
ENTROPY SENSITIVITY OF LANGUAGES DEFINED BY INFINITE
AUTOMATA, VIA MARKOV CHAINS WITH FORBIDDEN

TRANSITIONS

WILFRIED HUSS, ECATERINA SAVA, WOLFGANG WOESS

Abstract. A language L over a finite alphabet Σ is growth-sensitive (or entropy sen-
sitive) if forbidding any finite set of factors F of L yields a sub-language LF whose
exponential growth rate (entropy) is smaller than that of L. Let (X, E, `) be an infi-
nite, oriented, edge-labelled graph with label alphabet Σ. Considering the graph as an
(infinite) automaton, we associate with any pair of vertices x, y ∈ X the language Lx,y

consisting of all words that can be read as the labels along some path from x to y. Under
suitable, general assumptions we prove that these languages are growth-sensitive. This
is based on using Markov chains with forbidden transitions.

1. Introduction

Let Σ be a finite alphabet and Σ∗ the set of all finite words over Σ, including the empty
word ε. A language L over Σ is a subset of Σ∗. All our languages will be infinite. We
denote by |w| the length of the word w. A factor of a word w = a1a2 . . . an is a word of
the form aiai+1 . . . aj, with 1 ≤ i ≤ j ≤ n. The growth or entropy of L is

h(L) = lim sup
n→∞

1

n
log
∣∣{w ∈ L : |w| = n}

∣∣.
For a finite, non-empty set F ⊂ Σ+ = Σ∗ \ {ε} consisting of factors of elements of L, we
let

LF = {w ∈ L : no v ∈ F is a factor of w}.
The issue addressed here is to provide conditions under which, for a class of languages
associated with infinite graphs, h(LF ) < h(L). If this holds for any set F of forbidden
factors, then the language L is called growth sensitive (or entropy sensitive).

Questions related with growth sensitivity have been considered in different context.
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In group theory, in relation with regular normal forms of finitely generated groups, the
study of growth-sensitivity has been proposed by Grigorchuk and de la Harpe [9] as
a tool for proving Hopfianity of a given group or class of groups, see also Arzhantseva
and Lysenok [1] and Ceccherini-Silberstein and Scarabotti [4].

In symbolic dynamics, the number h(L) associated with a regular language accepted by
a finite automaton with suitable properties appears as the topological entropy of a sofic
system, see Lind and Marcus [11, Chapters 3 & 4]. Entropy sensitivity appears as the
strict inequality between the entropies of an irreducible sofic shift and a proper subshift [11,
Cor. 4.4.9].

Motivated by these bodies of work, Ceccherini-Silberstein and Woess [6], [7], [5]
have elaborated practicable criteria that guarantee growth-sensitivity of context-free lan-
guages.

The main result of the present note can be seen as a direct extension of [11, Cor. 4.4.9]
to the entropies of infinite sofic systems; see below for further comments and references.

Our basic object is an infinite oriented graph (X,E, `) whose edges are labelled by elements
of a finite alphabet Σ. Each edge has the form e = (x, a, y), where e− = x and e+ = y ∈ X
are the initial and the terminal vertex of e and `(e) = a ∈ Σ is its label. We will also

write x
a−→ y for the edge e = (x, a, y), or just x → y in situations where we do not care

about the label. Multiple edges and loops are allowed, but two edges with the same end
vertices must have distinct labels.

A path of length n in (X,E, `) is a sequence π = e1e2 . . . en of edges such that e+
i = e−i+1,

for i = 1, 2, . . . n − 1. We say that it is a path from x to y, if e−1 = x and e+
n = y. The

label l(π) of π is the word `(π) = `(e1)`(e2) . . . `(en) ∈ Σ∗ that we read along the path.
We also allow the empty path from x to x, whose label is the empty word ε ∈ Σ∗. For
x, y ∈ X, denote by Πx,y the set of all paths π from x to y in (X,E, `).

The languages which we consider here are

Lx,y = {`(π) ∈ Σ∗ : π ∈ Πx,y}, where x, y ∈ X.
That is, we can interpret the edge-labelled graph (X,E, `) as an infinite automaton (la-
belled digraph) with initial state x and terminal state y, so that Lx,y is the language
accepted by the automaton.

