba, 1968] we get

~

%Z(f(Fﬁ(Uil)w-ng(Uf)) *E[f(Ul,...,Ud)])

=vn .. uhd(C, — O) ... ut

[0,1]¢

d
:\/52(4)16 Z A;k+1,___7jd/[01]k(cnC)(ulv,..,ud)djl_,,,,,jkf(ul,_..,ud)_ (9)
k=0 1,...,d;k )

.....

Here_, . denotes the sum over all possible partitions of the{get...,jq} into two subsets
{j1, .-, Jx} and{jr+1,...,ja} of k respectivelyd — k elements, where each partition is taken exactly
once. In the casds = 0 andk = d, the sum is interpreted as being reduced to one term.

.....

that after the application of the integral with respectl}p ... ;, f(ul, ...,u?), the integrated function is
a function ind — k variables. Furthermore for a functigiof d — k variables, the operatax}, . is
given by
A% a9k, dd) = Z (=1)"g(ir, ... ia—),
{i1,.ia—p }E€{0,1}d—F
wherem denotes the number of zeros{if, ..., i4—1 }. This means that, fof ¢ {j1,...,jx}

~

Aj /[0 1]dik(CnfC)(ul,...,ud)djl_,myjkf(ul,...,ud)
:/ (C’n—C’)(ul,...,ujfl,l,ujJrl,...,ud)djlw_,jkf(ul,...,ujfl,l,ujJrl,...,ud)
[0,1](17)@
—/ (Cn—C)(ul,...,ujfl,O,ujH,...,ud)djh,,,,jkf(ul,...,ujfl,(),uj*l,...,ud)
[O,I]dfk

and
A* =A% ...A;fd.

Jhkt1se-5dd Jk+1

Thus

d
NN A;k+17,,,7jd/ (Co = )t uNdy, . Tl )
k=0 1,...d;k [0,1]%

.....

.....



The term

d—1
VIS S A [ (€= Ot )
k=0 1,..dk [0,1]%
vanishes because each of its terms is equal to zero due &sablee of the following two reasons: firstly,
atleastone’,j = 1,...,dis equal to one and therefoﬁéul, ...,u?) = 0 by definition, or, secondly,
atleastone/,j = 1,...,dis equal to zero, hendg, (u!, ..., u?) = C(u},...,u?) = 0.

Thus, by the continuous mapping theorem and (7), it folldves t

%Z(ﬂFé(U})v--wFﬁ(U{i)) —E[f(Ul,...,Ud)])

~

=(-1)%/n ' (Cp — CYut, .. ubydf (ut, ... u?)

[0,1]4
EN Gc(ul,...,ud)df(ul,...,ud).
[0,1]¢
Sincef[0 174 Geo(ut,. .. ,ud)df(ul, ...,u?) is a continuous, linear transformation of a tight Gaussian
process, it follows that the limiting distribution is Gaizss O

Remark 3.1 The reason for using the functioﬁinstead off is that the integrals of dimensioh =
2,...,d — 1in (9) are in general not vanishing. The one-dimensional integjeat zero for every right-
continuous function of bounded variatighbecause of special properties of the functi@y, for more
details see [Fermanian et al., 2004]. In particular, this ams that in the two-dimensional case it is
sufficient to assume

f(l’):f(m), z eR?

With this assumption instead ¢8) andd = 2, Theorem 3.1 is equivalent to [Fermanian et al., 2004,
Theorem 6]. We use the functigito get a more convenient representation for the limit vacaof the
LHSD technique, which we state in the next theorem.

Theorem 3.2 Under the assumptions and notations of Theorem 3.1, we have
1 ¢ 1 d 1 d D 2
G ;(m,m V) EUAU L UM]) B N0, 0% ), (10)

where

~ o~

aiHSD/[OI]QdE[GC(ul,...,ud)Gc(al,...,ad)}df(ul,...,ud)df(al,...,ad). (11)

Proof:
We want to apply Theorem 3.1 together with Lemma 3.1, so we kaghow that

i=1




By [Leonov, 1998, Corollary 1]

n

S [FVh o V) = FENUD) - FUD)|

i=1

<V(f) < oo,

whereV (f) is the Hardy-Krause variation gf. Hence

n

1 Z[f(‘/ﬁm---,‘/ifln)f(Fﬁ(Uil),---,F,f(Ufl))H%0, asn — oo,

NG
which, together with Lemma 3.1 and Theorem 3.1, proves éjuét0). R
To derive equation (11) we apply Fubini’s theorenﬂ]it[if[()yl]d Ge(ut, ..., ud)df(ul, ... u?))?]. By

