4. Übungsblatt
3. 12. 2008
Die heutigen Übungen sollen mit dem Computeralgebrasystem Sage gelöst werden.
Die Lösung der Beispiele soll auf möglichst kompakte Weise erfolgen. Wenn zum Beispiel eine Funktion für mehrere Werte berechnet werden soll, soll das mittels einer geeigneten Schleifen oder Listen Operation erfolgen, und nicht alle Werte einzeln eingetippt werden.
Zwischenergebnisse welche in einem weiteren Berechnungsschritt benötigt werden, sollen in eine Variable gespeichert und weiterverwendet werden (nicht neu eintippen).
Wir betrachten die durch
Wir bilden eine neue Folge b_n durch
1.000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.250000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.390625000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.483459472656250000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.550163001753389835357666015625000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.600751333001270024442366790573544221842894330620765686035156250000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.640601207526335718909531014083287426094068189973652077967476847960\ 50739012560441278890804861489982613420579582452774047851562500000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.672893080534217720184351975004490885766135050007179404367249744466\ 16783158246607608752050754999137235007298644591897995604494232989047\ 84348382129876408454371899717487831805679277284582546047838071462416\ 96539812554914150588558641175040975213050842285156250000000000000000\ 00000000000000000000000000000 1.699642814724816163726236514774414531751313379800628855835955854897\ 14009265208540458080618535478043137145973618523605532434230752095185\ 57895535075236312384314362640812544885798787838949256588186582159130\ 05487633567997557451244703372428445433596745662593155550369470324600\ 05496569726996407447095673968 1.722196424411423941205512295600073869390644155105732214945076460616\ 50912125800945189448907987462331301277297181343412144988560329921401\ 02405901350375571172253469319616227880289844647205897891118220615448\ 38327107929589126364992405032511841110174614461114331619058723936797\ 88470808229754141795917912824 1.741490131063873364188377177134508285550633713018408760025135756325\ 26811262436597818612474403551811535262346257799399082178347336132402\ 18550232594461264640708781996636983828131486579498593521090746204051\ 49379847088244899996829720274290957078077796952160951068662841713419\ 00548017715677768536168922242 1.758196969148216706934933791105877785423153208567009800057101050932\ 93539483800080760651889147548803666030701700967052928793679987529631\ 17494638091765910875889757355060667970760125317280902167714974432965\ 73362606645463758704081009707285749790338436847305521844248313593629\ 39756204346029639879827960250 1.772814145580493822699572983922675752849138126597470304187391244346\ 80377504259700988473064961624861835309657998163377973335570078842547\ 51068448267325779678293515948974206022589742124239480431655900516579\ 54347874370080366550858875207473343933082778607158082850974256917102\ 11221234780913743289851600433 1.785717498692574086317705805227079399174697951023078915341726450843\ 54610920006327527356839378170682357075185675913099405574654577153698\ 80681926848009982404087486437565531199722752518071815276408405631589\ 34694337810774308424029160647173159433992762967730108007836179406985\ 85268661025909162206006729865 1.797196746284215833419359538064789026132045958338499032277979746212\ 91674427032329168376786958512709689867675734362290440281814461899598\ 40930461255577283304155838703196925445721981569298898522873079696474\ 81966603741240034172099201038330208836069330905867358507038190422066\ 07303751495722268993104010287 1.807479036213643014511670167598616269983266197381368427722948747406\ 75468296240928205985979166699269434342806772010919682084378134102522\ 65688477603641462105455072602295316836334512124152017981116515673983\ 14373252014058603564289378145105475425760640199626477819238600809241\ 