- J. Behrndt, P. Exner, M. Holzmann, M. Tusek:
On two-dimensional Dirac operators with δ-shell interactions supported on unbounded curves with straight ends,
to appear in the volume "Singularities, Asymptotics, and Limiting Models" of the Springer-INdAM series; arXiv.
- M. Holzmann, V. Ruzek, M. Tusek:
Non-self-adjoint Dirac operators on graphs,
J. Phys. A 58 (2025), 165205 (40 pages); arXiv.
- L. Heriban, M. Holzmann, C. Stelzer-Landauer, G. Stenzel, M. Tusek:
Two-dimensional Schrödinger operators with non-local singular potentials,
J. Math. Anal. Appl. 549 (2) (2025), 129498 (39 pages); arXiv.
- D. Frymark, M. Holzmann, V. Lotoreichik:
Spectral analysis of the Dirac operator with a singular interaction on a broken line,
J. Math. Phys. 65 (8) (2024), 083514 (24 pages),
arXiv.
- J. Behrndt, D. Frymark, M. Holzmann, C. Stelzer-Landauer:
Nonrelativistic Limit of Generalized MIT Bag Models and Spectral Inequalities,
Math. Phys. Anal. Geom. 27 (2024), 12 (30 pages),
arXiv.
- J. Behrndt, M. Holzmann, C. Stelzer, G. Stenzel:
Boundary triples and Weyl functions for Dirac operators with singular interactions,
Rev. Math. Phys. 36 (2) (2024), 2350036 (65 pages), arXiv.
- M. Holzmann:
On the single layer boundary integral operator for the Dirac equation,
Complex Anal. Oper. Theory 17 (2023), 135 (28 pages); arXiv.
- J. Behrndt, M. Holzmann, G. Stenzel:
Schrödinger operators with oblique transmission conditions in R^2,
Comm. Math. Phys. 401 (2023), 3149-3167; arXiv.
- J. Behrndt, M. Holzmann, M. Tusek:
Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line,
J. Phys. A 56 (2023), 045201 (29 pages); arXiv.
- J. Behrndt, M. Holzmann, V. Lotoreichik, G. Raikov:
The fate of Landau levels under δ-interactions,
J. Spectral Theory 12 (3) (2022), 1203-1234; arXiv.
- P. Exner, M. Holzmann:
Dirac operator spectrum in tubes and layers with a zigzag type boundary,
Lett. Math. Phys. 112 (2022), 102 (23 pages); arXiv; correction.
- J. Behrndt, M. Holzmann, M. Tusek:
Spectral transition for Dirac operators with electrostatic δ-shell potentials supported on the straight line,
Integral Equations Operator Theory 94 (2022), 33 (13 pages); arXiv.
- M. Holzmann:
A note on the three dimensional Dirac operator with zigzag type boundary conditions,
Complex Anal. Oper. Theory 15 (2021), 47 (15 pages); arXiv.
- M. Holzmann, G. Unger:
Boundary integral formulations of eigenvalue problems for elliptic differential operators with singular interactions and their numerical approximation by boundary element methods,
Oper. Matrices 14 (3) (2020), 555-599; arXiv.
- J. Behrndt, M. Holzmann, T. Ourmieres-Bonafos, K. Pankrashkin:
Two-dimensional Dirac operators with singular interactions supported on closed curves,
J. Funct. Anal. 279 (8) (2020), 108700 (47 pages); arXiv.
- J. Behrndt, M. Holzmann, A. Mas:
Self-adjoint Dirac operators on domains in R^3,
Ann. Henri Poincare 21 (2020), 2681-2735; arXiv.
- J. Behrndt, M. Holzmann, A. Mantile, A. Posilicano:
Limiting absorption principle and scattering matrix for Dirac operators with δ-shell interactions,
J. Math. Phys. 61 (2020), 033504 (16 pages); arXiv.
- J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik:
The Landau Hamiltonian with δ-potentials supported on curves,
Rev. Math. Phys. 32 (4) (2020), 2050010 (51 pages); arXiv.
- J. Behrndt, M. Holzmann:
On Dirac operators with electrostatic δ-shell interactions of critical strength,
J. Spectral Theory 10 (1) (2020), 147-184; arXiv.
- J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik:
On Dirac operators in R^3 with electrostatic and Lorentz scalar δ-shell interactions,
Quantum Stud.: Math. Found. 6 (3) (2019), 295-314; arXiv.
- M. Holzmann, V. Lotoreichik:
Spectral analysis of photonic crystals made of thin rods,
Asymptot. Anal. 110 (1-2) (2018), 83-112; arXiv.
- M. Holzmann, T. Ourmieres-Bonafos, K. Pankrashkin:
Dirac operators with Lorentz scalar shell interactions,
Rev. Math. Phys. 30 (2018), 1850013 (46 pages); arXiv.
- J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik:
On the spectral properties of Dirac operators with electrostatic δ-shell interactions,
J. Math. Pures Appl. 111 (2018), 47-78; arXiv.
- J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik:
Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces,
Math. Nachr. 290 (2017), 1215–1248; arXiv.
|