[Leonov, 1998, Theorem 3] a function of bounded variag?ocan always be written as the difference of
two completely monotone functions h and therefore an integral with respectfta@an be written as a
difference of two integrals with respect to positive measyt h. Thus

([ Getut it ut) ] =
E|:(/[O,1]d Gc(ula---aud)df(ul,...,ud)) . (/[0,1](1 Gc(ﬂl,---,ﬂd)df(ﬂl,___,ﬂd))}

=1

—/ Go(l,...,ut)Ge (@, ..., at)dh(u, ..., ut)dg(@, ..., a?)

[0,1]4

7/ Goul,...,u)Ge (@, ..., a)dg(u!,. .. u)dh(@, ... ,a?%)
[0,1]4

+/ Go(ul, ..., u)Go(@, ..., ad)dh(ul, ... ut)dh(@, . .. ,ad))}
[0.1]4

= / E[Gc(ul,...,ud)Gc(ﬂl, ,ud)}dg(ul,...,ud)dg(ﬂl,...,ud)
[011]2(1

—/ E[Go(,... uGe (... 7| dh(ut, ... ut)dg(,... )
[0.1]4

—/ E[Go(,... uGe (... 7 dg(u’ ... u)dh(ar,... )
[0,1]4

+/ ElGo(dl, ... ut)Go(@, ... ,ad)}dh(ul, - ud)dh(@, ... @)
[0,1]4

I
=

E[Gc(ul,...,ud)gc(al,...,ad)]df(ul,...,ud)df(al,... ad),

]‘Zd

where the use of Fubini's theorem is justified sirﬁ:ie bounded anfL| XY] < oo for two jointly normal
random variable andY'. O



Remark 3.2 Note that by(5) and (6) the expression fos? ;, <, in equation(11) can be represented in
terms ofC'. Additionally, further simplifications can be given for tfedlowing terms:

E[Bc(ul,...,ut)- Be(1,...,1,@,1,...,1)
=C((uh, ..., v L AT T ud)) = Ot u) T,
E[Bc(1,...,1,u%1,...,1)- Bo(1,...,1,%,1,...,1)]
=C((1,..., b1, L 1, 1) — u'

) )

E[Bc(1,...,1,u/,1,...,1) - Bc(1,...,1,@,1,...,1)] =/ AW —u/W,
sinceC(1,...,1,u/,1,...,1)=v/ forall j =1,...,d.

Itis important to know if the LHSD estimator has a smalleri@ace than the Monte Carlo estimator. The
variance of a standard Monte Carlo estimator is given by

2
012\40:/ f(ul,...,ud)QdC(ul,...,ud)—(/ f(ul,...,ud)dC(ul,...,ud)) .
[0,1]¢ [0,1]¢

We use this fact to establish a relation betwegp. ando? ;.

Proposition 3.3 Let the copulaC of (U?,. .., U%) have continuous partial derivatives, Iét: [0, 1]¢ —
R be a right-continuous function of bounded variation in tlemse of Hardy-Krause and let be as
. . _aClt .. ut)
defined in Theorem 3.1. SBC(ul, ..., u?) = = and
_ c@,..., w1, .., 1,3, 1,...,1), i#g
. ) 7\ — ’ ) ] ) [ 9 ’

CW(“’“)_{ ul AT, i=j.

Then

2 _ 2
OLHSD — 9MC

d
+/ QZajC(ul,...,ud)(C(ﬂl,...,ﬂd)uj —-Cc@,...,w "% Auj,ﬂj“,...,ad))
[0,1]24 =

d d
+ Z 0;,C(@", ... ,ah)o,C(ut, ... ud) (Ci,j (u', w0 — uiﬂj)df(ul, ... ,ud)df(ﬂl, .
j=1i=1
(12)
Proof:
Note that

/ f(ul,...,ud)QdC(ul,...,ud):/ fet, .. ud)f@t, .. @) dCwt AT, .. ud AT,
[0,1]¢ [0,1]24

and that the functio®(u' A7, ..., u? AT?) is also a copula, which follows by observing that
Clw' AT, ..., u? AT =PU! <u' AT, ..., U <ud AT?)
=PU! <t U <@, U <ud, U <7?)

