The asymptotic number of connected d-uniform hypergraphs*

Michael Behrisch1$^\star \star$, Amin Coja-Oghlan2$^\star \star \star$, and Mihyun Kang3†

1 Institute of Transportation Systems, German Aerospace Center, Rutherfordstrasse 2, 12489 Berlin, Germany
michael.behrisch@dlr.de
2 Goethe University, Mathematics Institute, 60054 Frankfurt am Main, Germany
acoghan@math.uni-frankfurt.de
3 TU Graz, Institut für Optimierung und Diskrete Mathematik, Steyrergasse 30, 8010 Graz, Austria
kang@math.tugraz.at

Abstract. For $d \geq 2$, let $H_d(n, p)$ denote a random d-uniform hypergraph with n vertices in which each of the $\binom{n}{d}$ possible edges is present with probability $p = p(n)$ independently, and let $H_d(n, m)$ denote a uniformly distributed d-uniform hypergraph with n vertices and m edges. Let either $H = H_d(n, m)$ or $H = H_d(n, p)$, where m/n and $\binom{n}{d-1}p$ need to be bounded away from $(d-1)^{-1}$ and 0 respectively. We determine the asymptotic probability that H is connected. This yields the asymptotic number of connected d-uniform hypergraphs with given numbers of vertices and edges. We also derive a local limit theorem for the number of edges in $H_d(n, p)$, conditioned on $H_d(n, p)$ being connected.

2010 Mathematics subject classification: Primary 05C80. Secondary 05C65.

1 Introduction and Main Results

1.1 Phase transition and connectivity

A d-uniform hypergraph $H = (V, E)$ is a pair of a set $V = V(H)$ of vertices and a set $E = E(H)$ of edges $e \subset V(H)$ with $|e| = d$. The order of H is the number of vertices of H, and the size of H is the number of edges. A 2-uniform hypergraph is just a graph. We say that a vertex $v \in V(H)$ is reachable from $w \in V(H)$ if there exist edges $e_1, \ldots, e_k \in E(H)$ such that $v \in e_1, w \in e_k$ and $e_i \cap e_{i+1} \neq \emptyset$ for all $1 \leq i < k$. Reachability is an equivalence relation, and the equivalence classes are called the components of H. If H has only a single component, then H is connected. We let $\mathcal{N}(H)$ signify the maximum order (i.e., number of vertices) of a component of H. For all hypergraphs H that we deal with the vertex set $V(H)$ will consist of integers. Therefore the subsets of $V(H)$ can be ordered lexicographically, and we call the lexicographically first component of H that has order $\mathcal{N}(H)$ the largest component of H. In addition, we denote by $\mathcal{M}(H)$ the size (i.e., number of edges) of the largest component.

In this paper we consider two models of random d-uniform hypergraphs for $d \geq 2$. The random hypergraph $H_d(n, p)$ has the vertex set $V = \{1, \ldots, n\}$, and each of the $\binom{n}{d}$ possible edges is present with probability p independently. Moreover, $H_d(n, m)$ is a uniformly distributed d-uniform hypergraph with vertex set $V = \{1, \ldots, n\}$ and with exactly m edges. Finally, we say that the random hypergraph $H_d(n, p)$ satisfies a certain property P with high probability (“w.h.p.”) if the probability that P holds in $H_d(n, p)$ tends to 1 as $n \to \infty$; a similar terminology is used for $H_d(n, m)$.

Since the pioneering work of Erdős and Rényi [9, 10] (see also [7, 12]), the component structure of random discrete objects (e.g., graphs, hypergraphs, digraphs, ...) has been among the main subjects of probabilistic combinatorics. Erdős and Rényi [10] studied (among other things) the component structure of sparse random graphs with $O(n)$ edges. The main result is that the order $\mathcal{N}(H_d(n, m))$ of the largest component undergoes a phase transition as $2m/n \sim 1$. Let us state a more general version from Schmidt-Pruzan and Shamir [17] for $d \geq 2$. Let either $H = H_d(n, m)$ and $c = dm/n$, or $H = H_d(n, p)$ and $c = \binom{n}{d-1}p$; we refer to c as the average degree of H. Then the result is the following.

** Supported by the DFG research center MATHEON in Berlin.
*** Supported by DFG CO 646
† Supported by the Deutsche Forschungsgemeinschaft (KA 2748/3-1)
(i) If \(c < (d-1)^{-1} - \epsilon \) for an arbitrarily small but fixed \(\epsilon > 0 \), then \(\mathcal{N}(H) = O(\ln n) \) w.h.p.

(ii) By contrast, if \(c > (d-1)^{-1} + \epsilon \), then \(H \) contains a unique component of order \(\Omega(n) \) w.h.p., which is called the giant component. More precisely, \(\mathcal{N}(H) = (1-\rho)n + o(n) \) w.h.p. where \(\rho \) is the unique solution to the transcendental equation

\[
\rho = \exp(c(\rho^{d-1} - 1))
\]

that lies strictly between 0 and 1. Furthermore, the second largest component has order \(O(\ln n) \) w.h.p.

Using probabilistic techniques, we derived in [3] a local limit theorem for \(\mathcal{N}(H_d(n, p)) \) and in [4] local limit theorems for the joint distribution of \(\mathcal{N}(H) \) and \(\mathcal{M}(H) \) for \(H = H_d(n, m) \), or \(H = H_d(n, p) \) in the regime \((d-1)(n_d^{-1}) p > 1 + \epsilon \), resp. \(d(d-1)m/n > 1 + \epsilon \), where \(\epsilon > 0 \) is arbitrarily small but fixed as \(n \to \infty \). Using these results, we determine in this paper the asymptotic probability that \(H \) is connected and derive a local limit theorem for the number of edges in \(H_d(n, p) \), conditioned on \(H_d(n, p) \) being connected.

These problems have been studied by a few authors. For \(d = 2 \), the asymptotic probability that \(H_2(n, p) \) is connected was first computed by Stepanov [18], Bender, Canfield, and McKay [5] were the first to compute the asymptotic probability that a random graph \(H_2(n, m) \) is connected for any ratio \(m/n \). Additionally, using their formula for the probability of \(H_2(n, m) \) being connected, Bender, Canfield, and McKay [6] inferred the probability that \(H_2(n, p) \) is connected as well as a central limit theorem for the number of edges of \(H_2(n, p) \) given that \(H_2(n, p) \) is connected. Using enumerative arguments, Pittel and Wormald [16] derived an improved version of the main result of [5] and obtained a local limit theorem that in addition to \(\mathcal{N}(H) \) and \(\mathcal{M}(H) \) also includes the order and size of the 2-core. O’Connell [15] employed the theory of large deviations in order to estimate the probability that \(H_2(n, p) \) is connected up to a factor \(\exp(o(n)) \). While this result is significantly less precise than Stepanov’s, O’Connell’s proof is simpler. In addition, van der Hofstad and Spencer [11] used a novel perspective on the branching process argument to rederive the formula of Bender, Canfield, and McKay [5] for the number of connected graphs.

In contrast to the case of graphs \((d = 2)\), little is known about the connectivity probability of random \(d \)-uniform hypergraphs with \(d > 2 \). Karoński and Łuczak [13] derived an asymptotic formula for the number of connected \(d \)-uniform hypergraphs of order \(n \) and size \(m = \frac{d}{d-1} + o(\ln n/\ln \ln n) \) via combinatorial techniques. Since the minimum number of edges necessary for connectedness is \(\frac{d}{d-1}n \), this formula addresses sparsely connected hypergraphs. Furthermore, Andriamampianina and Ravelomanana [1] extended the result from [13] to the regime \(m = \frac{n}{d-1} + o(n^{1/3}) \) via enumerative techniques. By contrast, the results of this paper concern connected hypergraphs with \(m = \frac{n}{d-1} + \Omega(n) \) edges. Thus, our results and those from [1, 13] are complementary.

