


42

Mihyun Kang
Institute of Optimization and Discrete 
Mathematics, Graz University of Technology 

Random Graphs: From Nature to Society to the Brain

The theory of random graphs deals with 
asymptotic properties of graphs equipped 
with a certain probability distribution, for 
example, how the component structure 
of a uniform random graph evolves as 
the number of edges increases. Since the 
foundation of the theory of random graphs 
by Erdős and Rényi five decades ago, 
various random graph models have been 
introduced and studied. Random graph 
theory has meanwhile found its way into 
other sciences as a rich source of models 
describing fundamental aspects of a broad 
range of complex phenomena. 

1. Erdős–Rényi Random Graphs

The Beginning.  Erdős and Rényi initiated 
the theory of random graphs in their paper 
entitled “On random graphs I” published in 
1959, in which they addressed, among other 
things, the questions of the probability of 
a random graph being connected, and the 
probability that the largest component of a 
random graph covers almost all vertices. One 
year later, Erdős and Rényi discovered that 
a random graph undergoes a drastic change 
in the number of vertices in the largest 
component when the number of edges is 
around half the number of vertices, i.e., 
there is a phase transition in the evolution 
of a random graph. 
 There are three random graph models 
hidden under the name of the Erdős–Rényi 
random graph. The uniform random graph 

 is a graph chosen uniformly at 

random from the set of all graphs with 
vertex set  and  edges, 
for an integer . The binomial 
random graph  is a graph with 
vertex set  in which each pair of vertices 
is joined by an edge independently with 
probability , for . These two 
models are essentially equivalent when the 
parameters are appropriately selected, i.e., 
when . Finally, the Erdős–Rényi 
process  describes 
creation of a random graph: it begins with a 
graph  with  isolated vertices and no 
edges, and in each step  a new 
random edge is added to an evolving graph 

 to obtain a new graph  
After  edges are added, the resulting 
graph  of the Erdős–Rényi process is 
distributed like the uniform random graph 

. 

Phase Transition.  To describe the phase 
transition in the Erdős–Rényi random graph, 
we consider the uniform random graph 

 with positive constant average 
vertex degree . If  is smaller 
than the critical value one, then whp (with 
high probability, meaning with probability 
tending to one as the number of vertices 

) the graph consists of isolated trees 
and unicyclic components and the largest 
component is a tree of order ; 
such components are called ‘small’. On the 
other hand, if  is larger than one, then whp 
there exists a unique largest component of 

linear order (called the ‘giant’ component), 
while all but the giant component are 
trees or unicyclic components of order 

. In other words, all but the giant 
component are ‘small’. The order of the 
giant component is whp equal to , 
where  is uniquely defi ned 
by the equation , and is the same 
as the survival probability of the associated 
Galton–Watson branching process. If  
is equal to one, then whp the order of the 
largest component is .
 In short, the order of the largest 
component in the Erdős–Rényi random 
graph changes from logarithmic to sublinear 
and then to linear order in the number of 
vertices when the average vertex degree 
passes through one (for example from 0.99 
to 1.01) as more edges are added. Erdős 
and Rényi described this phenomenon as 
a ‘double jump’ and considered it to be 
one of the most striking facts concerning 
random graphs. However, Bollobás showed 
that there is in fact no jump, but a smooth 
phase transition with three different phases: 
the subcritical phase in which whp there 
are many large components of almost equal 
order; the critical phase in which whp there 
are a few large components of the same order 
up to constant factor; and the supercritical 
phase which is characterised by the fact that 
whp there is a unique largest component 
that is much larger than the second largest 
component.
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Figure 1. Random graphs and their 
structure.