10



is a joint probability distribution with uniform marginals
By integration-by-parts like in Theorem 3.1 it follows fdret variance of the Monte Carlo estimator that

2
UIQLIC:/ f(ul,...,ud)QdC(ul,...,ud)—(/ f(ul,...,ud)dC(ul,...,ud))
[0,1]¢ [0,1)¢
:/ f(ul,...,ud)f(ﬂl,...,ﬂd)dC’((ul,...,ud)/\(ﬂl,...,ﬂd))
[071]2d
7/ f@t, .. ud)f@t, .. at)dC(ut, ... ud)dC @, . .. a?)
[071]2(1
:/ c((ul,...,ud)A(al,...,ad))d“(ul,...,ud)df(al,...,ad)
[071]2d
—/ Cut,...,uho@, ..., ah)df(u', ..., ut)df(@,...,a%).
[0_]1]2&
The proof is completed by using equations (5), (6), (11) aech&k 3.2. O
Theorem 3.3 LetC and f satisfy the assumptionsin Theorem 3.1 an(flbe defined as in Theorem 3.1.

Furthermore let the functioff be monotone non-decreasing in each argumentang, ¢ o 7 (f(z)) <
0. Moreover assume that satisfies the following conditions:

1 d
Ao W) s gl ut), el d), (13)
U
Ci (v, at - Cc@t,..., @ AW, WL
3 %g(d72)uﬂ+ ( o ), (14)
i=1,ij AR

wherew’ € [0, 1], (@', ..., a@%), (u',...,ud) € [0,1]%
Theno? ysp < oisc-

Proof:
By the assumptions ohit follows that f is right-continuous, of bounded variation in the sense afifla
Kraus and monotone non-decresing in each argument. Thu2byt s sufficient to show that

M-

8]-C(u1,...,ud)(C(ﬂl,...,ﬂd)uj —-Cc@,...,w @ Auj,ﬂj“,...,ad))

j=1
+> > ac@,..., uho;Ct ... uf) (Ci,j (v, 7)) — uﬂul) <0
j=1i=1
forall (u!,...,u?),(@,...,a?%) € [0,1]
This is true if

d

2(Cc@',....at/ —Cc@,..., W@ A, @ at) <Y oc@,. . at) (WE - Cy(u!, )
i=1

holds for everyj € {1,...,d} and allu? € [0,1], (@',...,a?) € [0, 1]<.

First we show that

c@',...,utyw/ —o@, ..., w1 w Al w0t et < 9,0 . at) (W - AT

11



Note that this is always true if’ A’ € {0,1}. Now assume thdt < @’ < u/ < 1, then
c@',....at)w! —o@', ..., a%) < 9;C@@,...,ut) (v — )
c@,...,u")(w —1) <o9;C@@,..., a")w (v — 1)
—1 —d
c@,... @) o;c@t, ...

ﬂ]

which is true by assumption (13). Next assume thatu’ < @’/ < 1, then

c@,....uw! —Cc@,....w W Wt ) <o;,c@,. L at) (Wi — o)
c@,....u! —Cc@,....w W Wt at) <o;,c@,. L atd (W - 1)
c@t,..., wtu,wtt . ul ,
c@',..., %) — @  EE— ) <9;,C@,...,ut) (@ — 1)
—1 —j—1 . —j+1 —d —1 —d .
c@, 7ud)_C(u,...,u U@ ,...,u)SC(u,.i,u)(aj_l)
u’ [
c@, ..., w o, Wt .. . a?) - c(@@t,...,a%)
d . .
which holds since assumption (13) implies t 11;;"“ ) is non-increasing in’ for all v/ € [0, 1],

(ul,...,u?) €0,1]%
LetC(@!,...,u%) > 0then

d
c@,....ah’ —c@,... . w @ A, @, at) <Y o,c@ . at) (W - C e T)

i=1
i#]
d e _
C(at 7’ — O G—1 —j A G —j+1 —dy C(@',...,u?) gt — O —i
(@,...,u%u (@ ,..., w0 W@ AW T ’“)—Z — (v'u 5 (W, 7))
i
—1 -1 =5 i i1 —d d  ~ =
(d—2)uj+c(u’ T T A VA T u)ZZCZ,J(u?,u)
c@@t,...,a? — K

i#]

which is true by assumption (14). The casé&i?, ..., u?) =
forall (@', ...,a?) € [0, 1]

Remark 3.3 Note that in the two-dimensional case, assumpi@)is equivalent to the left tail increas-
ing property which implies a positive quadrant dependeri¢tkecopulaC’. Loosely speaking this means
that the components @f are more likely to be simultaneously small or simulatneplesige than in the
independent case. More information on different depenelemaperties can be found in [Joe, 1997] and
[Nelsen, 1999].