We say that (X,E, `) is deterministic, if for every vertex x and every a ∈ Σ, there is at
most one edge with initial point x and label a. Any automaton (finite or infinite) can be
transformed into a deterministic one that accepts the same language, by the well known
powerset construction. See e.g. [2, Prop. 1.4.1].

As in the finite case, we need an irreducibility assumption. The graph (X,E, `) is called
strongly connected, if for every pair of vertices x, y, there is an (oriented) path from x to
y. Furthermore, we say that it is uniformly connected, if in addition the following holds.
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• There is a constant K such that for very edge x → y there is a path from y to x
with length at most K.

In the finite case, the two notions coincide as one can take K = |X|. The forward distance
d+(x, y) of x, y ∈ X is the minimum length of a path from x to y. We write

h(X) = h(X,E, `) = sup
x,y∈X

h(Lx,y)

and call this the entropy of our oriented, labelled graph. It is a well known and easy to
prove fact that for a strongly connected graph, h(Lx,y) = h(X) for all x, y ∈ X.

We also need a reasonable assumption on the set of forbidden factors.

We say that a finite set F ⊂ Σ+ is relatively dense in the graph (X,E, `), if there is a
constant D such that for every x ∈ X there are y ∈ X and w ∈ F such that d+(x, y) ≤ D
and there is a path starting at y which has label w.

Note that the assumptions of uniformly connectedness and relatively denseness cannot
be avoided, since they play an important role in the prove of the main result. This fails
withous this assumptions.

Theorem 1.1. Suppose that (X,E, `) is uniformly connected and deterministic with label
alphabet Σ. Let F ⊂ Σ+ be a finite, non-empty set which is relatively dense in (X,E, `).
Then

sup
x,y∈X

h(LFx,y) < h(X) strictly.

We say that (X,E, `) is fully deterministic, if for every x ∈ X and a ∈ Σ, there is precisely
one edge with initial point x and label a. Remark that in automata theory, the classical
terminalogy is deterministic and complete, instead of fully deterministic. Since in graph
theory a complete graph is one in which every pair a distinct vertices is connected by an
unique edge, we shall use the notion of fully deterministic graphs throughout this paper.

Corollary 1.2. If (X,E, `) is uniformly connected and fully deterministic then Lx,y is
growth-sensitive for all x, y ∈ X.

Indeed, in this case, for every x ∈ X and every w ∈ Σ∗, there is precisely one path with
label w starting at x.

With our edge-labelled graph (X,E, `), we can consider the full shift space which consists
of all bi-infinite words over Σ that can be read along the edges of some bi-infinite path
in (X,E, `). When (X,E, `) is strongly connected, the entropy h(Lx,y) is independent
of x and y and equals the topological entropy of the full shift space of the graph. See
e.g. Gurevič [10], Petersen [14] or Boyle, Guzzi and Gómez [3] for a selection of
related work and references, and also the discussion in [11, §13.9].
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If we consider the shift space consisting of all those bi-infinite words as above that do not
contain any factor in F , then the interpretation of Corollary 1.2 is that the associated
entropy is strictly smaller than h(X).

The theorem, once approached in the right way, is not hard to prove. It is based on a
classical tool, a version of the Perron-Frobenius theorem for infinite non-negative matrices;
see e.g. Seneta [16]. We shall first reformulate things in terms of Markov chains and
forbidden transitions.

2. Markov chains and forbidden transitions

We now equip the oriented, edge-labelled graph (X,E, `) with additional data: with each
edge e = (x, a, y), we associate a probability p(e) = p(x, a, y) ≥ α > 0, where α is a fixed
constant, such that

(1)
∑

e∈E : e−=x

p(e) ≤ 1 for every x ∈ X .

Our assumption to have the uniform lower bound p(e) ≥ α for each edge implies that the
outdegree (number of outgoing edges) of each vertex is bounded by 1/α. We interpret
p(e) as the probability that a particle with current position x = e− moves in one (discrete)
time unit along e to its end vertex y = e+. Observing the successive random positions of
the particle at the time instants 0, 1, 2, . . . , we obtain a Markov chain with state space X
whose one-step transition probabilities are

p(x, y) =
∑

a∈Σ:(x,a,y)∈E

p(x, a, y) .