65258532302012198857871955220 1.816745116587949958970254637052961112756913212464061140792405578573\ 62972560403603444704092841212920580384728808996217642547082821275810\ 70039745691080562653456217843162829162619264341028996210065594144901\ 92082543409288571475812381579098530082376099648192122327840457455153\ 20444266442065784464975004634 1.825140704661540972292226539134440895257169067181200220136179183467\ 58487621813651159776640348116116612626374511904458172259675397469485\ 41501764100571204983795208805811386154136022656305628209453063415522\ 23545108849685539577316182378666434439064986932641868021372571301742\ 33578901317652975994115747657 1.832784647953106582056548534186994613500976027967171669022893376569\ 33507492274618032340244241449176528794057781428912077038986740338396\ 92175927152495212492197421889469269022575503629674476757841697251872\ 50443276102352661078220876502930726199734935027463260630228314075790\ 20670346763471561547189357763 1.839774891443148207751046958824018248416981618429475009977556082226\ 89415165825325789132304265822101425013553071842552863896409337334496\ 43587561238321446458594409038084642127831598396293759009373541772473\ 52929423074016513636681731246812552477899487189768057200824220638102\ 89453769968984168008038767840 1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.25000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.39062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.48345947265625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.55016300175338983535766601562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.60075133300127002444236679057354422184289433062076568603515625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.64060120752633571890953101408328742609406818997365207796747684796050739012560441278890804861489982613420579582452774047851562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.67289308053421772018435197500449088576613505000717940436724974446616783158246607608752050754999137235007298644591897995604494232989047843483821298764084543718997174878318056792772845825460478380714624169653981255491415058855864117504097521305084228515625000000000000000000000000000000000000000000000 1.69964281472481616372623651477441453175131337980062885583595585489714009265208540458080618535478043137145973618523605532434230752095185578955350752363123843143626408125448857987878389492565881865821591300548763356799755745124470337242844543359674566259315555036947032460005496569726996407447095673968 1.72219642441142394120551229560007386939064415510573221494507646061650912125800945189448907987462331301277297181343412144988560329921401024059013503755711722534693196162278802898446472058978911182206154483832710792958912636499240503251184111017461446111433161905872393679788470808229754141795917912824 1.74149013106387336418837717713450828555063371301840876002513575632526811262436597818612474403551811535262346257799399082178347336132402185502325944612646407087819966369838281314865794985935210907462040514937984708824489999682972027429095707807779695216095106866284171341900548017715677768536168922242 1.75819696914821670693493379110587778542315320856700980005710105093293539483800080760651889147548803666030701700967052928793679987529631174946380917659108758897573550606679707601253172809021677149744329657336260664546375870408100970728574979033843684730552184424831359362939756204346029639879827960250 1.77281414558049382269957298392267575284913812659747030418739124434680377504259700988473064961624861835309657998163377973335570078842547510684482673257796782935159489742060225897421242394804316559005165795434787437008036655085887520747334393308277860715808285097425691710211221234780913743289851600433 1.78571749869257408631770580522707939917469795102307891534172645084354610920006327527356839378170682357075185675913099405574654577153698806819268480099824040874864375655311997227525180718152764084056315893469433781077430842402916064717315943399276296773010800783617940698585268661025909162206006729865 