Mathematical Analysis of Algorithms.

Exercises II. (07.05.2012)

1. (0.5pt) Show that OGF of the sequence $0,0, \ldots, 1, m+1, \ldots,\binom{n}{m}, \ldots$ is

$$
\sum_{n \geq m}\binom{n}{m} z^{n}=\frac{z^{m}}{(1-z)^{m+1}}
$$

2. (0.5pt) Show that the OGF $A(z)=\sum_{n \geq 1} a^{n} z^{n}$ for the sequence $\left\{a_{n}\right\}_{n \geq 0}$ with $a_{n}=\frac{1}{n}$ satisfies:

$$
A(z)=\ln \frac{1}{1-z}
$$

3. $(0,5 \mathrm{pt})$ Show that OGF of the sequence $0,1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}, \ldots, H_{n}, \ldots$ is

$$
\sum_{n \geq 1} H_{n} z^{n}=\frac{1}{1-z} \ln \frac{1}{1-z}
$$

4. Find OGF for each of the following sequences:

- (0.5pt) $\left\{2^{n+1}\right\}_{n \geq 0}$
- (0.5pt) $\left\{n 2^{n+1}\right\}_{n \geq 0}$
- (1.0pt) $\left\{n H_{n}\right\}_{n \geq 0}$
- (0.5pt) $\left\{n^{3}\right\}_{n \geq 0}$

5. Find $n!\left[z^{n}\right] A(z)$ for each of the following EGFs:

- $(0.5 \mathrm{pt}) \frac{1}{1-z} \ln \frac{1}{1-z}$
- (0.5pt) $\left(\ln \frac{1}{1-z}\right)^{2}$
- (0.5pt) $e^{z+z^{2}}$

6. Solve the following recurrences using OGFs.

- (0.5pt)

$$
\left\{\begin{array}{l}
a_{n}=5 a_{n-1}-8 a_{n-2}+4 a_{n-3}, n \geq 3 \\
a_{0}=1, a_{1}=2, a_{2}=4 .
\end{array}\right.
$$

- (0.5 pt$)$

$$
\left\{\begin{array}{l}
a_{n}=2 a_{n-2}-a_{n-4}, n \geq 4 \\
a_{0}=a_{1}=0, a_{2}=a_{3}=1
\end{array}\right.
$$

7. (0.5pt) Show that

$$
\left[z^{n}\right]\left(\frac{z}{(1-z)^{2}} \ln \frac{1}{1-z}\right)=n\left(H_{n}-1\right)
$$

8. Find the Taylor series expansion of the following functions:

- $(0.5 \mathrm{pt}) \frac{1}{\sqrt{1-4 z}}$
- (0.5pt) $\sin z$
- (0.5pt) $z e^{z}$
- (0.5pt) $\frac{1}{1-z} \ln \frac{1}{1-z}$
- $(0.5 \mathrm{pt}) \frac{1}{\sqrt{1-z}} \ln \frac{1}{1-z}$.

9. Show that

- (0.5 pt)

$$
\sum_{0 \leq k \leq n}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=4^{n}
$$

- (0.5pt) What identity on binomial coefficient is implied by the convolution

$$
(1+z)^{r}(1-z)^{s}=\left(1-z^{2}\right)^{s}(1+z)^{r-s}
$$

for $r>s$?

- (0.5pt)

$$
\sum_{0 \leq k \leq t}\binom{t-k}{r}\binom{k}{s}=\binom{t+1}{r+s+1}
$$

10. (0.5pt) Using EGF, find a solution to the recurrence

$$
\left\{\begin{array}{l}
a_{n}=\sum_{0 \leq k \leq n}\binom{n}{k} \frac{a_{k}}{2^{k}}, \quad n \geq 1 \\
a_{0}=1 .
\end{array}\right.
$$

- (0.5pt) Consider an EGF $e^{z+\frac{z^{2}}{2}}$ of a sequence $\left\{a_{n}\right\}_{n \geq 0}$. Show that a_{n} satisfies the recurrence

$$
a_{n}=a_{n-1}+(n-1) a_{n-2}, \quad n \geq 2
$$