We shall also want to record the edges, resp. their labels used in each step, which means
to consider a Markov chain on a somewhat larger state space, but we will not need to
formalise this in detail. In (1), we admit the possibility that 1−

∑
y p(x, y) > 0 for some

x. This number is then interpreted as the probability that a particle positioned at x dies
at the next step.

We write p(n)(x, y) for the probability that the particle starting at x is at position y
after n steps. This is the (x, y)-element of the n-power P n of the transition matrix
P =

(
p(x, y)

)
x,y∈X . If (X,E, `) is strongly connected, then P is irreducible, and it is

well-known that the number

ρ(P ) = lim sup
n→∞

p(n)(x, y)1/n

is independent of x and y. See once more [16]. Often, ρ(P ) is called the spectral radius
of P . It is the parameter of exponential decay of the transition probabilities.

Let once more F ⊂ Σ+ be finite. We interpret the elements of F as sequences of forbidden
transitions. That is, we restrict the motion of the particle: at no time, it is allowed to
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traverse any path π with `(π) ∈ F in k successive steps, where k is the length of π. We

write p
(n)
F (x, y) for the probability that the particle starting at x is at position y after n

steps, without having made any such sequence of forbidden transitions. Let

ρx,y(PF ) = lim sup
n→∞

p
(n)
F (x, y)1/n, x, y ∈ X .

These numbers are not necessarily independent of x and y, and they are not the elements
of the n-matrix power of some substochastic matrix.

Recall that a transition matrix Q =
(
q(x, y)

)
x,y∈X on the state space X is called sub-

stochastic if there exists a constant ε > 0, such that for all x ∈ X∑
y∈X

q(x, y) ≤ 1− ε.

That is, all row sums are bounded by 1 − ε. In order to give an upper bound for the

restricted transition probabilities p
(n)
F (x, y), we first show the following.

Lemma 2.1. Suppose that (X,E, l) is strongly connected with label alphabet Σ and
equipped with transition probabilities p(e) ≥ α > 0, e ∈ E. Let F ⊂ Σ+ be a finite,
non-empty set which is relatively dense in (X,E, `). Then there are k ∈ N and ε0 > 0
such that ∑

y∈X

p
(k)
F (x, y) ≤ 1− ε0 for all x ∈ X .

In other words, the transition matrix Q =
(
p

(k)
F (x, y)

)
x,y∈X is strictly substochastic, with

all row sums bounded by 1− ε0 .

Proof. Let R = maxw∈F |w|, and let D ∈ N be the constant from the definition of relative
denseness of F . Set k = D + R. For each x ∈ X, we can find a path π1 from x to some
y ∈ X with length d ≤ D and a path π2 starting at y which has label w ∈ Σ∗. Let z be the
endpoint of π2, and choose any path π3 that starts at z and has length k− d− |w|. (Such
a path exists by strong connectedness.) Then let π be the path obtained by concatenating
π1 , π2 and π3 .

The probability that the Markov chain starting at x makes its first k steps along the edges
of π is

P(π) ≥ αk = ε0 > 0.

Hence ∑
y∈X

p
(k)
F (x, y) ≤

∑
y∈X

p(k)(x, y)− P(π) ≤ 1− ε0,

and this upper bound holds for every x. �

The matrix P acts on functions h : X → R by Ph(x) =
∑

y p(x, y)h(y). Next, we state
two key results due to Pruitt [15, Lemma 1] and [15, Corollary to Theorem 2], which will
be used in the proof of the main result.
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Lemma 2.2. If the transition matrix P is irreducible and Ph ≤ sh for some s > 0 and
h 6= 0, then h > 0.

Lemma 2.3. If the transition matrix P = {p(x, y)}x,y∈X is such that for every x ∈ X the
entries p(x, y) = 0 for all y ∈ X except finitely many, then the equation

Ph = sh

has a solution for all s ≥ ρ(P ).

Using these lemmatas, we prove the following result on sensitivity of the Markov chain
with respect to forbidding the transitions in F .

Theorem 2.4. Suppose that (X,E, `) is uniformly connected with label alphabet Σ and
equipped with transition probabilities p(e) ≥ α > 0, e ∈ E. Let F ⊂ Σ+ be a finite,
non-empty set which is relatively dense in (X,E, `). Then

sup
x,y∈X

ρx,y(PF ) < ρ(P ) strictly.