In the following two remarks we give examples of copula disttions which satisfy the assumptions of
Theorem 3.3.
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Remark 3.4 Consider a multi-dimensional, one-parametric extensithe Farlie-Gumbel-Morgenstern
(FGM) copula given by

d d
Clut,...,u?) = <Hul) <aH(1 —ut) + 1)

i=1

wherea € [—1, 1]. Simple calculations show that the assump(ib8) is true if a € [0, 1]. Now consider
the right hand-side of14)

i=1,i#j 1=1,i#j
=(d— 1)’
Finally assumptior{14) holds since
c@, ..., w 1w ndd, @t )
c(@t,...,u?)

c@t,..., wtw,wtt ... ad)

:mln 1, ) ) — ) ) _d ) )

Ca,...,u%

— min (1 (H?:Li;éj Hl) u? (Oé Hf-l:l_,#j(l —w)(1 — ) + 1))
| <Hf:1 ﬂz) (0‘ [T (1 —a) + 1)
(a Ty, (1 -T)1 —w) + 1)
W (0‘ T, (1 —7) + 1)

=min [ 1, v’

>

for a € [0,1].
Note that the independence copdléu?, . .., u?) = Hle u® is the special case of the FGM copula with
a = 0, therefore Theorem 3.3 holds also for the independenceaopu

Remark 3.5 A multi-dimension version of the Ali-Mikhail-Haq (AMH) adp is given by

d i
Ol uty = — =
1—a[_, (1 —ut)

wherea € [—1, 1]. As in the previous example it is easy to see (ha) s fullfilled if « € [0, 1].
To prove(14) consider again the term on the right hand-side

i=1,1#] i=1,1#]
=(d— 1)’
Furthermore Theorem 3.3 applies since
c@,...,w 1w At @t )

c(@t,...,u?)
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. c@t,..., w "t wtt .. ad)
=min | 1, C’(Hl Hd)
sy

(Ml @) (1= 0TI 00— )
(ML @) (1= a1 (0 - 7)1 uy))

=min | 1,4’

>u’

4 Application to option pricing

In this section we illustrate the effectiveness of Latin ésqube sampling with dependence in basket
option pricing problems. The derivatives which we consaler Asian and lookback basket options. Let
(St)t>0 be ad-dimensional vector of asset price processes an@Sel>o denote itsj-th component.
Then the price of an Asian basket call option is given by

R +
— —rT i
ABC _]E[e (EZE,ZS‘” —K) }
j=1 i=1
where K > 0 denotes the fixed strike pricé,is the number of underlying assets= tg < t; < t2 <
. < t.,, = T denote the observation points,is the maturity of the option anddenotes the risk free
interest rate. Similarly, the price of a discrete lookbaakket call option is given by

DLC:]E[e*rT( max ZS;J ) }

7 ,m

As a model for the asset price procéS‘é)tzo ofeachasset=1,...,d, we use

Si = Sjew’ XL i1t >0,
wherew’ € R are constantss] > 0 denote the constant initial asset values &ffdare variance gamma
(VG) processes fof = 1,...,d. The VG proces$X; );>o with parameter$¢’, o7, ¢7), which was first
introduced by [Madan and Seneta, 1990], is defined as a smlated Brownian motion by

X] =X (07,07, = Bé](d 1)(9j,aj), j=1,...,d,t>0, (15)
whereB{(@j, o7) are independent Brownian motions with drift parametérand volatility parameters
ol,j=1,...,d,andG?(c’, 1) are independent gamma processes independédt,gf = 1, . .., d with
drift equal to one and volatility’ > 0. To ensure that the discounted value of a portfolio investete
asset is a martingale, we choose

w’ =log(l — p/c? — (09)%c7/2) /7, j=1,...,d

By [Madanetal., 1998] a VG process can also be representad ds‘ference of two independentgamma
processes, &) = G7 —G;7 j=1,...,d. Let (M+7 Vi) and(p’_, ) denote the parameters of the
gamma processeﬁ+ J G, respectively These pairs of parameters can be easilylatéd from the
parameters in equation (15) through

