Mathematical Analysis of Algorithms.

Exercises V. (25.06.2012)

1. a) (0.5pt) Show that the Catalan numbers admit the following expansion:

$$\frac{1}{n+1}\binom{2n}{n} = \frac{4^n}{n\sqrt{\pi n}} \left(1 - \frac{9}{8n} + \frac{145}{128n^2} + O\left(\frac{1}{n^3}\right)\right)$$

b) (0.5pt) Derive an asymptotic expansion for

$$\sum_{1 \le k \le n} \frac{1}{k^2}$$

to within $O(\frac{1}{n^3})$.

c) (0.5pt) Derive an asymptotic expansion for

$$\sum_{1 \le k \le n} \frac{1}{\sqrt{k}}$$

to within $O(\frac{1}{n^2})$.

2. Consider the function

$$f(z) = \frac{1}{(1-z^3)^2(1-z^2)^3(1-\frac{z^2}{2})}.$$

- (1pt) Derive an asymptotic estimate of $[z^n]f(z)$.
- 3. A graph is called *outerplanar* if it can be embedded in the plane in such a way that every vertex lies on one common face. Let \mathcal{B} be the class of all 2-connected labelled outerplanar graphs and \mathcal{B}_n the set of all graphs in \mathcal{B} on exactly *n* vertices.
 - (1pt) Derive the asymptotic estimate of $b_n := |\mathcal{B}_n|$.
- 4. Let \mathcal{P} be the class of all permutations with cycles of *even* length and \mathcal{P}_n be the set of permutations in \mathcal{P} on [n].
 - (1pt) Find the asymptotic expansion of $p_n := |\mathcal{P}_n|$ up to the third order term.