1.2 Main results

The probability of connectedness. The threshold for \(H_d(n, m) \) being connected is \(m \sim \frac{n}{d} \ln n \). Hence, for \(m = O(n) \) the probability that \(H_d(n, m) \) is connected is \(o(1) \). In fact, this probability is exponentially small in \(n \). The following theorem gives an asymptotic expression for this exponentially rare event.

Theorem 1. Let \(d \geq 2 \) be a fixed integer. For any compact set \(\mathcal{J} \subset (d(d-1)^{-1}, \infty) \) and for any \(\delta > 0 \) there exists \(n_0 > 0 \) such that the following holds. Let \(m = m(n) \) be a sequence of integers such that \(\zeta = \zeta(n) = dm/n \in \mathcal{J} \) for all \(n \). There exists a unique number \(0 < r = r(n) < 1 \) such that

\[
r = \exp \left(-\zeta \cdot \frac{(1-r)(1-r^{d-1})}{1-r^d} \right).
\]

Let \(\Phi_d(r, \zeta) = r^{-\zeta} (1-r^{d-1})(1-r^d)^{\frac{\zeta}{2}} \). For \(d \geq 2 \),

\[
R_d(n, m) = \frac{1-r^d-(1-r)(d-1)\zeta r^{d-1}}{\sqrt{(1-r^d+\zeta(d-1)(r-r^{d-1}))(1-r^d)-d\zeta r(1-r^{d-1})^2}} \cdot \exp \left(\frac{(d-1)\zeta(r^2+r^{d-1}-2r^d+r^{d+2})}{2(1-r^d)} \right) \cdot \Phi_d(r, \zeta)^n,
\]
and for \(d = 2 \),
\[
R_2(n, m) = \frac{1 + r - \zeta r}{\sqrt{(1 + r)^2 - 2 \zeta r}} \cdot \exp \left(\frac{\zeta r(2 - r - r^2 + \zeta)}{2(1 + r)} \right) \cdot \Phi_2(r, \zeta)^n.
\]

Finally, let \(c_d(n, m) \) denote the probability that \(H_d(n, m) \) is connected. Then for all \(n > n_0 \) we have
\[
(1 - \delta)R_d(n, m) < c_d(n, m) < (1 + \delta)R_d(n, m).
\]

Observe that Theorem 1 yields an asymptotic formula for the number \(C_d(n, m) \) of connected \(d \)-uniform hypergraphs of given order \(n \) and size \(m \), because
\[
C_d(n, m) = \binom{n}{m} c_d(n, m).
\]

To prove Theorem 1 we shall consider a “larger” hypergraph \(H \) and for \(d \) and for \(H \)

Theorem 2. Let \(d \geq 2 \) be a fixed integer. For any compact set \(J \subset (0, \infty) \), and for any \(\delta > 0 \) there exists \(n_0 > 0 \) such that the following holds. Let \(p = p(n) \) be a sequence such that \(\zeta = \zeta(n) = \binom{n-1}{d-1}p \) \(\in J \) for all \(n \). There exists a unique \(0 < \varrho = \varrho(n) < 1 \) such that
\[
\varrho = \exp \left(\zeta \cdot \frac{\varrho^{d-1} - 1}{(1 - \varrho)^{d-1}} \right).
\]

Let \(\Psi_d(\varrho, \zeta) = (1 - \varrho)^{\varrho^{d-1}} \cdot \varrho^{\frac{1 - \varrho^{d-1} - (1 - \varrho)^d}{2(1 - \varrho)^d}} \) for \(d \geq 2 \). Define, for \(d > 2 \),
\[
S_d(n, p) = \frac{1 - \zeta(d - 1) \left(\varrho^{\frac{1}{1 - \varrho}} \right)^{d-1}}{\varrho^{\zeta(d - 1)} \left(1 - \varrho^{d-1} \right)^{\frac{1}{1 - \varrho}}} \cdot \exp \left(\frac{\zeta(d - 1) \varrho^{\frac{1}{1 - \varrho}} - (1 - \varrho)^d}{2(1 - \varrho)^d} \right)
\]
\[
\cdot \exp \left(\frac{\zeta(d - 1) \varrho^{\frac{1}{1 - \varrho}}}{\varrho^{\zeta(d - 1)} \left(1 - \varrho^{d-1} \right)^{\frac{1}{1 - \varrho}}} \right) \cdot \Psi_d(\varrho, \zeta)^n,
\]

and for \(d = 2 \),
\[
S_2(n, p) = \left(1 - \frac{\zeta}{e^{\zeta - 1}} \right) \cdot \exp \left(\frac{\zeta(2 + \zeta)}{2(e^{\zeta - 1})} \right) \cdot (1 - e^{-\zeta})^n.
\]

Finally, let \(c_d(n, p) \) denote the probability that \(H_d(n, p) \) is connected. Then for all \(n > n_0 \) we have
\[
(1 - \delta)S_d(n, p) < c_d(n, p) < (1 + \delta)S_d(n, p).
\]

Remark 3. The formulas for \(R_d(n, m) \) and \(S_d(n, p) \) for \(d \geq 2 \) given in an extended abstract version [2] of this work were incorrect.

The distribution of the number of edges in \(H_d(n, p) \) given connectedness. Interestingly, if we choose \(p = p(n) \) and \(m = m(n) \) in such a way that \(\binom{n}{d} p = m \) for each \(n \) and set \(\xi = \binom{n-1}{d-1} p = dm/n \), then the function \(\Psi_d(\varrho, \zeta) \) from Theorem 2 is strictly bigger than \(\Phi_d(r, \zeta) \) from Theorem 1. Consequently, the probability that \(H_d(n, p) \) is connected exceeds the probability that \(H_d(n, m) \) is connected by an exponential factor.
The reason for this is as follows. We can think of generating $H_d(n, p)$ as first choosing a random number m_0 of edges from the binomial distribution $\text{Bin}(\binom{n}{d}, p)$, and then generating a random hypergraph $H_d(n, m_0)$. The probability that $H_d(n, m_0)$ is connected increases rapidly as a function of m_0. Hence, $H_d(n, p)$ could “boost” its probability of being connected by including a number of edges that exceeds the expectation $\binom{n}{d}p$ of the binomial distribution considerably. Hence, once we condition on $H_d(n, p)$ being connected, the total number of edges in $H_d(n, p)$ will be significantly larger than $\binom{n}{d}p$. The following local limit theorem quantifies this phenomenon.