1.79719674628421583341935953806478902613204595833849903227797974621291674427032329168376786958512709689867675734362290440281814461899598409304612555772833041558387031969254457219815692988985228730796964748196660374124003417209920103833020883606933090586735850703819042206607303751495722268993104010287 1.80747903621364301451167016759861626998326619738136842772294874740675468296240928205985979166699269434342806772010919682084378134102522656884776036414621054550726022953168363345121241520179811165156739831437325201405860356428937814510547542576064019962647781923860080924165258532302012198857871955220 1.81674511658794995897025463705296111275691321246406114079240557857362972560403603444704092841212920580384728808996217642547082821275810700397456910805626534562178431628291626192643410289962100655941449019208254340928857147581238157909853008237609964819212232784045745515320444266442065784464975004634 1.82514070466154097229222653913444089525716906718120022013617918346758487621813651159776640348116116612626374511904458172259675397469485415017641005712049837952088058113861541360226563056282094530634155222354510884968553957731618237866643443906498693264186802137257130174233578901317652975994115747657 1.83278464795310658205654853418699461350097602796717166902289337656933507492274618032340244241449176528794057781428912077038986740338396921759271524952124921974218894692690225755036296744767578416972518725044327610235266107822087650293072619973493502746326063022831407579020670346763471561547189357763 1.83977489144314820775104695882401824841698161842947500997755608222689415165825325789132304265822101425013553071842552863896409337334496435875612383214464585944090380846421278315983962937590093735417724735292942307401651363668173124681255247789948718976805720082422063810289453769968984168008038767840 |
\varepsilon = 10^{-2},\quad n_\varepsilon = 392,\quad a_{n_\varepsilon} = 1.990019 \varepsilon = 10^{-3},\quad n_\varepsilon = 3989,\quad a_{n_\varepsilon} = 1.999000 \varepsilon = 10^{-4},\quad n_\varepsilon = 39987,\quad a_{n_\varepsilon} = 1.999900 \varepsilon = 10^{-2},\quad n_\varepsilon = 392,\quad a_{n_\varepsilon} = 1.990019 \varepsilon = 10^{-3},\quad n_\varepsilon = 3989,\quad a_{n_\varepsilon} = 1.999000 \varepsilon = 10^{-4},\quad n_\varepsilon = 39987,\quad a_{n_\varepsilon} = 1.999900 |
\varepsilon = 10^{-6},\quad n_\varepsilon = 1990,\quad a_{n_\varepsilon} = 1.998000 \varepsilon = 10^{-7},\quad n_\varepsilon = 6314,\quad a_{n_\varepsilon} = 1.999368 \varepsilon = 10^{-8},\quad n_\varepsilon = 19988,\quad a_{n_\varepsilon} = 1.999800 \varepsilon = 10^{-6},\quad n_\varepsilon = 1990,\quad a_{n_\varepsilon} = 1.998000 \varepsilon = 10^{-7},\quad n_\varepsilon = 6314,\quad a_{n_\varepsilon} = 1.999368 \varepsilon = 10^{-8},\quad n_\varepsilon = 19988,\quad a_{n_\varepsilon} = 1.999800 |
\varepsilon = 10^{-2},\quad n_\varepsilon = 192,\quad b_{n_\varepsilon} = 1.990028 \varepsilon = 10^{-3},\quad n_\varepsilon = 1990,\quad b_{n_\varepsilon} = 1.999000 \varepsilon = 10^{-4},\quad n_\varepsilon = 19982,\quad b_{n_\varepsilon} = 1.999900 \varepsilon = 10^{-2},\quad n_\varepsilon = 192,\quad b_{n_\varepsilon} = 1.990028 \varepsilon = 10^{-3},\quad n_\varepsilon = 1990,\quad b_{n_\varepsilon} = 1.999000 \varepsilon = 10^{-4},\quad n_\varepsilon = 19982,\quad b_{n_\varepsilon} = 1.999900 |
Ein Generator ist ein Python Konstrukt, dass eine Folge von Werten erzeugt.
Man erzeugt einen Generator, wie eine normale Python Funktion, allerdings wird das Schlüsselwort yield anstatt return verwendet um Werte zurückzugeben.
Wir definieren uns einen Generator für die natürlichen Zahlen:
<type 'generator'> <type 'generator'> |
0 1 2 0 1 2 |
Mit der Funktion iter kann man Listen in Generatoren umwandeln.
1 2 3 1 2 3 |
Eine Generator Comprehension ist das äquivalent einer List Comprehension nur eben für Generatoren.
Hier erzeugen wir uns aus dem Generator für die natürlichen Zahlen einen neuen Generator für die ungeraden Quadratzahlen.
