Mathematical Analysis of Algorithms.

Exercises III. (18.06.2012)

1. The OGF that enumerates the binary strings with no two consecutive 0 bits is given by

$$
B(z)=\frac{1+z}{1-z-z^{2}} .
$$

a) (0.5pt) Find a recurrence of $b_{n}=\left[z^{n}\right] B(z)$ that leads to $B(z)$.
b) $(0.5 \mathrm{pt})$ Find a closed solution for b_{n}.
2. Let P_{n} be the class of plane trees on n vertices and B_{n} be the class of binary trees on n internal vertices. Notice that their OGFs satisfy

$$
P(z)=z \cdot B(z) .
$$

This suggests that there is a combinatorial bijection between P_{n+1} and B_{n}.

- (1pt) Find such a bijection.

3. The EGF of 2-regular labelled graphs is given by

$$
R(z)=\frac{e^{-\frac{z}{2}-\frac{z^{2}}{4}}}{\sqrt{1-z}}
$$

- (0.5pt) Estimate $\left[z^{n}\right] R(z)$ asymptotically.

4. Let t_{n} denote the number of r-nary trees on n vertices.

- (0.5pt) Derive the asymptotic estimate of t_{n}.

5. Let X be a random variable with non-negative integer values. Show that
a) $(0.5 \mathrm{pt})$

$$
\mathbb{E}(X)=\sum_{k \geq 0} \operatorname{Pr}(X \geq k),
$$

b) $(0.5 \mathrm{pt})$

$$
\mathbb{V}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2} .
$$

6. The BGF $Q(z, u)$ of QUICKSORT satisfies

$$
\begin{equation*}
\frac{\partial}{\partial z} Q(z, u)=u^{2} \cdot(Q(u z, u))^{2} . \tag{1}
\end{equation*}
$$

Let X_{n} denote the number of comparisons that QUICKSORT needs when the input is of size n.

- (1pt) Using equation (1), derive $\mathbb{E}\left(X_{n}\right)$ and $\mathbb{V}\left(X_{n}\right)$.