Proof. We shall proceed in two steps.

Step 1. We assume that P =
(
p(x, y)

)
x,y∈X is stochastic and that ρ(P ) = 1.

Consider the matrix Q of Lemma 2.1. Let Qn =
(
q(n)(x, y)

)
x,y∈X be its n-th matrix power.

q(n)(x, y) is the probability that the Markov chain starting at x is in y at time nk and
does not make any forbidden sequence of transitions in each of the discrete time intervals
[(j − 1)k , jk] for j ∈ {1, . . . , n}. Therefore

p
(nk)
F (x, y) ≤ q(n)(x, y) ,

and also, by the same reasoning, for i = 0, . . . , k − 1,

p
(nk+i)
F (x, y) ≤

∑
z∈X

q(n)(x, z)p
(i)
F (z, y) , i = 0 . . . , k − 1.

Therefore, for every x ∈ X and i = 0, . . . , k − 1,∑
y∈X

p
(nk+i)
F (x, y) ≤

∑
z∈X

q(n)(x, z)
∑
y∈X

p
(i)
F (z, y)︸ ︷︷ ︸
≤ 1

≤ (1− ε0)n ,

since Lemma 2.1 implies that the row sums of the matrix power Qn are bounded above
by (1− ε0)n. We conclude that

lim sup
n→∞

p
(nk+i)
F (x, y)1/(nk+i) ≤ (1− ε0)1/k ,

so that ρx,y(PF ) ≤ (1− ε0)1/k = 1− ε, where ε > 0.

Step 2. General case. We reduce this case to the previous one.
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Since P is irreducible and every row of P has only finitely many non-zero entries, Lemma
2.2 and Lemma 2.3 guaranty the existence of a strictly positive solution h : X → R for
the equation

Ph = ρ(P ) · h,
that is, h is ρ(P )-harmonic. Consider now the h-transform of the transition probabilities
p(e) of P , e = (x, a, y) ∈ E, given by

ph(e) = ph(x, a, y) =
p(x, a, y)h(y)

ρ(P )h(x)

and the associated transition matrix P h with entries

ph(x, y) =
∑

a : (x,a,y)∈E

ph(x, a, y) .

The Markov chain associated with P h is called the h-process.

Then ρ(P h) = 1. Using uniform connectedness, we show that there is a constant ᾱ > 0
such that ph(e) ≥ ᾱ for each e = (x, a, y) ∈ E. Indeed, for such an edge, there is k ≤ K
such that d+(y, x) = k, whence

ρ(P )kh(y) =
∑
z∈X

p(k)(y, z)h(z) ≥ αkh(x) ,

so that

ph(x, a, y) ≥
(
α/ρ(P )

)k+1
.

Recall that K is the constant used in the definition of the uniform connectedness. We can
now choose ᾱ =

(
α/ρ(P )

)K+1
. We see that with P h we are now in the situation of Step

1. Thus, forbidding the transitions of F for the Markov chain with transition matrix P h,
we get ρx,y(P

h
F ) ≤ 1− ε for all x, y ∈ X, where ε > 0.

We now show that ρx,y(P
h
F ) = ρx,y(PF )/ρ(P ), which will conclude the proof.

For a path π = e1 . . . en from x to y, let (as above) P(π) be the probability that the
original Markov chain traverses the edges of π in n successive steps, and let Ph(π) be the
analogous probability with respect to the h-process. Then

Ph(π) =
P(π)h(y)

ρ(P )nh(x)
.

Let us write Πn
x,y(¬F ) for the set of all paths π from x to y with length n for which `(π)

does not contain a factor in F . Then the n-step transition probabilities of the h-process
with the transitions in F forbidden are

ph
(n)

F (x, y) =
∑

π∈Πn
x,y(¬F )

Ph(π) =
∑

π∈Πn
x,y(¬F )

P(π)h(y)

ρ(P )nh(x)
=
p

(n)
F (x, y)h(y)

ρ(P )nh(x)

Taking n-th roots and passing to the upper limit, we obtain the required identity. �
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With this result, it is now easy to deduce Theorem 1.1.

