Mathematical Analysis of Algorithms.

Exercises III. (18.06.2012)

1. The OGF that enumerates the binary strings with no two consecutive 0 bits is given by

$$B(z) = \frac{1+z}{1-z-z^2}.$$

- a) (0.5pt) Find a recurrence of $b_n = [z^n]B(z)$ that leads to B(z).
- b) (0.5pt) Find a closed solution for b_n .
- 2. Let P_n be the class of plane trees on n vertices and B_n be the class of binary trees on n internal vertices. Notice that their OGFs satisfy

$$P(z) = z \cdot B(z).$$

This suggests that there is a combinatorial bijection between P_{n+1} and B_n .

- (1pt) Find such a bijection.
- 3. The EGF of 2-regular labelled graphs is given by

$$R(z) = \frac{e^{-\frac{z}{2} - \frac{z^2}{4}}}{\sqrt{1 - z}}.$$

- (0.5pt) Estimate $[z^n]R(z)$ asymptotically.
- 4. Let t_n denote the number of r-nary trees on n vertices.
 - (0.5pt) Derive the asymptotic estimate of t_n .
- 5. Let X be a random variable with non-negative integer values. Show that
 - a) (0.5pt)

$$\mathbb{E}(X) = \sum_{k \ge 0} \Pr(X \ge k),$$

b) (0.5pt)

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

6. The BGF Q(z, u) of QUICKSORT satisfies

$$\frac{\partial}{\partial z}Q(z,u) = u^2 \cdot (Q(uz,u))^2. \tag{1}$$

Let X_n denote the number of comparisons that QUICKSORT needs when the input is of size n.

1

• (1pt) Using equation (1), derive $\mathbb{E}(X_n)$ and $\mathbb{V}(X_n)$.