Theorem 4. Let $d \geq 2$ be a fixed integer. For any two compact sets $I \subset \mathbb{R}$, $J \subset (0, \infty)$, and for any $\delta > 0$ there exists $n_0 > 0$ such that the following holds. Suppose that $0 < p = p(n) < 1$ is a sequence such that $\zeta = \zeta(n) = \binom{n-1}{d-1}p \in J$ for all n. Let $0 < \rho = \rho(n) < 1$ be the unique solution to (3), and set

$$\hat{\mu} = \left[\frac{\zeta(1 - \rho^d)}{d(1 - \rho^d)} \cdot n \right], \quad \sigma^2 = \frac{\zeta}{d(1 - \rho^d)} \left(1 - \rho^d - \frac{\zeta d \rho(1 - \rho^{d-1})^2}{(1 - \rho)^d + \zeta(1)(\rho - \rho^{d-1})} \right) \cdot n.$$

Finally, let $|E(H_d(n, p))|$ denote the number of edges in $H_d(n, p)$. Then for all $n \geq n_0$ and all integers y such that $n^{-\frac{1}{2}}y \in I$ we have

$$\frac{1 - \delta}{\sqrt{2\pi\sigma}} \exp \left(- \frac{y^2}{2\sigma^2} \right) \leq \mathbb{P} \left[|E(H_d(n, p))| = \hat{\mu} + y \mid H_d(n, p) \text{ is connected} \right] \leq \frac{1 + \delta}{\sqrt{2\pi\sigma}} \exp \left(- \frac{y^2}{2\sigma^2} \right).$$

In the case $d = 2$ the solution to (3) is $\rho = \exp(-\zeta)$, whence the formulas from Theorem 4 simplify to

$$\hat{\mu} = \left[\frac{\zeta}{2} \coth(\zeta/2) \cdot n \right] \quad \text{and} \quad \sigma^2 = \frac{\zeta}{2} \cdot \frac{1 - 2\zeta \exp(-\zeta) - \exp(-2\zeta)}{(1 - \exp(-\zeta))^2} \cdot n.$$

1.3 Techniques and Outline

In Section 2 we derive Theorem 1 from Lemma 6. The basic reason why this is possible is that given that the largest component of $H_d(n, p)$ has order n and size m (for suitably chosen $n > 0$), the largest component is a uniformly distributed connected hypergraph with these parameters. This observation was also exploited by Łuczak [14] to estimate the number of connected graphs up to a polynomial factor, and in [8], where an explicit relation between the numbers $c_d(n, m)$ and $\mathbb{P} \{ |N(H_d(n, m))| = n, M(H_d(n, m)) = m \}$ was derived (see Lemma 5 below). Combining this relation with Lemma 6, we obtain Theorem 1. Finally, in Sections 3 and 4 we use similar arguments to establish Theorems 2 and 4.

1.4 Notation

We use the “O-notation” to express asymptotic estimates as $n \to \infty$. Occasionally we will apply this notation to expressions that do not only depend on n, but also on further parameters. Suppose that $f(x_1, \ldots, x_k, n)$, $g(x_1, \ldots, x_k, n)$ are functions of n and further parameters x_i are from domains $D_i \subset \mathbb{R}$ ($1 \leq i \leq k$), and that $g \geq 0$. Then we say that the estimate $f(x_1, \ldots, x_k, n) = O(g(x_1, \ldots, x_k, n))$ holds uniformly in x_1, \ldots, x_k if the following is true: there exist numbers C and n_0 such that

$$|f(x_1, \ldots, x_k, n)| \leq Cg(x_1, \ldots, x_k, n) \text{ for all } n \geq n_0 \text{ and } (x_1, \ldots, x_k) \in \prod_{j=1}^k D_j.$$

Similarly, we say that $f(x_1, \ldots, x_k, n) \sim g(x_1, \ldots, x_k, n)$ holds uniformly in x_1, \ldots, x_k if for any $\varepsilon > 0$ there exists $n_0 > 0$ such that for all $n > n_0$

$$\sup_{(x_1, \ldots, x_k) \in D_1 \times \cdots \times D_k} \left| \frac{f(x_1, \ldots, x_k, n)}{g(x_1, \ldots, x_k, n)} - 1 \right| < \varepsilon.$$

We define uniformity analogously for the other Landau symbols Ω, Θ, etc.
2 The Probability that $H_d(n, m)$ is Connected: Proof of Theorem 1

We will derive the probability that $H_d(n, m)$ is connected (Theorem 1) from the local limit theorem for the joint distribution of the order and size of the largest component in $H_d(\nu, p)$, for suitable choice of $\nu > n$. The latter was proved by us in [3] and restated below in Lemma 6.

Let $J \subset (d(d-1)^{-1}, \infty)$ be a compact interval, and let $m(n)$ be a sequence of integers such that $\zeta = \zeta(n) = dm/n \in J$ for all n. The basic idea is to choose ν and p in such a way that $|n - \mathbb{E}(N(H_d(\nu, p)))|$ and $|m - \mathbb{E}(M(H_d(\nu, p)))|$ are “small”, i.e., n and m will be “probable” outcomes of $N(H_d(\nu, p))$ and $M(H_d(\nu, p))$. Since given that $N(H_d(\nu, p)) = n$ and $M(H_d(\nu, p)) = m$, the largest component of $H_d(\nu, p)$ is a uniformly distributed connected graph of order n and size m, we can then express the probability that $H_d(n, m)$ is connected in terms of the probability

$$\chi = \mathbb{P} [N(H_d(\nu, p)) = n, \ M(H_d(\nu, p)) = m].$$

The (somewhat technical) details of this approach were carried out in [8], where the following lemma was established.

Lemma 5. Suppose that $n > n_0$ for some large enough number $n_0 = n_0(J)$. Then there exist an integer $\nu = \nu(n) = \Theta(n)$ and a number $0 < p = p(n) < 1$ such that the following is true.

(i) Let $c = (\nu^{-1})^p$. Then $(d - 1)^{-1} < c = O(1)$, and letting $0 < \rho = \rho(c) < 1$ signify the solution to (1), we have

$$n = (1 - \rho)\nu, \quad m - (1 - \rho^d)\binom{\nu}{d}p = O(1).$$

(ii) The solution r to (2) satisfies $|r - \rho| = o(1)$ and $|c - \frac{1 - r}{1 - \rho} \zeta| = o(1)$.

(iii) Furthermore,

$$c_d(n, m) \sim \nu \cdot 3 \cdot w \cdot \Phi_d(r, \zeta)^n$$

uniformly for $\zeta \in J$, where

$$\Phi_d(r, \zeta) = (1 - r)^{1 - \zeta} r^{d/(1 - r)} (1 - r^d)^{\zeta/d},$$

$$u = 2\pi \sqrt{r(1 - r)(1 - r^d)c/d},$$

$$v = \exp \left(\frac{d - 1)r(1 - r^d)c}{2} \right),$$

$$w = \begin{cases}
\exp \left(\frac{c^2 r(1 + r)}{2} \right) & \text{if } d > 2, \\
\exp \left(\frac{c^2 r(1 + r)}{2} \right) & \text{if } d = 2.
\end{cases}$$

The formulas (4)–(8) are reformulated from the corresponding ones in [8] by translating the notations as follows. We exchange the roles of ν and n and those of μ and m respectively; r and p play the same role as $1 - a_1$ and $1 - \alpha_5$ respectively. The formula (5) follows from the term $(a_5(1 - a_5)(1 - a_5)/a_5)(a_5 d b_5)^{\mu} = (a_5^{1 - \zeta}(1 - a_5)(1 - a_5)/a_5(1 - a_5 d)^{\zeta/d})^{\nu}$ in (15) of [8]. Letting $\Phi_d(x, \zeta) := (1 - x)^{1 - \zeta} x^{1 + \zeta} (1 - x^d)^{-\zeta}$, we have from Lemma 12 of [8] that $\Phi_d(1 - a_5, \zeta)^\nu \sim \Phi_d(1 - a_5, \zeta)^\nu$, so we have in the current setting that $\Phi_d(\rho, \zeta)^n \sim \Phi_d(\tau, \zeta)^n$. Furthermore, (6) follows from the term $\frac{2\pi}{\sqrt{a_5(1 - a_5)b_5}} \sim u$ in (15) of [8]; (7) from the term $\exp \left[\frac{d - 1)(1 - a_5)c(b_5 + a_5(1 - a_5)^d - 2)}{2a_5} \right] \sim v$; and (8) from the term $\exp \left[\frac{b_5 p(1 - a_5)^d - (1 - a_5)^d)}{2a_5} \right] \sim w$.

