Mathematical Analysis of Algorithms

Exercises I. (for the exercise session on 26.03.2012)

1. (1.5pt) Consider a sequence $\left\{D_{n}\right\}_{n \geq 1}$ satisfying the recurrence

$$
\left\{\begin{array}{l}
D_{n}=D_{\left\lfloor\frac{n}{2}\right\rfloor}+1, n \geq 2 \\
D_{1}=2 .
\end{array}\right.
$$

Show that $D_{n}=\lfloor\log n\rfloor+2$. Here $\log n=\log _{2} n$.
2. (0.5pt) For all $b \in \mathbb{N}$ with $b \geq 2$, show that

$$
\sum_{k=1}^{n}\left\lfloor\log _{b} k\right\rfloor=(n+1)\left\lfloor\log _{b} n\right\rfloor-\frac{b^{\left\lfloor\log _{b} n\right\rfloor+1}-b}{b-1}
$$

3. (0.5pt) Show that for $n \geq 1$,

$$
\sum_{k=1}^{n} a_{n}=n a_{n}-\sum_{k=1}^{n-1} k\left(a_{k+1}-a_{k}\right)
$$

4. (0.5pt) Show that

$$
\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n
$$

where $H_{k}=\sum_{i=1}^{k} \frac{1}{i}$ is the harmonic number.
5. (1.5pt) Find initial conditions a_{0}, a_{1} and a_{2} for which the growth rate of the solution to the recurrence

$$
a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}, n \geq 3
$$

is

- constant
- exponential and
- fluctuating in sign.

6. (1.0pt) Find a way to solve a higher-order linear recurrence of the term

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+r, n \geq k
$$

where $r, c_{1}, c_{2}, \ldots, c_{k}$ are constants independent of n.
7. (1.0pt) Solve the recurrence:

$$
\left\{\begin{array}{l}
n(n-1) a_{n}=(n-1) a_{n-1}+a_{n-2}, n \geq 2 \\
a_{0}=a_{1}=1
\end{array}\right.
$$