New Random Graph Models.  Since 
the seminal work of Erdős–Rényi, many 
other random graph models have been 
proposed and studied. Examples include 
random hypergraphs, random directed 
graphs, inhomogeneous random graphs, 
random planar graphs, and random graph 
processes.
 One of the most natural generalisations 
of the Erdős–Rényi random graph is a 
random graph with a given vertex degree 
sequence (an example of an inhomogeneous 
random graph), whose phase transition has 
been well studied. A very general model 
of an inhomogeneous random graph was 
introduced by Bollobás, Janson, and 
Riordan: the vertices are classified into 
different types, and the probability of 
forming an edge depends on the types of 
its vertices. In particular, the edges are 
added independently and the number of 
edges is linear in the number of vertices. 
By relating their model to multi-type 
branching processes, the authors determined 
the critical condition for the phase transition 
and the order of the largest component. 
Many random graphs suggested as models 
for real-world networks are examples of 
inhomogeneous random graphs.
 A graph is called planar if it can be 
embedded in the plane without crossing 
edges. One of the most well-known results 

about planar graphs is the Four Colour 
Theorem, which states roughly that given 
any separation of a plane into regions, say 
countries, the countries can be coloured 
using at most four colours so that no two 
countries sharing a common border have 
the same colour. Random planar graphs 
have received considerable attention since 
McDiarmid, Steger (Invited Speaker at 
Seoul ICM 2014), and Welsh derived 
their important asymptotic properties and 
Giménez and Noy (Invited Speaker at Seoul 
ICM 2014) determined the exact asymptotic 
number of planar graphs. Kang 
and Łuczak showed that there 
are two critical periods in the 
evolution of a random planar 
graph.
 Important variants of the 
Erdős–Rényi process are random 
graph processes based on the 
‘power’ of two choices, known as 
Achlioptas processes: in each step 
two potential edges are chosen 
randomly, and using a certain rule, 
only one of them is selected and 
added to the evolving graph. One 
natural question is whether there 
is a simple rule of edge choice 
that allows the control of the critical time 
for the emergence of the giant component. 
The product rule was suggested as the most 
promising to delay the critical time: given 
two potential edges, only the edge which 
minimises the product of the orders of the 

components of its endvertices is added to the 
graph. Bohman and Frieze (Plenary Speaker 
at Seoul ICM 2014) showed shortly after the 
product rule was proposed that the critical 
time can be delayed by a much simpler rule, 
now known as the Bohman–Frieze process: 
given two potential edges, the fi rst edge 
is added to the graph only if it would join 
two isolated vertices; otherwise the second 
edge is added. Krivelevich (Invited Speaker 
at Seoul ICM 2014), Loh, and Sudakov 
determined thresholds for the avoidance of 
small subgraphs in Achlioptas processes.

Figure 2. Phase transition in the Erdős–
Rényi random graph.

2. Related Areas and Applications

Random graphs are closely related to other 
random discrete structures such as random 
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surfaces, random maps, random matrices, 
random satisfi ability problems, Ising and 
Potts models, and percolation. They are 
useful for modelling, analysis, and solving 
of structural and algorithmic problems 
arising in mathematics, theoretical computer 
science, statistical mechanics, natural 
sciences, and even in social sciences.  
 
Life Sciences.  The recent boom in life 
sciences has generated huge amounts of 
data: genomes of whole organisms have 
been sequenced; proteins and patterns of 
their interactions have been identifi ed; and 
metabolic networks relating the biochemical 
reactions have been mapped. Detailed 
analysis of genes, protein interaction, and 
metabolic networks using the methods 
of graph theory is expected to help us to 
understand the properties of the network that 
are determined by its large-scale structure 
rather than by the physical or chemical 
details of individual interactions. How does 
a combination of mutations of different 
proteins increase the risk of a disease, how 
does the topology of a protein network affect 
its robustness against random mutations, or 
how may the network have evolved over 
time?