1 9 25 1 9 25 |
[49, 81, 121, 169, 225] [49, 81, 121, 169, 225] |
[1, 2, 3] [4, 5, 6] [7, 8, 9] [10] [1, 2, 3] [4, 5, 6] [7, 8, 9] [10] |
1.00000000000000 1.25000000000000 1.39062500000000 1.48345947265625 1.00000000000000 1.25000000000000 1.39062500000000 1.48345947265625 |
1.000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.250000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.390625000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.483459472656250000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.550163001753389835357666015625000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.600751333001270024442366790573544221842894330620765686035156250000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.640601207526335718909531014083287426094068189973652077967476847960\ 50739012560441278890804861489982613420579582452774047851562500000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000 1.672893080534217720184351975004490885766135050007179404367249744466\ 16783158246607608752050754999137235007298644591897995604494232989047\ 84348382129876408454371899717487831805679277284582546047838071462416\ 96539812554914150588558641175040975213050842285156250000000000000000\ 00000000000000000000000000000 1.699642814724816163726236514774414531751313379800628855835955854897\ 14009265208540458080618535478043137145973618523605532434230752095185\ 57895535075236312384314362640812544885798787838949256588186582159130\ 05487633567997557451244703372428445433596745662593155550369470324600\ 05496569726996407447095673968 1.722196424411423941205512295600073869390644155105732214945076460616\ 50912125800945189448907987462331301277297181343412144988560329921401\ 02405901350375571172253469319616227880289844647205897891118220615448\ 38327107929589126364992405032511841110174614461114331619058723936797\ 88470808229754141795917912824 1.741490131063873364188377177134508285550633713018408760025135756325\ 26811262436597818612474403551811535262346257799399082178347336132402\ 18550232594461264640708781996636983828131486579498593521090746204051\ 49379847088244899996829720274290957078077796952160951068662841713419\ 00548017715677768536168922242 1.758196969148216706934933791105877785423153208567009800057101050932\ 93539483800080760651889147548803666030701700967052928793679987529631\ 17494638091765910875889757355060667970760125317280902167714974432965\ 73362606645463758704081009707285749790338436847305521844248313593629\ 39756204346029639879827960250 1.772814145580493822699572983922675752849138126597470304187391244346\ 80377504259700988473064961624861835309657998163377973335570078842547\ 51068448267325779678293515948974206022589742124239480431655900516579\ 54347874370080366550858875207473343933082778607158082850974256917102\ 11221234780913743289851600433 1.785717498692574086317705805227079399174697951023078915341726450843\ 54610920006327527356839378170682357075185675913099405574654577153698\ 80681926848009982404087486437565531199722752518071815276408405631589\ 34694337810774308424029160647173159433992762967730108007836179406985\ 85268661025909162206006729865 1.797196746284215833419359538064789026132045958338499032277979746212\ 91674427032329168376786958512709689867675734362290440281814461899598\ 40930461255577283304155838703196925445721981569298898522873079696474\ 81966603741240034172099201038330208836069330905867358507038190422066\ 07303751495722268993104010287 1.807479036213643014511670167598616269983266197381368427722948747406\ 75468296240928205985979166699269434342806772010919682084378134102522\ 65688477603641462105455072602295316836334512124152017981116515673983\ 14373252014058603564289378145105475425760640199626477819238600809241\ 65258532302012198857871955220 1.816745116587949958970254637052961112756913212464061140792405578573\ 62972560403603444704092841212920580384728808996217642547082821275810\ 70039745691080562653456217843162829162619264341028996210065594144901\ 92082543409288571475812381579098530082376099648192122327840457455153\ 20444266442065784464975004634 1.825140704661540972292226539134440895257169067181200220136179183467\ 58487621813651159776640348116116612626374511904458172259675397469485\ 41501764100571204983795208805811386154136022656305628209453063415522\ 23545108849685539577316182378666434439064986932641868021372571301742\ 33578901317652975994115747657 1.832784647953106582056548534186994613500976027967171669022893376569\ 33507492274618032340244241449176528794057781428912077038986740338396\ 92175927152495212492197421889469269022575503629674476757841697251872\ 50443276102352661078220876502930726199734935027463260630228314075790\ 20670346763471561547189357763 1.839774891443148207751046958824018248416981618429475009977556082226\ 89415165825325789132304265822101425013553071842552863896409337334496\ 43587561238321446458594409038084642127831598396293759009373541772473\ 52929423074016513636681731246812552477899487189768057200824220638102\ 89453769968984168008038767840 