Thus, once we know the explicit expression for

$$\chi = \mathbb{P} [N(H_d(\nu, p)) = n, \ M(H_d(\nu, p)) = m],$$

we can derive the exact asymptotic expression for $c_d(n, m)$ from (4). We can in fact compute χ explicitly using the following local limit theorem for the joint distribution of $N(H_d(\nu, p))$ and $M(H_d(\nu, p))$ from [4].
Lemma 6. Let $d \geq 2$ be a fixed integer. For any two compact sets $I \subset \mathbb{R}^2$, $J \subset ((d - 1)^{-1}, \infty)$, and for any $\delta > 0$ there exists $\nu_0 > 0$ such that the following holds. Let $p = p(\nu)$ be a sequence such that $c = c(\nu) = (\nu - 1)^p \in J$ for all ν and let $0 < \rho = \rho(\nu) < 1$ be the unique solution to (1). Further, let

$$
\sigma_N^2 = \rho \frac{(1 - \rho + c(d - 1)(\rho - \rho^{d-1}))}{(1 - c(d - 1)\rho^{d-1})^2} \cdot \nu,
$$

$$
\sigma_M^2 = c^2 \rho^d \cdot \frac{2 + c(d - 1)(\rho^{2d-2} - 2\rho^{d-1} + \rho^d) - \rho^{d-1} - \rho^d}{(1 - c(d - 1)\rho^{d-1})^2} \cdot \nu
+ (1 - \rho^d) \frac{c}{d} \cdot \nu,
$$

$$
\sigma_{NM}^2 = \frac{c}{d} \rho - c(d - 1)\rho^{d-1}(1 - \rho) \frac{1}{(1 - c(d - 1)\rho^{d-1})^2} \cdot \nu.
$$

Suppose that $\nu \geq \nu_0$ and that n, m are integers such that

$$
x = n - (1 - \rho)\nu \quad \text{and} \quad y = m - (1 - \rho^d)\left(\frac{\nu}{d}\right)p
$$

satisfy $\nu \frac{1}{d}(x, y) \in I$. Define

$$
P(x, y) = \frac{1}{2\pi \sqrt{\sigma_N^2 \sigma_M^2 - \sigma_{NM}^2}} \cdot \exp \left(-\frac{\sigma_N^2 \sigma_M^2}{2(\sigma_N^2 \sigma_M^2 - \sigma_{NM}^2)} \left(\frac{x^2}{\sigma_N^2} - \frac{2\sigma_{NM} x y}{\sigma_N^2 \sigma_M^2} + \frac{y^2}{\sigma_M^2} \right) \right).
$$

Then we have

$$(1 - \delta) P(x, y) \leq \mathbb{P} [N(H_d(\nu, p)) = n, M(H_d(\nu, p)) = m] \leq (1 + \delta) P(x, y).
$$

Note that from (9)--(11) we have

$$
\sigma_N^2 \sigma_M^2 - \sigma_{NM}^2 = \frac{c}{d} \frac{1}{d} \frac{(1 - \rho + c(d - 1)(\rho - \rho^{d-1}))}{(1 - c(d - 1)\rho^{d-1})^2} \left(1 - \rho^d \right) - c^2 \rho^2 (1 - \rho^{d-1})^2 \cdot \nu^2.
$$

From Lemma 5 (i) and (12), $x = 0, y = O(1)$, and from (10) $\sigma_M = \Theta(\nu)$. Thus (13)--(15) yield

$$
\chi = \mathbb{P} [N(H_d(\nu, p)) = n, M(H_d(\nu, p)) = m]
\sim \frac{1}{2\pi \sqrt{\sigma_N^2 \sigma_M^2 - \sigma_{NM}^2}}
= \frac{1 - c(d - 1)\rho^{d-1}}{2\pi \sqrt{\frac{d}{r} (1 - \rho + c(d - 1)(\rho - \rho^{d-1})) (1 - \rho^d) - c^2 \rho^2 (1 - \rho^{d-1})^2}}.
$$

(16)

Since $r \sim \rho$ and $c \sim \frac{1 - r}{1 - r^d} \zeta$ by Lemma 5 (ii), we can express $\nu \cdot \chi, u, v, w$ in (16) and (6)--(8) solely in terms of r and ζ:
Remark 7. While Lemma 5 was established in Coja-Oghlan, Moore, and Sanwalani [8], the exact joint limiting distribution of $\mathcal{N}(H_d(\nu, p))$ and $\mathcal{M}(H_d(\nu, p))$ (i.e. Lemma 6) was not known at that point. Therefore, Coja-Oghlan, Moore, and Sanwalani could only compute the $c_d(n, m)$ up to a constant factor. By contrast, combining Lemma 6 with Lemma 5, here we have obtained tight asymptotics for $c_d(n, m)$.

3 The Probability that $H_d(\nu, p)$ is Connected: Proof of Theorem 2

Let $\mathcal{F} \subset (0, \infty)$ be a compact set, and let $0 < p = p(n) < 1$ be a sequence such that $\zeta = \zeta(n) = \binom{n-1}{d-1}p \in \mathcal{F}$ for all n. All asymptotics in this section are uniform in ζ.

To compute the probability $c_d(n, p)$ that a random hypergraph $H_d(n, p)$ is connected, we will establish that

$$
\mathbb{P} [\mathcal{N}(H_d(\nu, p)) = n] \sim \binom{\nu}{n} c_d(n, p) (1 - p)^{\binom{n}{d}-\binom{\nu-d}{d}} \cdot \exp \left(\frac{\zeta r (2 - r^2 + \zeta)}{2(1 + r)} \right).
$$

for a suitably chosen integer $\nu > n$. Then, we will employ the local limit theorem for $\mathcal{N}(H_d(\nu, p))$, which is implied by Lemma 6 and as well as our previous result [3] on the local limit theorem for $\mathcal{N}(H_d(n, p))$, to compute the l.h.s. of (19), so that we can just solve (19) for $c_d(n, p)$.

In order to carry this out, we use the following lemma on the component structure of $H_d(n, p)$, which is a slight variant of Theorem 5 of [8]. To obtain it, we can easily adapt the arguments of the proof of Theorem 5 of [8]. We may skip here the details, as the computations become quite technical and tedious without providing useful new insights.
Lemma 8. Let \(c = c(\nu) \) be a sequence of non-negative reals and let \(p = c(\nu)^{-1} \) and \(m = (\nu)^{-1} \) be connected hypergraphs. Then for both \(H = H_d(\nu, p) \) and \(H = H_d(\nu, \mu) \) the following holds.