Proof of Theorem 1.1. Since (X,E, l) is deterministic with label alphabet Σ, the outde-
gree of every x ∈ X is at most |Σ|. Equip the edges of (X,E, `) with the transition
probabilities p(x, a, y) = 1/|Σ|, when (x, a, y) ∈ E. Then the n-step transition probabili-
ties of the resulting Markov chain are given by

p(n)(x, y) =

∣∣{w ∈ Lx,y : |w| = n}
∣∣

|Σ|n
.

Therefore, because (X,E, `) is uniformly connected, we have

h(X) = h(Lx,y) = lim sup
n→∞

1

n
log
(
pn(x, y)|Σ|n

)
= log

(
ρ(P ) · |Σ|

)
.

Analogously,
h(LFx,y) = log

(
ρx,y(PF ) · |Σ|

)
.

By Theorem 2.4
sup
x,y∈X

ρx,y(PF ) < ρ(P ),

and this implies that
sup
x,y∈X

h(LFx,y) < h(X)

strictly. �

Application to pairs of groups and their Schreier graphs

Let G be a finitely generated group and K a (not necessary finitely generated) subgroup.
Let also Σ be a finite alphabet and ψ : Σ → G be such that the set ψ(Σ) generates
G as a semigroup. We extend ψ to a monoid homomorphism from Σ∗ to G by ψ(w) =
ψ(a1) · · ·ψ(an), if w = a1 . . . an with ai ∈ Σ (and ψ(ε) = 1G ). The mapping ψ is called a
semigroup presentation of G in [8].

The Schreier graph X = X(G,K, ψ) has vertex set

X = {Kg : g ∈ G},
the set of all right K-cosets in G, and the set of all labelled, directed edges E is given by

E = {e = (x, a, y) : x = Kg, y = Kgψ(a) , where g ∈ G , a ∈ Σ}.
Note that the graph X is fully deterministic and uniformly connected.

The word problem of (G,K) with respect to ψ is the language

L(G,K, ψ) = {w ∈ Σ∗ : ψ(w) ∈ K}.
The word problem for a recursively presented group G is the algorithmic problem of decid-
ing whether two words represent the same element. Also, this terminology is used in the
context of formal language theory and goes back at least to the seminal paper of Muller
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and Schupp [12]. For additional information, see also Muller and Schupp [13]. In
their work, for a finitely generated group G the word problem W (G) is the set of all
words on the generators and their inverses which represent the identity element of G.

If we consider the “root” vertex o = K of the Schreier graph, then in the notation of the
introduction, we have L(G,K, ψ) = Lo,o, compare with [8, Lemma 2.4].

We can therefore apply Theorem 1.1 and Corollary 1.2 to the graph X(G,K, ψ) in order
to deduce that

Corollary 2.5. The word problem of the pair (G,K) with respect to any semigroup pre-
sentation ψ is growth sensitive (with respect to forbidding an arbitrary non-empty finite
subset F ⊂ Σ∗).
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[10] B. M. Gurevič, Topological entropy of a countable Markov chain. (Russian) Dokl. Akad. Nauk SSSR
187 (1969) 715–718; Engl. transl. in Soviet Math. Dokl. 10 (1969) 911–915.

[11] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge University Press,
Cambridge, 1995.

[12] D. E. Muller, P. E. Schupp, Groups, the Theory of Ends, and Context-Free Languages. J. Comput.
System Sc. 26 (1983), 295-310.

[13] D. E. Muller, P. E. Schupp, The theory of ends, pushdown automata, and second-order logic. Theoret.
Comput. Sci 37 (1985), 51-57.

[14] K. Petersen, Chains, entropy, coding. Ergodic Theory Dynam. Systems 6 (1986) 415–448.
[15] W. E. Pruitt, Eigenvalues of Non-Negative Matrices. Ann. Math. Statist. Volume 35, Number 4

(1964), 1797–1800.
[16] E. Seneta, Non-negative Matrices and Markov Chains. Revised reprint of the second edition, Springer,

New York, 2006.



10 W. Huss, E. Sava, W. Woess

Institut für Mathematische Strukturtheorie
Technische Universität Graz
Steyrergasse 30, 8010 Graz, Austria

E-mail address: huss@finanz.math.tu-graz.ac.at, sava@TUGraz.at, woess@TUGraz.at


	1. Introduction
	2. Markov chains and forbidden transitions
	References