Man-made Networks.  Large complex 
structures found in nature are often formed 
by individual uncorrelated interactions 
between a large number of their constituents, 
therefore it is not surprising that random 
graphs provide good models for many of 
them. Although man-made structures are a 
result of a rational design (or we wish so), they 
often exhibit suffi cient ‘randomness’, either 
because their structure developed over time 
(like the World-Wide-Web), or because they 
copy a pre-existing network (for example, 
airport network, electricity network) or 
are subject to random or other constraints 
(for example, geography). Random graphs 
with well-chosen characteristics can thus 
serve as useful models for the evolution 
and the function of many complex artifi cial 
structures.
 Furthermore, new insights can be gained 
by studying the effects of interactions 
between two or more networks. If the 
interaction is such that the removal of 
a vertex in one network can eliminate 
vertices in the other network, the chain of 
subsequent vertex removals can lead to a 
large-scale fragmentation of both networks. 
A well-known example of such a collapse of 
coupled networks is an electrical blackout 
in Italy in 2003, when a shut-down of 
power stations caused failure of the internet 

network controlling the power grid. Studies 
of interdependent networks can help to 
design networks resistant to this type of 
failure.

Social Sciences.  Analysis of human 
communication by means of the theory of 
graphs is a useful tool in social sciences. 
One of the oldest and best-known examples 
is the ‘six degree of separation’ phenomenon 
described decades ago: any two people can 
be connected by a chain of acquaintances 
on average six-persons-long. This means 
that, similarly to the Erdős–Rényi random 
graph, the graph of human acquaintanceship 
has a small diameter; it is a ‘small-world 
network.’ However, unlike the Erdős–Rényi 
random graph, it has a high clustering 
coefficient. Many real-world networks 
have this structure, for example, the 
scientifi c co-authorship network, known to 
mathematicians by the concept of the Erdős 
number.
 The structure of the network determines 
the effi ciency of spreading of information 
or diseases over it. The spread of infectious 
diseases is closely related to the pattern of 
human mobility. Modelling human travel as 
diffusion on the Erdős–Rényi random graph 
does not take into account the geographical 
restrictions which, unlike the case of 
communication over the internet, certainly 
play a strong role here. On the other hand, a 
random walk on a regular lattice neglects the 
effect of long jumps enabled by air travel. 
The analysis of data on the circulation of 
bank notes collected by volunteers using 
tracking websites revealed a power-law 
decay of distribution of travelling distances, 
a consequence of the long jumps. The 
presence of long-distance jumps means that 
the disease spreading across this network is a 
fast, superdiffusive process — an important 
fact to consider when designing strategies to 
handle epidemics. Interestingly, the spread 
of plague in Europe in the 14th century did 
not follow this trend, suggesting the absence 
of the long-range links and therefore a 
different structure of human contacts at the 
time.

The Brain.  The theory of graphs can help 
us to understand also perhaps the most 
complex structure found in nature: the brain. 
The network of interconnected neurons in 
the brain has been modelled as a random 
graph with different properties (for example, 
scale-free network). The way the neurons 
are connected and interact with each other 
largely determines the brain functionality. 
The experimental studies of spontaneous 

brain activity — the analysis of electrical 
spikes produced by neurons, and of the size 
and duration of avalanches of this neuronal 
activity — often produce results that can 
be described by power-law distributions. 
This has led to a hypothesis that the brain, 
viewed as a network of neurons, may be 
operating at a critical state, a state close to 
a phase transition. This is very interesting, 
as various network properties related to the 
communication effi ciency, dynamic range of 
response, etc., are optimised at the critical 
point.

This brief overview aims to give a fl avour of 
how the fi eld of random graphs has evolved 
over the last 50 years from the fi rst defi nition 
of a random graph to a rich mathematical 
theory with applications across many 
scientific disciplines. On one hand, the 
theory of random graphs has proven to be 
appropriate for the description and analysis 
of complex structures arising everywhere 
from nature to society, even the brain. On 
the other hand, diverse applications continue 
to motivate and inform the study of random 
graphs. The expansion of random graph 
theory and its applications shows us again 
how much abstract mathematical ideas can 
teach us about the ‘real world’.