(i) For any \(c_0 < (d - 1)^{-1} \) there is a number \(\nu_0 \) such that for all \(\nu > \nu_0 \) for which \(c = c(\nu) \leq c_0 \) we have

\[
\mathbb{P} [\mathcal{N}(H) \leq 300(d - 1)^2(1 - (d - 1)c_0)^{-2} \ln \nu] \geq 1 - \nu^{-100}.
\]

(ii) For any \(c_0 > (d - 1)^{-1} \) there are numbers \(\nu_0 > 0 \), \(0 < c_0' < (d - 1)^{-1} \) such that for all \(\nu > \nu_0 \) for which \(c_0 \leq c = c(\nu) < \ln \nu / \ln \nu \) the following holds. The transcendental equation \((1) \) has a unique solution \(0 < \rho = \rho(\nu) < 1 \), which satisfies

\[
\rho^{d-1} c < c_0.
\]

Furthermore, with probability \(\geq 1 - \nu^{-100} \) there exists precisely one component of order \((1-\rho)\nu + o(\nu) \) in \(H \), while all other components have order \(\leq \nu^2 \). In addition,

\[
\mathbb{E} [\mathcal{N}(H)] = (1 - \rho)\nu + o(\sqrt{\nu}).
\]

We pick \(\nu \) as follows. By Lemma 8 for each integer \(k \) such that \(c(k) = \binom{k-1}{d-1} p > (d - 1)^{-1} \) the transcendental equation \(\rho(k) = \exp(c(k)(\rho(k)^{d-1} - 1)) \) has a unique solution \(\rho(k) \) that lies strictly between 0 and 1. We let \(\nu = \max\{ k \in \mathbb{N} : (1 - \rho(k))k < n \} \). Moreover, set \(\rho = \rho(\nu) \) and \(c = c(\nu) = (\nu^{-1}) \), and let \(0 < s < 1 \) be such that \((1 - s)\nu = n \). We claim

\[
|n - (1 - \rho)\nu| < O(1).
\]

To see this, observe that \((1 - \rho(\nu))\nu < n = (1 - s)\nu \leq (1 - \rho(\nu + 1))(\nu + 1) \). In order to establish (20), it suffices to show that \(|\rho(\nu + 1) - \rho(\nu)| = O(1/\nu) \), because \(n - (1 - \rho(\nu))\nu < (1 - \rho(\nu + 1))(\nu + 1) - (1 - \rho(\nu))\nu < 1 + \nu(\rho(\nu) - \rho(\nu + 1)) \). To prove this, we note that since \(\zeta = \binom{\nu}{d-1} p = \binom{(1 - s)\nu - 1}{d-1} p \),

\[
c(\nu + 1) - c(\nu) = \binom{\nu}{d-1} p - \binom{\nu - 1}{d-1} p = p \frac{(\nu - 1)}{(d - 1)} \frac{d - 1}{\nu - d + 1} = \zeta \frac{d}{(d - 1)} = O(1/\nu).
\]

This, together with Taylor series expansion, implies that \(|\rho(\nu + 1) - \rho(\nu)| = O(1/\nu) \), because \(\rho(k) = \exp(c(k)(\rho(k)^{d-1} - 1)) \) and \(\rho(k) \) is differentiable due to the implicit function theorem.

To establish (19), note that the r.h.s. is just the expected number of components of order \(n \) in \(H_d(\nu, p) \). For there are \(\binom{n}{\nu} \) ways to choose the vertex set \(C \) of such a component, and the probability that \(C \) spans a connected hypergraph is \(c_d(n, p) \). Moreover, if \(C \) is a component, then \(H_d(\nu, p) \) features no edge that connects \(C \) with \(V \setminus C \), and there are \(\binom{\nu}{d-1} - \binom{\nu-d}{d-1} \) possible edges of this type, each being present with probability \(p \) independently. Hence, we conclude that

\[
\mathbb{P} [\mathcal{N}(H_d(\nu, p)) = n] \leq \binom{\nu}{n} c_d(n, p)(1 - p)^{\binom{\nu}{d-1}} - \binom{\nu-d}{d-1} - \binom{\nu}{d-1}.
\]

(21)

On the other hand,

\[
\mathbb{P} [\mathcal{N}(H_d(\nu, p)) = n] \geq \binom{\nu}{n} c_d(n, p)(1 - p)^{\binom{\nu}{d-1}} - \binom{\nu-d}{d-1} - \binom{\nu}{d-1} \mathbb{P} [\mathcal{N}(H_d(\nu - n, p) < n)],
\]

(22)

because the r.h.s. equals the probability that \(H_d(\nu, p) \) has exactly one component of order \(n \). Furthermore, as \(|n - (1 - \rho)\nu| < O(1) \) by (20), Lemma 8 entails that

\[
\mathbb{P} [\mathcal{N}(H_d(\nu - n, p)) < n] \sim 1.
\]

Hence, combining (21) and (22), we obtain (19).

To derive an explicit formula for \(c_d(n, p) \) from (19), we need the following lemma.
Lemma 9. (i) We have \(c = \zeta (1 - s)^{1-d} \left(1 + \frac{(d)}{2} \frac{s}{(1-s)^{\nu}} + O(\nu^{-2}) \right) \).

(ii) The transcendental equation (3) has a unique solution \(0 < \rho < 1 \), which satisfies \(|s - \rho| = O(\nu^{-1}) \).

(iii) Letting

\[\Psi(x) = \Psi_d(x, \zeta) := (1-x)x^{\frac{\nu}{\nu-1}} \exp \left(\frac{\zeta}{d} \cdot \frac{1-x^d - (1-x)^d}{(1-x)^d} \right), \]

we have \(\Psi(\rho)^n \sim \Psi(s)^n \).

Proof of Lemma 9. Regarding the first assertion, we note that

\[\frac{(1-s)^{d-1}(\nu-1)}{(1-s)^{\nu-1}} = \prod_{j=1}^{d-1} \left(1 + \frac{s}{(1-s)^{\nu-j}} \right) = 1 + \left(\frac{d}{2} \right) \frac{s}{(1-s)^{\nu}} + O(\nu^{-2}). \]

(23)

Since \(c = \left(\frac{\nu-1}{d-1} \right)^{1/d} \) and \(n = (1-s)\nu \), (23) implies the first assertion.

In order to show the second assertion, we set

\[\varphi_z : (0, 1) \rightarrow \mathbb{R}, \ t \mapsto \exp \left(z \frac{\rho^{d-1} - 1}{(1-t)^{d-1}} \right) \]

for \(z > 0 \). Then \(\lim_{t \searrow 0} \varphi_z(t) = \exp(-z) > 0 \), while \(\lim_{t \nearrow 1} \varphi_z(t) = 0 \). In addition, \(\varphi_z \) is convex for any \(z > 0 \). Therefore, for each \(z > 0 \) there is a unique \(0 < t_z < 1 \) such that \(t_z = \varphi_z(t_z) \), whence (3) in Theorem 2 has the unique solution \(0 < \rho = t_z < 1 \). Moreover, letting \(\zeta' = (1-\rho)^{d-1}c \), we have \(\rho = t_{\zeta'} \). Thus, since \(t \mapsto t_z \) is differentiable by the implicit function theorem and \(|\zeta - \zeta'| = O(\nu^{-1}) \) by the first assertion, we conclude that \(|s - \rho| = O(\nu^{-1}) \). In addition, \(|s - \rho| = O(\nu^{-1}) \) by (20). Hence, \(|s - \rho| = O(\nu^{-1}) \), as desired.

To establish the third assertion, we compute

\[\frac{\partial}{\partial x} \Psi(x) = (1-x)^{-d-1}x^{\frac{\nu}{\nu-1}} \exp \left(\frac{\zeta}{d} \cdot \frac{(1-x^d - (1-x)^d)}{(1-x)^d} \right) \times (1-x^d) \]

\[\prod_{j=1}^{d-1} \left(1 + \frac{s}{(1-s)^{\nu-j}} \right) \]

\[\times \left(1 - \frac{s}{(1-s)^{\nu-j}} \right)^{d-1} \]

\[\times \left(1 - \frac{s}{(1-s)^{\nu-j}} \right)^{d-1} \]

\[\exp \left(\frac{\zeta}{d} \cdot \frac{(1-x^d - (1-x)^d)}{(1-x)^d} \right) \]

\[\times \left(1 - \frac{s}{(1-s)^{\nu-j}} \right) \]

(24)

As \(\varrho = \exp \left(\frac{\zeta}{d-1} \right) \), (24) entails that \(\frac{\partial}{\partial x} \Psi(\rho) = 0 \). Therefore, Taylor’s formula yields that \(\Psi(s) - \Psi(\rho) = O(s - \rho) = O(\nu^{-2}) \), because \(s - \rho = O(\nu^{-1}) \) by the second assertion. Consequently, we obtain

\[\left(\frac{\Psi(s)}{\Psi(\rho)} \right)^{\nu} = \left(1 + \frac{\Psi(s) - \Psi(\rho)}{\Psi(\rho)} \right)^{\nu} \exp \left(\nu \cdot \frac{\Psi(s) - \Psi(\rho)}{\Psi(\rho)} \right) = \exp(O(\nu^{-1})) \sim 1, \]

thereby completing the proof of the third assertion.