1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.25000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.39062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.48345947265625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.55016300175338983535766601562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.60075133300127002444236679057354422184289433062076568603515625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.64060120752633571890953101408328742609406818997365207796747684796050739012560441278890804861489982613420579582452774047851562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.67289308053421772018435197500449088576613505000717940436724974446616783158246607608752050754999137235007298644591897995604494232989047843483821298764084543718997174878318056792772845825460478380714624169653981255491415058855864117504097521305084228515625000000000000000000000000000000000000000000000 1.69964281472481616372623651477441453175131337980062885583595585489714009265208540458080618535478043137145973618523605532434230752095185578955350752363123843143626408125448857987878389492565881865821591300548763356799755745124470337242844543359674566259315555036947032460005496569726996407447095673968 1.72219642441142394120551229560007386939064415510573221494507646061650912125800945189448907987462331301277297181343412144988560329921401024059013503755711722534693196162278802898446472058978911182206154483832710792958912636499240503251184111017461446111433161905872393679788470808229754141795917912824 1.74149013106387336418837717713450828555063371301840876002513575632526811262436597818612474403551811535262346257799399082178347336132402185502325944612646407087819966369838281314865794985935210907462040514937984708824489999682972027429095707807779695216095106866284171341900548017715677768536168922242 1.75819696914821670693493379110587778542315320856700980005710105093293539483800080760651889147548803666030701700967052928793679987529631174946380917659108758897573550606679707601253172809021677149744329657336260664546375870408100970728574979033843684730552184424831359362939756204346029639879827960250 1.77281414558049382269957298392267575284913812659747030418739124434680377504259700988473064961624861835309657998163377973335570078842547510684482673257796782935159489742060225897421242394804316559005165795434787437008036655085887520747334393308277860715808285097425691710211221234780913743289851600433 1.78571749869257408631770580522707939917469795102307891534172645084354610920006327527356839378170682357075185675913099405574654577153698806819268480099824040874864375655311997227525180718152764084056315893469433781077430842402916064717315943399276296773010800783617940698585268661025909162206006729865 1.79719674628421583341935953806478902613204595833849903227797974621291674427032329168376786958512709689867675734362290440281814461899598409304612555772833041558387031969254457219815692988985228730796964748196660374124003417209920103833020883606933090586735850703819042206607303751495722268993104010287 1.80747903621364301451167016759861626998326619738136842772294874740675468296240928205985979166699269434342806772010919682084378134102522656884776036414621054550726022953168363345121241520179811165156739831437325201405860356428937814510547542576064019962647781923860080924165258532302012198857871955220 1.81674511658794995897025463705296111275691321246406114079240557857362972560403603444704092841212920580384728808996217642547082821275810700397456910805626534562178431628291626192643410289962100655941449019208254340928857147581238157909853008237609964819212232784045745515320444266442065784464975004634 1.82514070466154097229222653913444089525716906718120022013617918346758487621813651159776640348116116612626374511904458172259675397469485415017641005712049837952088058113861541360226563056282094530634155222354510884968553957731618237866643443906498693264186802137257130174233578901317652975994115747657 1.83278464795310658205654853418699461350097602796717166902289337656933507492274618032340244241449176528794057781428912077038986740338396921759271524952124921974218894692690225755036296744767578416972518725044327610235266107822087650293072619973493502746326063022831407579020670346763471561547189357763 1.83977489144314820775104695882401824841698161842947500997755608222689415165825325789132304265822101425013553071842552863896409337334496435875612383214464585944090380846421278315983962937590093735417724735292942307401651363668173124681255247789948718976805720082422063810289453769968984168008038767840 |
(0, 1.0) (1, 1.25) (2, 1.390625) (0, 1.0) (1, 1.25) (2, 1.390625) |
(392, 1.99001896664) (192, 1.99002825175) (3989, 1.99900001548) (1990, 1.99900043432) (39987, 1.99990000091) (19982, 1.99990000001) (392, 1.99001896664) (192, 1.99002825175) (3989, 1.99900001548) (1990, 1.99900043432) (39987, 1.99990000091) (19982, 1.99990000001) |
(192, 1.98000641036) (134, 1.98593746254) (1990, 1.99800036876) (1404, 1.99858609494) (19988, 1.99980000671) (9619, 1.99979235363) (192, 1.98000641036) (134, 1.98593746254) (1990, 1.99800036876) (1404, 1.99858609494) (19988, 1.99980000671) (9619, 1.99979235363) |
![]() |
Trapezregel
Überprüfen Sie ihre Funktion anhand einiger Beispiele, und vergleichen Sie das Ergebnis mit der eingebauten Funktion integral_numerical.