ph = (VOPTRVIT £60)/2,  vh= (), j=1l..d
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Due to the fact that a gamma process has non-decreasing GéTﬁs_:orresponds to the positive move-
ments of X/ andG, ¥ corresponds to the negative movements<gf Our assumption is that all pos-
itive movements of components of, = (X}, ..., X?) are dependent and all negative movements of
components ofX; are dependent, but positive (negative) movements ofjitrecomponent are inde-
pendent of negative (positive) movements of all other comepds, for allj = 1,...,d. The depen-
dence structure between positive and negative movemeihtsawnodelled by copula€™, respectively.
Summarising, the increment of thkdimensional gamma processes in the intefyal;, ;] given by
G -G, GH = GY) has cumulative distribution functio6® (Fy L ,..., F; 1), where
Fjjil is the inverse cumulative distribution function of a gamnsrtbution with the specific parameters
of the j-th asset.

4.1 Numerical results

In this subsection, we compare the performance of LHSD wgtaadard Monte Carlo method in option
pricing problems.

Parameters of the numerical examples

VG parameters:

wi,j=1,...,d -0.2859
gi,ij=1,...,d 0.1927
¢,j=1,...,d 0.2505
Option parameters:

number of assets 10
maturity T’ 1
initial asset prices},j = 1,...,d 100
risk free interest rate 0.05
number of monitoring points 4
time between monitoring points — ¢t;_1,i =1,....k 0.25
Simulation parameters:

number of simulated option prices per estimator 8000
number of simulations of the estimators 100
choice of parameterg , ,j =1,....d,i=1,...,n 0.5

Table 1: Parameters sets for the VG processes, the optidrthasimulations.

The parameters of the underlying VG processes are stateable T and are the same for all components
of (S¢)i>0. The parameter values are taken from a calibration of the k8gss against options on the
S&P 500 index by [Hirsa and D.B.Madan, 2004]. We observeditepsaluations, which we do not state
here in detall, that the computation of one LHSD estimatokt@boutl .4 times of the computation time
of a corresponding Monte Carlo estimator. Neverthelessiinconcrete implementation the most time
consuming part was the transformation of uniformly disitésl random variables into gamma distributed
random variables. This has to be done only once for all LHSidn@sions since by (2) Where;n =
1/2,5 = 1,...,d,i = 1,...,n one only needs fixed quantiles of the gamma distribution réfoee
computation of 4000 LHSD estimators was about five timegfabian the computation of 4000 Monte
Carlo estimators. One the other hand for the Monte Carlonastir, one has to perform the transformation
dn times for each estimator.

Using the parameters of Table 1, the evaluation of each obphien values included the computation
of an80-dimensional integral. Standard deviation and varianceeweemputed based on the = 100
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runs of the LHSD and MC estimators. The ratios in columns 6/&afleach table were computed as the
guotient of MC value and LHSD value.

It is obvious that the effectiveness of LHSD compared to MCreases with increasing strike price
K. The same phenomenon was also observed by [Packham andd§cd®i0] in a multi-dimensional
Black-Scholes model for the LHSD estimator and by [Glasserd004] for the standard LHS estimator.

Prices of Asian basket call options with varying strike price K

o K Price LHSD Price MC Std. Dev. LHSD Std. Dev. MC  Std. Dev. rati®ar. ratio

05 80 22.0542  22.0448 0.00071 0.00748 10.419 108.575
05 90 12.5511 12.5419 0.00080 0.00748 9.270 85.944
0.5 100 3.79294  3.78732 0.00241 0.00621 2.577 6.642
0.5 110 0.17227  0.17210 0.00119 0.00140 1.174 1.379
0.5 120 0.00024  0.00024 0.000040 0.000041 1.009 1.018

Table 2: Prices of Asian basket call options, where the dégece structure of positive and negative
movements are modelled by a FGM copula with parameter

Prices of Lookback basket call options with varying strike price K

o K Price LHSD Price MC Std. Dev. LHSD Std. Dev. MC  Std. Dev. rati¥ar. ratio

05 80 25.662 25.658 0.00294 0.00839 2.850 8.125
05 90 16.151 16.147 0.00294 0.00839 2.850 8.125
0.5 100 6.893 6.890 0.00322 0.00760 2.356 5.553
0.5 110 1.192 1.192 0.00305 0.00406 1.332 1.775
0.5 120 0.060 0.060 0.00086 0.00089 1.029 1.060

Table 3: Prices of Lookback basket call options, where theeddence structure of positive and negative
movements are modelled by a FGM copula with parameter
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