Let us continue with the proof of Theorem 2. Note that Lemma 6 implies

\[\mathbb{P}[N(H_d(n, p)) = n] \sim \frac{1}{\sqrt{2\pi \sigma_N}} \exp \left(-\frac{(n - (1-\rho)\nu)^2}{2\sigma_N^2} \right). \]

(25)

It follows also from our previous result [3] on the local limit theorem for \(N(H_d(n, p)) \). Since \(|s - \rho| = O(\nu^{-1}) \) by (20), we can express \(\sigma_N^2 \) (in (9)) in terms of \(s \):

\[\sigma_N^2 = \frac{\rho (1-\rho+c(d-1)(\rho-\rho^{d-1}))}{(1-c(d-1)\rho^{d-1})^2} \cdot \nu. \]

(26)

Further, since \(n - (1-\rho)\nu < O(1) \) by (20), we have from (25) and (26)

\[\mathbb{P}[N(H_d(n, p)) = n] \sim (2\pi)^{-\frac{1}{2}} \left(\frac{s (1-s+c(d-1)(s-s^{d-1}))}{(1-c(d-1)s^{d-1})^2} \cdot \nu \right)^{\frac{1}{2}}. \]

(27)
Via Stirling’s formula and \(n = (1 - s)\nu \) we can estimate the binomial coefficient

\[
{\binom{\nu}{n}} \sim \left(s^{\nu}(1-s)^{(1-s)\nu} \sqrt{2\pi s(1-s)\nu} \right)^{-1}.
\] (28)

Plugging (27) and (28) into (19), we obtain

\[
c_d(n, p) \sim \left(\frac{\nu}{n} \right)^{-1} \cdot \mathbb{P} [\mathcal{N}(H_d(\nu, p)) = n] \cdot (1-p)^{\binom{\nu}{d}} \binom{n}{\nu - d}.
\]

\[
\sim s^{\nu}(1-s)^{(1-s)\nu} \cdot \eta \cdot (1-p)^{\binom{\nu}{d}} \binom{n}{\nu - d},
\] (29)

where

\[
\eta = \frac{(1 - s)(1 - c(d - 1)s^{d-1})^2}{1 - s + c(d - 1)(s - s^{d-1})}^{1/2}.
\] (30)

Let us consider the cases \(d = 2 \) and \(d > 2 \) separately, because \(\binom{\nu}{2}p^2 = o(1) \) for \(d > 2 \), while \(\binom{\nu}{2}p^2 = \Theta(1) \) and therefore the asymptotics for \((1-p)^{\binom{\nu}{d}} \binom{n}{\nu - d} \) behave quite differently.

1st case: \(d = 2 \). Note first that \(\binom{\nu-1}{2} + \binom{\nu}{2} = s(s-1)\nu^2 \), because \(n = (1-s)\nu \). Using \(p = \frac{c}{\nu - 1} \), we get

\[
(1-p)^{\binom{\nu-1}{2} + \binom{\nu}{2}} = (1-p)^{s(s-1)\nu^2}
\]

\[
\sim e^{\nu \cdot \eta \cdot (1-p)^{s(s-1)\nu^2}}
\]

\[
\sim e^{\nu \cdot \frac{c}{\nu - 1} \cdot s(s-1)((\nu - 1)(\nu + 1)} \right) + \frac{1}{2} \left(\frac{c}{\nu - 1} \right)^{2} s(s-1)\nu^2
\]

\[
\sim e^{\nu c s(1-s)(\nu + 1) + \frac{c^2}{2} s(1-s)}.
\] (31)

Moreover, (30) simplifies to \(\eta = 1 - cs \). Hence, recalling that \(\nu = (1-s)^{-1}n \) and using Lemma 9 (i)- (iii), i.e. \(c = \frac{\zeta}{1-s} \left(1 + \frac{1}{(1-s)^{\nu}} + O(\nu^{-2}) \right) \), \(|s - \rho| = O(\nu^{-1}) \) and \(\left((1-s)\nu^{\frac{1}{1-s}} \exp \left(\frac{s}{1-s} \right) \right)^{n} \sim \left(1 - \rho \right)^{\frac{n}{\theta + 1}} \exp \left(\frac{\theta}{1-\theta} \right) \) \(\), we can estimate (29) as

\[
c_d(n, p) \sim s^{\nu}(1-s)^{(1-s)\nu} \cdot (1 - cs) \cdot \exp \left(cs(1-s)\nu + cs(1-s) + \frac{c^2}{2} s(1-s) \right)
\]

\[
\sim s^{\frac{n}{\theta + 1}}(1-s)^n \left(1 - \frac{c}{1-s} \right) \exp \left(\frac{cs}{1-s} + \frac{c^2}{1-s} \right)
\]

\[
\sim s^{\frac{n}{\theta + 1}}(1-s)^n \left(1 - \frac{cs}{1-s} \right) \exp \left(\frac{c^2}{1-s} \right)
\]

\[
\sim (\rho^{\frac{n}{\theta + 1}}(1-\rho)^n \left(1 - \frac{c}{1-\rho} \right) \exp \left(\frac{c^2}{2(1-\rho)} \right)
\] (32)

Finally, for \(d = 2 \) the unique solution to (3) is just \(\rho = \exp(-\zeta) \), so we have \(\frac{c}{\nu - 1} = \frac{1}{e\xi - 1} \). Plugging these into (32), we obtain

\[
c_d(n, p) \sim (1 - e^{-\zeta})^n \left(1 - \frac{\zeta}{e\xi - 1} \right) \exp \left(\frac{\zeta^2}{2(e\xi - 1)} \right) \]

(33)

as desired.
2nd case: $d > 2$. For $0 < \alpha < 1$, using

$$
\alpha^d \left(\frac{\alpha \nu}{d} \right)^{-1} \left(\frac{\nu}{d} \right) = \prod_{i=0}^{d-1} \frac{\alpha (\nu - i)}{\alpha \nu - i} = \prod_{i=0}^{d-1} \left(1 + \frac{(1 - \alpha) i}{\alpha \nu - i} \right) = 1 + \frac{1 - \alpha}{\alpha \nu} \left(\frac{d}{2} \right) + O(\nu^{-2}),
$$

and $n = (1 - s) \nu$, we estimate

$$
\begin{aligned}
\binom{n}{d}^{-1} \left(\frac{\nu}{d} \right) + \binom{\nu - n}{d}^{-1} \left(\frac{\nu}{d} \right) &= \binom{(1 - s) \nu}{d}^{-1} \left(\frac{\nu}{d} \right) + \binom{s \nu}{d}^{-1} \left(\frac{\nu}{d} \right) \\
&= (1 - s)^d \left(1 - \frac{s}{(1 - s) \nu} \left(\frac{d}{2} \right) + O(\nu^{-2}) \right) + s^d \left(1 - \frac{1 - s}{s \nu} \left(\frac{d}{2} \right) + O(\nu^{-2}) \right) \\
&= (1 - s)^d + s^d - \frac{1}{\nu} \left(\frac{d}{2} \right) (s(1 - s)^{d-1} + (1 - s)s^{d-1}) + O(\nu^{-2})
\end{aligned}
$$

and thus we have

$$
\begin{aligned}
\binom{n}{d} + \binom{\nu - n}{d} - \binom{\nu}{d} &= \binom{(1 - s) \nu}{d} \left((1 - s)^d + s^d - 1 \right) \\
&= \binom{(1 - s) \nu}{d} \left((1 - s)^d + s^d - 1 \right) + O(\nu^{-d-2}).
\end{aligned}
$$