0.333325 0.333325 |
(0.33333333333333331, 3.7007434154171879e-15) (0.33333333333333331, 3.7007434154171879e-15) |
0.7500125 0.7500125 |
(0.75000000000000011, 8.3266726846886756e-15) (0.75000000000000011, 8.3266726846886756e-15) |
0.0542101327528 0.0542101327528 |
(0.054286809695038393, 6.0270466056875793e-16) (0.054286809695038393, 6.0270466056875793e-16) |
![]() |
![]() |
(0.3325, 0.000833333333333) Time: CPU 2.02 s, Wall: 4.14 s (0.3325, 0.000833333333333) Time: CPU 2.02 s, Wall: 4.14 s |
(0.75125, 0.00249999992825) CPU time: 1.92 s, Wall time: 4.36 s (0.75125, 0.00249999992825) CPU time: 1.92 s, Wall time: 4.36 s |
(0.75000000000000011, 8.3266726846886756e-15) (0.75000000000000011, 8.3266726846886756e-15) |
(0.0524144255673, 0.035345983166) CPU time: 1.73 s, Wall time: 4.72 s (0.0524144255673, 0.035345983166) CPU time: 1.73 s, Wall time: 4.72 s |
(0.054286809695038393, 6.0270466056875793e-16) (0.054286809695038393, 6.0270466056875793e-16) |
Die obige Implementierung von trapez ist sehr langsam. Man kann die Performance dramatisch verbessern, wenn man die Funktionen f und f'' in eine Form konvertiert, die für numerische Berechnungen optimiert ist, das geht mit der Funktion fast_float, aus dem Paket sage.ext.fast_eval.
(0.7500005, 9.999999713e-07) CPU time: 0.06 s, Wall time: 0.15 s (0.7500005, 9.999999713e-07) CPU time: 0.06 s, Wall time: 0.15 s |
(0.333333, 3.33333333333e-07) CPU time: 0.07 s, Wall time: 0.26 s (0.333333, 3.33333333333e-07) CPU time: 0.07 s, Wall time: 0.26 s |
(2.00000328987, 5.16771278005e-06) CPU time: 0.06 s, Wall time: 0.16 s (2.00000328987, 5.16771278005e-06) CPU time: 0.06 s, Wall time: 0.16 s |
(2.00000328987, 'no error estimate available') Time: CPU 0.16 s, Wall: 0.16 s (2.00000328987, 'no error estimate available') Time: CPU 0.16 s, Wall: 0.16 s |
Schreiben Sie eine Funktion in Sage, die für n im Interval [-1, 1] gleichmässig verteilte Werte x_i die Funktion
Verleichen Sie die Interpolationspolynome für n=6, 10, 20 graphisch mit der Funktion f(x). Wird die Funktion gut approximiert?
"/local/data/huss/software/sage-3.3.alpha0/local/share/maxima/5.16.3\ /share/numeric/interpol.mac" "/local/data/huss/software/sage-3.3.alpha0/local/share/maxima/5.16.3/share/numeric/interpol.mac" |
\frac{{73 {x}^{4} }}{420} - \frac{{701 {x}^{3} }}{210} + \frac{{8957 {x}^{2} }}{420} - \frac{{5288 x}}{105} + \frac{186}{5} \frac{{73 {x}^{4} }}{420} - \frac{{701 {x}^{3} }}{210} + \frac{{8957 {x}^{2} }}{420} - \frac{{5288 x}}{105} + \frac{186}{5} |
True True |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Click to the left again to hide and once more to show the dynamic interactive window |