Mathematical Analysis of Algorithms.

Exercises V. (25.06.2012)

1. a) (0.5 pt) Show that the Catalan numbers admit the following expansion:

$$
\frac{1}{n+1}\binom{2 n}{n}=\frac{4^{n}}{n \sqrt{\pi n}}\left(1-\frac{9}{8 n}+\frac{145}{128 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right)
$$

b) (0.5pt) Derive an asymptotic expansion for

$$
\sum_{1 \leq k \leq n} \frac{1}{k^{2}}
$$

to within $O\left(\frac{1}{n^{3}}\right)$.
c) $(0.5 \mathrm{pt})$ Derive an asymptotic expansion for

$$
\sum_{1 \leq k \leq n} \frac{1}{\sqrt{k}}
$$

to within $O\left(\frac{1}{n^{2}}\right)$.
2. Consider the function

$$
f(z)=\frac{1}{\left(1-z^{3}\right)^{2}\left(1-z^{2}\right)^{3}\left(1-\frac{z^{2}}{2}\right)} .
$$

- (1pt) Derive an asymptotic estimate of $\left[z^{n}\right] f(z)$.

3. A graph is called outerplanar if it can be embedded in the plane in such a way that every vertex lies on one common face. Let \mathcal{B} be the class of all 2 -connected labelled outerplanar graphs and \mathcal{B}_{n} the set of all graphs in \mathcal{B} on exactly n vertices.

- (1pt) Derive the asymptotic estimate of $b_{n}:=\left|\mathcal{B}_{n}\right|$.

4. Let \mathcal{P} be the class of all permutations with cycles of even length and \mathcal{P}_{n} be the set of permutations in \mathcal{P} on $[n]$.

- (1pt) Find the asymptotic expansion of $p_{n}:=\left|\mathcal{P}_{n}\right|$ up to the third order term.