Because $\binom{\nu - 1}{d-1} p = c = \Theta(1)$, we have $\binom{\nu}{d} p^2 = o(1)$ for $d > 2$, and hence

$$
(1 - p) \binom{\nu}{d} ((1 - s)^d + s^{d-1}) \sim \exp \left(-p \binom{\nu}{d} \left((1 - s)^d + s^d - 1 \right) \right) = \exp \left(\frac{c \nu}{d} \left(1 - s^d - (1 - s)^d \right) \right)
$$

and

$$
(1 - p) \binom{\nu - 1}{d-1} \binom{s(1 - s)^{d-1} + (1 - s)s^{d-1}}{d-1} \sim \exp \left(p \binom{\nu}{d} \frac{1}{\nu} \left(\frac{d}{2} \right) (s(1 - s)^{d-1} + (1 - s)s^{d-1}) \right) \\
= \exp \left(p \binom{\nu - 1}{d-1} \frac{d}{2} \left((1 - s)^{d-1} + (1 - s)s^{d-1} \right) \right) \\
= \exp \left(\frac{c(d - 1)}{2} \left((1 - s)^{d-1} + (1 - s)s^{d-1} \right) \right).
$$

Putting (34)–(36) together, we get

$$
(1 - p) \binom{\nu}{d} + \binom{\nu - 1}{d-1} \binom{\nu}{d} \binom{s(1 - s)^{d-1} + (1 - s)s^{d-1}}{d-1} \sim \exp \left(\frac{c \nu}{d} (1 - s^d - (1 - s)^d) + \frac{c(d - 1)}{2} \left((1 - s)^{d-1} + (1 - s)s^{d-1} \right) \right).
$$

Before proceeding further computations toward the asymptotic estimation of $c_d(n, p)$, we note that taking $d = 2$ in the estimate (37) yields $(1 - p) \binom{\nu}{2} + \binom{\nu - 1}{1} \binom{\nu}{2} \sim \exp (c s(1 - s)(\nu + 1))$, which differs by a factor $\exp(\frac{c}{2} s(1 - s))$ from the estimate (31), the reason being that $\binom{\nu}{2} p^2 = o(1)$ for $d > 2$, while $\binom{\nu}{2} p^2 = \Theta(1)$. This in turn results in an extra factor $\exp(\frac{c}{2} g(1 - g))$ in the estimate (32) of $c_2(n, p)$, in comparison to the estimate of $c_d(n, p)$ when taking $d = 2$ in (41).
We now return to the computation of (37). Using
\[c = \zeta(1 - s)^{1-d} \left(1 + \frac{d}{2} \frac{s}{(1-s)^\nu} + O(\nu^{-2}) \right) \]
by Lemma 9 (i) and recalling that \(\nu = (1 - s)^{-1} n \),
\[\frac{cv}{d} = \frac{\zeta n}{d(1-s)^d} + \frac{\zeta(d-1)s}{2(1-s)^d} + O(n^{-1}), \]
and thus
\[
\begin{align*}
\frac{cv}{d} (1-s^d - (1-s)^d) &+ \frac{c(d-1)}{2} ((1-s)s^{d-1} + s(1-s)^{d-1}) \\
= \frac{\zeta n}{d(1-s)^d} (1-s^d - (1-s)^d) &+ \frac{\zeta(d-1)s}{2(1-s)^d} (1-s^d - (1-s)^d) \\
&+ \frac{\zeta n}{d(1-s)^d} (1-s^d - (1-s)^d) &+ \frac{\zeta(d-1)s}{2(1-s)^d} (1-s^d - (1-s)^d) \\
&+ \frac{\zeta(d-1)s}{2} \left(\left(\frac{s}{1-s} \right)^{d-2} + 1 \right) + O(n^{-1}). \tag{38}
\end{align*}
\]
Using this, we can restate (37) as
\[
(1-p)^{\binom{1}{2}} \cdot \binom{\binom{1}{1} - \binom{1}{2}}{1} \\
\sim \exp \left(\frac{\zeta(1-s^d - (1-s)^d) n}{d(1-s)^d} + \frac{\zeta(d-1)s(1-s^d - (1-s)^d)}{2(1-s)^d} \right) \\
\cdot \exp \left(\frac{\zeta(d-1)s}{2} \left(\left(\frac{s}{1-s} \right)^{d-2} + 1 \right) \right). \tag{39}
\]
Due to the same reasons, we estimate (30) as
\[
\begin{align*}
\eta &= \left(\frac{(1-s)(1-c(d-1)s^{d-1})^2}{1-s+c(d-1)(s-s^{d-1})} \right)^{1/2} \\
&= (1-c(d-1)s^{d-1}) (1+ c(d-1)(1-s)^{-1}(s-s^{d-1}))^{-1/2} \\
&= \left(1 - \zeta(d-1) \left(\frac{s}{1-s} \right)^{d-1} + O(n^{-1}) \right) \\
&\quad \cdot \left(1 + \frac{\zeta(d-1)(s-s^{d-1})}{(1-s)^d} + O(n^{-1}) \right)^{-1/2} \\
&= \left(1 - \zeta(d-1) \left(\frac{s}{1-s} \right)^{d-1} \right) \\
&\quad \cdot \left(1 + \frac{\zeta(d-1)(s-s^{d-1})}{(1-s)^d} \right)^{-1/2} + O(n^{-1}). \tag{40}
\end{align*}
\]
Plugging (39) and (40) into (29) and recalling \(\nu = (1 - s)^{-1} n \), we obtain
\[
\begin{align*}
c_d(n, p) &\sim s^{\nu}\left(1-s\right)^{(1-s)^\nu}(1-p)^{\binom{\nu}{d} + \binom{\nu}{d-1}} \cdot \eta \\
&\sim s^{\nu} \left(1-s\right)^n \exp \left(\frac{\zeta(1-s^d - (1-s)^d) n}{d(1-s)^d} \right) \\
&\quad \cdot \exp \left(\frac{\zeta(d-1)s}{2} \left(\left(\frac{s}{1-s} \right)^{d-2} + 1 \right) \right) \cdot \left(1 + \frac{\zeta(d-1)(s-s^{d-1})}{(1-s)^d} \right)^{-1/2} + O(n^{-1}).
\end{align*}
\]
From (9) and (15) we have
\[y = \exp \left[\frac{\zeta(d-1)s(1-s^d-1-s)^d}{2(1-s)^d} + \frac{\zeta(d-1)s}{2} \left(\frac{s}{1-s} \right)^{d-2} + 1 \right] \]
\[\cdot \left(1 - \zeta(d-1) \left(\frac{s}{1-s} \right)^{d-1} \right) \left(1 + \frac{\zeta(d-1)(s-s^{d-1})^{-1}}{(1-s)^d} \right). \]

Finally, using Lemma 9 (ii)–(iii), i.e. \(|s - \theta| = O(\nu^{-1})\) and
\[\left(s^{\nu^{-1}}(1-s) \exp \left(\frac{\zeta(1-s^d-1-s^d)}{d(1-s)^d} \right) \right)^n \sim \left(\theta^{\nu^{-1}}(1-\theta) \exp \left(\frac{\zeta(1-\theta^d-1-\theta^d)}{d(1-\theta)^d} \right) \right)^n, \]
we estimate (41) as
\[c_d(n, p) \sim \left((1-\theta) \theta^{\nu^{-1}} \exp \left(\frac{\zeta(1-\theta^d-1-\theta^d)}{d(1-\theta)^d} \right) \right)^n \]
\[\cdot \exp \left(\frac{\zeta(d-1)(1-\theta^d-1-\theta^d)}{2(1-\theta)^d} + \frac{\zeta(d-1)\theta}{2} \left(\frac{\theta}{1-\theta} \right)^{d-2} + 1 \right) \]
\[\times \left(1 - \zeta(d-1) \left(\frac{\theta}{1-\theta} \right)^{d-1} \right) \left(1 + \frac{\zeta(d-1)(\theta-\theta^{d-1})^{-1}}{(1-\theta)^d} \right)^{-1/2}, \tag{41} \]
which is exactly the formula stated in Theorem 2.

\[\square \]

4 The Conditional Edge Distribution: Proof of Theorem 4

Let \(J \subset (0, \infty) \) and \(\mathcal{I} \subset \mathbb{R} \) be compact sets, and let \(0 < p = p(n) < 1 \) be a sequence such that \(\zeta = \zeta(n) = (n^{-1})p \in J \) for all \(n \). All asymptotics in this section are uniform in \(\zeta \).

To compute the limiting distribution of the number of edges of \(H_d(n, p) \) given that this random hypergraph is connected, we choose \(\nu > n \) as in Section 3. Thus, letting \(c = (n^{-1})p \), we know from Section 3 that \(c > (d-1)^{-1} \), and that the solution \(0 < \nu < 1 \) to (1) satisfies \((1-\rho) \nu \leq n < (1-\rho) \nu + O(1)\). Now, we investigate the random hypergraph \(H_d(n, p) \) given that \(\mathcal{N}(H_d(n, p)) = n \). Then the largest component of \(H_d(n, p) \) is a random hypergraph \(H_d(n, p) \) given that \(H_d(n, p) \) is connected. Therefore,
\[\mathbb{P} [\|E(H_d(n, p))\| = m \mid H_d(n, p) \text{ is connected}] = \mathbb{P} [\mathcal{M}(H_d(n, p)) = m \mid \mathcal{N}(H_d(n, p)) = n] \]
\[= \frac{\mathbb{P} [\mathcal{M}(H_d(n, p)) = m, \mathcal{N}(H_d(n, p)) = n]}{\mathbb{P} [\mathcal{N}(H_d(n, p)) = n]} \tag{42} \]

Furthermore, as \(|n - (1-\rho) \nu| < O(1)\) by (20), we can apply Lemma 6 to get an explicit expression for the r.h.s. of (42). Namely, using (13) with \(x = O(1) \), for any integer \(m \) such that \(\nu^{-1} y \in \mathcal{I} \) and \(y = m - (1-\rho^d)(n^{-1})p \) satisfying \(\nu^{-1} y \in \mathcal{I} \) we obtain
\[\mathbb{P} [\|E(H_d(n, p))\| = m \mid H_d(n, p) \text{ is connected}] \approx \frac{1}{\sqrt{2\pi}} \cdot \left(\frac{\sigma_N^2}{\sigma_N^2 - \sigma_{N,M}^2} \right)^{1/2} \exp \left(\frac{-\sigma_N^2}{2(\sigma_N^2 - \sigma_{N,M}^2)} \cdot y^2 \right). \tag{43} \]

From (9) and (15) we have
\[\sigma_N^2 = \rho \left(1 - \rho + c(d-1)(\rho - \rho^{d-1}) \right) \cdot \nu, \]
\[\sigma_N^2 - \sigma_{N,M}^2 = \frac{\rho c (1 - \rho + c(d-1)(\rho - \rho^{d-1})) (1-\rho^d) - d c^2 \rho (1-\rho^{d-1})^2}{d (1-c(d-1)\rho^{d-1})^2} \cdot \nu^2. \]
Thus we have
\[
\frac{\sigma_N^2}{\sigma^2_N - \sigma^2_{N,M}} = \frac{d(1 - \rho + c(d-1)(\rho - \rho^{d-1}))}{c((1 - \rho + c(d-1)(\rho - \rho^{d-1}))(1 - \rho^d) - dcp(1 - \rho^{d-1})^2)} \cdot \frac{1}{\nu}
\]
\[
= \frac{d}{c\nu} \left(1 - \rho^d - \frac{dcp(1 - \rho^{d-1})^2}{1 + c(d-1)(\rho - \rho^{d-1})} \right)^{-1}.
\]
(44)

In order to reformulate (44) in terms of \(n, \zeta, \) and the solution \(\varrho \) to (3), we just observe that \(|c - \zeta(1 - \rho)^{1-d}| = O(\nu^{-1})\) and \(|\rho - \varrho| = O(\nu^{-1})\) by Lemma 9, and that \(|\nu - (1 - \rho)^{-1}n| = O(\nu^{-1})\). Using these we obtain
\[
\left(\frac{\sigma_N^2}{\sigma^2_N - \sigma^2_{N,M}} \right)^{-1} = \frac{c\nu}{d} \left(1 - \rho^d - \frac{dcp(1 - \rho^{d-1})^2}{1 + c(d-1)(\rho - \rho^{d-1})} \right)
\]
\[
\sim \frac{\zeta\nu}{(1 - \rho)^d} \left(1 - \rho^d - \frac{d\zeta(1 - \rho)^{1-d}c(1 - \rho^{d-1})^2}{1 + c(d-1)(\rho - \rho^{d-1})} \right)^{-1}
\]
\[
= \frac{\zeta}{(1 - \rho)^d} \left(1 - \rho^d - \frac{d\zeta c(1 - \rho^{d-1})^2}{(1 - \rho)^d + \zeta(d-1)(\rho - \rho^{d-1})} \right) \cdot n
\]
\[
\sim \frac{\zeta}{(1 - \rho)^d} \left(1 - \rho^d - \frac{d\zeta c(1 - \rho^{d-1})^2}{(1 - \rho)^d + (d-1)\zeta(\rho - \rho^{d-1})} \right) \cdot n
\]
(45)

and
\[
(1 - \rho^d)\left(\frac{\nu}{d} \right)^p = (1 - \rho^d)\frac{\nu^c}{d(1 - \rho)} \sim (1 - \rho^d)\frac{\nu}{d(1 - \rho)}^c \sim (1 - \rho^d)\frac{\nu}{d(1 - \rho)}^c \frac{n}{d(1 - \rho)}^c(1 - \rho)^{1-d} = \frac{\zeta(1 - \rho^d)}{d(1 - \rho)^d} \cdot n.
\]

Plugging (45) into (43) we have
\[
\mathbb{P} \left[|E(H_d(n, p))| = m \mid H_d(n, p) \text{ is connected} \right] \sim \frac{1}{\sqrt{2\pi\hat{\sigma}}} \exp \left(- \frac{y^2}{2\hat{\sigma}^2} \right),
\]
as desired.

Acknowledgment. We thank the anonymous referee for useful comments and suggestions on earlier versions of this paper.

References